Комплексный анализ — Семинар №4 — 6 марта 2015

Пусть $\mathbb{D}=\{z\in\mathbb{C}\colon |z|<1\}$ — единичный круг, а $\mathbb{T}=\{z\in\mathbb{C}\colon |z|=1\}$ — единичная окружность.

- **1.** Пусть J функция Жуковского. При каких $z \in \overline{\mathbb{C}}$ существует и конечен предел $\lim_{n \to \infty} J^{(n)}(z)$, где $J^{(n)} = J \circ \cdots (n \text{ раз}) \cdots \circ J$.
- **2.** Доказать, что целая функция с периодами 1 и i постоянна.
- 3. Найти круги сходимости рядов $\sum_{n=0}^{\infty} C_n^k z^n$, $k \in \mathbb{N}_0$, $\sum_{n=0}^{\infty} \frac{n!}{n^n} (z-1)^n$ и $\sum_{n=0}^{\infty} n^2 (2z-i)^n$. Показать, что ряд $\sum_{n=0}^{\infty} n e^{inz}$ равномерно сходится в верхней полуплоскости и расходится в нижней.
- 4. а) Проверить, что справедливы следующие разложения

$$\frac{z(z+a)}{(a-z)^3} = \sum_{n=1}^{\infty} \frac{n^2 z^n}{a^{n+1}}, |z| < |a|, a \neq 0; \quad \frac{1}{4} \left(e^z + e^{-z} + 2\cos z \right) = \sum_{n=0}^{\infty} \frac{z^{4n}}{(4n)!}.$$

б) разложить в ряд Тейлора в окрестности точки $z_0 = 0$ и найти радиус сходимости соответствующего ряда (в последнем выражении $\ln z$ обозначает *главное значение* логарифма)

$$\frac{1}{(1+z)(1+z^2)(1+z^4)}; \quad \frac{1}{\sqrt{1-z^3}}; \quad \frac{1}{2\sqrt{z}} \ln \frac{1+\sqrt{z}}{1-\sqrt{z}}.$$

- **5.** Пусть $f \in Hol(\varepsilon \mathbb{D}), \ \varepsilon > 0$, пусть $f(z) = z + f(z^2)$, а f(0) = 0. Показать, что $f(z) = \sum_{n=0}^{\infty} z^{2^n}$.
- **6.** а) Найти на $\mathbb T$ все особые точки суммы ряда $\sum_{n=1}^\infty \frac{z^n}{n^3}$. б) Доказать, что любая точка $z \in \mathbb T$ является особой точкой для суммы ряда $\sum_{n=1}^\infty z^{n!}$.
- 7. Пусть $f \in Hol(\mathbb{D})$ и f(0) = 0. Доказать, что ряд $\sum_{n=1}^{\infty} f(z^n)$ сходится в \mathbb{D} .
- 8. Пусть $z_0 \neq 0$. Доказать, что условие $\limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} z_0 \right|^{1/n} < 1$ необходимо и достаточно для того, чтобы функция $f(z) = \sum_{n=0}^{\infty} a_n z^n$ имела на границе круга сходимости единственную особую точку полюс первого порядка в точке $z = z_0$.
- **9.** Пусть в круге |t| < R имеет место разложение $F(t,z) = \sum_{n=0}^{\infty} f_n(z) t^n$. Тогда функция F называется производящей функцией для последовательности $\{f_n\}$.
- ется производящей функцией для последовательности $\{f_n\}$. (f_n) а) Доказать, что функция $\frac{1}{1-t-t^2}$ является производящей функцией для последовательности чисел Фибоначчи ϕ_n и, используя соответствующее представление, показать, что

$$\phi_n = \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right] / \sqrt{5}.$$

- 6) Доказать, что функция $\frac{4-t^2}{4-4tz+t^2}$ является производящей функцией для многочленов Чебышева $T_n(z)=2^{1-n}\cos(n\arccos z)$ и вывести, что при $n\geqslant 2$ справедливо рекуррентное соотношение $4T_{n+1}(z)-4zT_n(z)+T_{n-1}(z)=0.$
- **10.** Существует ли голоморфная в круге $\mathbb D$ функция f такая, что а) $f(\pm 1/n) = 1/n^2$; б) $f(\pm 1/n) = 1/n^3$; в) $f(1/n) = 1/\sqrt{n}$; г) $f(1/n) = 1/2^n$.
- **11.** Пусть $f \in Hol(\mathbb{C})$ и пусть для любого $z_0 \in \mathbb{C}$ ряд $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ имеет хотя бы один нулевой коэффициент a_n . Доказать, что f это многочлен.