
Lecture 10

THE FUNDAMENTAL GROUP

The fundamental group is one of the most important invariants of homotopy theory.
It also has numerous applications outside of topology, especially in complex analysis,
algebra, theoretical mechanics, and mathematical physics. In our course, it will be the first
example of a “functor”, assigning a group to each pathconnected topological space and a
group homomorphism to each continuous map of such spaces, thus reducing topological
problems about spaces to problems about groups, which can often be effectively solved.

10.1. Main definitions

Let M be a topological space with a distinguished point p ∈M . A curve c : [0, 1]→M
such that c(0) = c(1) = p will be called a loop with basepoint p. Two loops c0, c1 with
basepoint p are called homotopic rel endpoints if there is a homotopy F : X × [0, 1]→ Y
joining c0 to c1 such that F (t, x) = p for all t ∈ [0, 1].

Two curves c0, c1 such that c0(x) = c1(x) = p (not necessarily loops) are called
homotopic rel p if there is a homotopy H joining c0 to c1 such that H(t, x) = p for
all t ∈ [0, 1].

If c1 and c2 are two loops with basepoint p, then the loop c1 · c2 given by

c1 · c2(t) :=
{
c1(2t) if t ≤ 1

2
,

c2(2t− 1) if t ≥ 1
2
.

is called the product of c0 and c1.

Proposition 10.1. Classes of loops homotopic rel endpoints form a group with respect
to the product operation induced by ·.

Proof. First notice that the operation is indeed well defined on the homotopy classes.
For, if the paths ci are homotopic to c̃i, i = 1, 2 via the maps h1 : [0, 1] × [0, 1] → M ,
then the map h, defined by

h(t, s) :=

{
h1(2t, s) if t ≤ 1

2
,

h2(2t− 1, s) if t ≥ 1
2

is a homotopy rel endpoints joining c1 to c2.
Obviously, the role of the unit is played by the homotopy class of the constant map

c0(t) = p. Then the inverse to c will be the homotopy class of the map c′(t) := c(1 − t).
What remains is to check the associative law: (c1 · c2) · c3 is homotopic rel p to c1 · (c2) · c3)
and to show that c · c′ is homotopic to c0. In both cases the homotpy is done by a
reparametrization in the preimage, i.e., on the square [0, 1]× [0, 1].
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For associativity, consider the following continuous map (“reparametrization”) of the
square into itself

R(t, s) =


(t(1 + s), s) if 0 ≤ t ≤ 1

4
,

(t+ s
4
, s) if 1

4
≤ t ≤ 1

2
,

(1− 1
1+s

+ t
1+s

, s) if 1
2
≤ t ≤ 1.

Then the map c1 · (c2 · c3) ◦ R : [0, 1] × [0, 1] → M provides a homotopy rel endpoints
joining the loops c1 · (c2 · c3) and (c1 · c2) · c3.

Figure 10.1. Associativity of multiplication

Similarly, a homotopy joining c ·c′ to c0 is given by c ·c′ ◦I, where the reparametrization
I : [0, 1]× [0, 1]→ [0, 1]× [0, 1] is defined as

I(t, s) =

{
(t, s) if 0 ≤ t ≤ 1−s

2
, or 1+s

2
≤ t ≤ 1,

(1−s
2
, s) if 1−s

2
≤ t ≤ 1+s

2
,

Notice that while the reparametrization I is discontinuous along the wedge t = (1± s)/2,
the map (c · c′) ◦ I is continuous by the definition of c′. �

The group described in Proposition 10.1 is called the fundamental group of M at p and
is denoted by π1(M, p).

It is natural to ask to what extent π1(M, p) depends on the choice of the point p ∈M .
The answer is given by the following proposition.

Proposition 10.2. If p and q belong to the same path connected component of M ,
then the groups π1(M, p) and π1(M, q) are isomorphic.

