Степень расширения

- **Задача 4.1.** Пусть E/L и L/K конечнные расширения. Тогда расширение E/K тоже конечно, и $[E:K] = [E:L] \cdot [L:K]$.
- **Задача 4.2.** Найдите степень над $\mathbb Q$ числа а) $\sqrt{2} + \sqrt{3}$; б) $\sqrt[3]{2} + \sqrt{3}$.
- **Задача 4.3.** а) Элемент α алгебраичен над полем K тогда и только тогда, когда расширение K(a)/K конечно.
- б) Если L/K прозвольное расширение, то множество L^{alg} элементов L, алгебраичных над K, образует поле.
- Задача 4.4. Если число α получено из элементов поля $K \subset \mathbb{R}$ при помощи построений циркулем и линейкой, то $[K(\alpha):K]$ является степенью двойки.
- Задача 4.5. Циркулем и линейкой нельзя построить отрезок в $\sqrt[3]{2}$ длиннее данного (то есть задача об удвоении куба не имеет решения).
- **Задача 4.6.** Найдите минимальный многочлен числа а) $\cos \frac{2\pi}{9}$; б) $\cos \frac{2\pi}{5}$; в) $\cos \frac{2\pi}{7}$; какие из этих чисел построимы циркулем и линейкой?
- УКАЗАНИЕ. $\cos n\phi$ многочлен степени n от $\cos \phi$ ("многочлены Чебышева").
- Задача 4.7. Задача о трисекции угла не имеет решения.
- **Задача 4.8.** Если расширение L/K конечно, то $|\operatorname{Aut}(L/K)| \leq [L:K]$.
- **Задача 4.9.** Пусть E/K нормальное расширение, $K\subset L\subset E$ подрасширение. Тогда расширение E/L нормально.
- **Задача 4.10.** а) Пусть K конечное поле характеристики p. Тогда отображение $F \colon K \to K$, $x \mapsto x^p$ автоморфизм этого поля ("автоморфизм Фробениуса").
- б) Если $[K:\mathbb{F}_p]=n$, то автоморфизм Фробениуса имеет в этой группе порядок n.
- в) Расширение степени n поля \mathbb{F}_p существует и единственно.
- Γ) Aut($\mathbb{F}_{p^n}/\mathbb{F}_p$) $\cong \mathbb{Z}/n\mathbb{Z}$.
- **Задача 4.11.** Когда поле из p^n элементов вкладывается в поле из p^m элементов?