Proof. Let ρ : [0, 1]→M be a path connecting the points p and q. It is natural to denote
the path ρ ◦S where S(t) = 1− t by ρ−1. It is also natural to extend the “ · ” operation to
paths with different endpoints if they match properly. With these conventions established,
let us associate to a path c : [0, 1] → M with c(0) = c(1) = p the path c′ρ−1 · c · ρ with
c′(0) = c′(1) = q. In order to finish the proof, we must show that this correspondence
takes paths homotopic rel p to paths homotopic relq, respects the group operation and is
bijective up to homotopy. These statements are proved using appropriate rather natural
reparametrizations, as in the proof of Proposition 10.1.
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FIGURE 2.8.2. Change of basepoint isomorphism

REMARK 2.8.5. It follows from the construction that different choices
of the connecting path ρ will produce isomorphisms between π1(M, p) and
π1(M, q) which differ by an inner automorphism of either group.

DEFINITION 2.8.6. If the space M is path connected (in the mani-
fold case, connectedness suffices), then the fundamental groups at all of
its points are isomorphic and one simply talks about the fundamental group
of M and often omits the basepoint from its notation: π1(M).

A path connected space with trivial fundamental group is said to be
simply connected (or sometimes 1-connected).

REMARK 2.8.7. Since the fundamental group is defined modulo homo-
topy, it is the same for homotopically equivalent spaces, i.e., it is a homo-
topy invariant.

The free homotopy classes of curves (i.e., with no fixed base point) cor-
respond exactly to the conjugacy classes of curves modulo changing base
point, so there is a natural bijection between the classes of freely homotopic
closed curves and conjugacy classes in the fundamental group.

2.8.2. Functoriality. Now suppose that X and Y are path connected,
f : X → Y is a continuous maps with and f(p) = q. Let [c] be an element
of π1(X, p), i.e., the homotopy class rel endpoints of some loop c : [0, 1] →
X . Denote by f#(c) the loop in (Y, q) defined by f#(t) := f(c(t)) for all
t ∈ [0, 1].

PROPOSITION 2.8.8. The assignment c �→ f#(c) is well defined on
classes of loops and determines a homomorphism (still denoted by f#) of
fundamental groups:

f# : π1(X, p) → π1(Y, q)

(refered to as the homomorphism induced by f ), which possesses the fol-
lowing properties (called functorial):

Figure 10.2. Change of basepoint isomorphism

Remark 10.1. It follows from the construction that different choices of the connecting
path ρ will produce isomorphisms between π1(M, p) and π1(M, q) which differ by an inner
automorphism of either group.

If the space M is path connected, then the fundamental groups at all of its points are
isomorphic and one simply talks about the fundamental group of M and often omits the
basepoint from its notation: π1(M).

The free homotopy classes of curves (i.e., with no fixed base point) correspond exactly
to the conjugacy classes of curves modulo changing base point, so there is a natural
bijection between the classes of freely homotopic closed curves and conjugacy classes in
the fundamental group.

A path connected space with trivial fundamental group is said to be simply connected
(or sometimes 1-connected).

Remark 10.2. Since the fundamental group is defined modulo homotopy, it is the
same group for homotopically equivalent spaces, i.e., the fundamental group π1(M) is a
homotopy invariant.

10.2. Functoriality

Now suppose that X and Y are path connected, f : X → Y is a continuous maps with
and f(p) = q. Let [c] be an element of π1(X, p), i.e., the homotopy class rel endpoints of
some loop c : [0, 1] → X. Denote by f#(c) the loop in (Y, q) defined by f#(t) := f(c(t))
for all t ∈ [0, 1].

Proposition 10.3. The assignment c 7→ f#(c) is well defined on classes of loops and
determines a homomorphism (still denoted by f#) of fundamental groups:

f# : π1(X, p)→ π1(Y, q)

(called the homomorphism induced by f ), which possesses the following properties (called
functorial):
• (f ◦ g)# = f# ◦ g# (covariance);
• (idX)# = idπ1(X,p) (identity maps induce identity homomorphisms).
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The fact that the construction of an invariant (here the fundamental group) is functorial
is very convenient for applications, as seen in the following example.

Example 10.1. Let us give another proof of the Brouwer fixed point theorem for the
disk by using the isomorphisms π1(S1) = Z and π1(D2) = 0 (which will be established
later) and the functoriality of π1(·).

We will prove (by contradiction) that there is no retraction of D2 on its boundary
S1 = ∂D2. Let r : D2 → S1 be such a retraction, let i : S1 → S2 be the inclusion; choose a
basepoint x0 ∈ S1 ⊂ S2. Note that for this choice of basepoint we have i(x0) = r(x0) = x0).
Consider the sequence of induced maps:

π1(S1, x0)
i∗−→ π1(D2, x0)

r∗−→ π1(S1, x0).

In view of the isomorphisms noted above, this sequence is actually

Z −→ 0 −→ Z.

But such a sequence is impossible, because by functoriality we have

r∗ ◦ i∗ = (r ◦ i)∗ = Id∗ = IdZ .

The fundamental group behaves nicely with respect to Cartesian products, as the
following proposition shows.

Proposition 10.4. If X and Y are path connected spaces, then

π1(X × Y ) = π1(X)× π1(Y ).

Proof. Let us construct an isomorphism of π1(X)×π1(Y ) onto π1(X×Y . Let x0, y0 be
the basepoints in X and Y , respectively. For the basepoint in X×Y , let us take the point
(x0, y0). Now to the pair of loops α and β in X and Y let us assign the loop α× β given
by α× β(t) := (α(t), β(t)). The verification of the fact that this assignment determines a
well-defined isomorphism of the appropriate fundamental groups is quite straightforward.
For example, to prove surjectivity, for a given loop γ in X×Y with basepoint (x0, y0), we
consider the two loops α(t) := (prX ◦ γ)(t) and β(t) := (prY ◦ γ)(t), where prX and prY
are the projections on the two factors of X × Y .

Corollary 10.1. If C is contractible, then π1(X × C) = π1(X).

The proof is an exercise.

10.3. The Seifert–van Kampen theorem

In this section, we state without proof a classical theorem which relates the fundamental
group of the union of two spaces with the fundamental groups of the summands and of
their intersection. The result turns out to give an efficient method for computing the
fundamental group of a “complicated"space by putting it together from “simpler"pieces.

In order to state the theorem, we need a purely algebraic notion from group theory.
Let Gi, i = 1, 2, be groups, and let ϕi : K → Gi, i = 1, 2 be monomorphisms. Then

the free product with amalgamation of G1 and G2 with respect to ϕ1 and ϕ2, denoted by
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G1 ∗K G2 is the quotient group of the free product G1 ∗ G2 by the normal subgroup
generated by all elements of the form ϕ1(k)(ϕ2(k))

−1, k ∈ K.
Theorem 10.1. (Van Kampen’s Theorem) Let the path connected space X be the

union of two path connected spaces A and B with path connected intersection containing
the basepoint x0 ∈ X. Let the inclusion homomorphisms

ϕA : π1(A ∩B)→ π1(A), ϕA : π1(A ∩B)→ π1(B)

be injective. Then π1(X, x0) is the amalgamated product

π1(X, x0) ∼= π1(A, x0) ∗π1(A∩B,x0) π1(B, x0)
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10.4. Exercises

10.1. Prove that if C is contractible, then π1(C) = 0.
10.2. Prove that for any path connected topological space X we have π1(Cone(X)) = 0.
10.3. Prove that the fundamental group of the wedge product of n circles is isomorphic

to the free group with n generators.
10.4. Prove that the group π1(nT2) is generated by elements a1,

b1, . . . , an, bn obeying to the unique relation
n∏
i=1

(aibia
−1
i b−1i ) = 1.

10.5. Prove that the group π1(nRP 2) is generated by elements
a1, . . . , an, obeying to the unique relation a21 . . . a2n = 1.
10.6. (a) Prove that if G = π1(nT2), then G/G′ ∼= Z2n. (Here G′ is the commutant, i.e.

G′ is the subgroup generated by all elements of the form aba−1b−1 for a, b ∈ G.)
(b) Prove that if G = π1(nRP 2), then G/G′ ∼= Zn−1 ⊕ Z2.
10.7. Prove that π1(Sn) = 0 for n ≥ 2.
10.8. Prove that π1(CP n) = 0.
10.9. Prove that the fundamental group of the surface nT2 with k ≥ 1 deleted discs is

the free group of rank 2n+ k − 1.
10.10. Prove that the fundamental group of the surface nRP 2 with k ≥ 1 deleted discs

is the free group of rank n+ k − 1.
10.11. Suppose that X is the Möbius band, A is its boundary. Prove that A is not a

retract of X.
10.12. Prove that any finite and connected CW-space is homotopy equivalent to CWcomplex

with only one vertex e0.


