НМУ, 2 курс, дифференциальная геометрия. Листок 3. Поверхности в n-мерном евклидовом пространстве. 22.02.2019.

Задача 1. Докажите формулу

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} (\partial_X \langle Y, Z \rangle + \partial_Y \langle Z, X \rangle - \partial_Z \langle X, Y \rangle + \langle Z, [X, Y] \rangle + \langle Y, [Z, X] \rangle - \langle X, [Y, Z] \rangle),$$

не используя координат векторных полей и символов Кристоффеля.

Задача 2. Найти в частном случае k=2, n=3 деривационные формулы Гаусса-Вейнгартена, если выбрать базис в касательных векторных полях \mathbf{r}_u , \mathbf{r}_v и базис \mathbf{m} в нормальных векторных полях.

Задача 3. Написать уравнение Гаусса $d\Gamma_j^i + \Gamma_l^i \wedge \Gamma_j^l = b_m^{\nu} g_{\mu\nu} g^{mi} \wedge b_j^{\mu}$ в терминах Γ_{ij}^l и b_{ij}^{μ} . Написать его в частном случае двумерной поверхности в \mathbb{E}^3 .

Задача 4. Вывести соотношение между db, b, Γ и K (уравнение Петерсона-Кодацци) по аналогии с уравнением Гаусса $d\Gamma + \Gamma \wedge \Gamma = b_{\mu} \wedge b^{\mu}$, связывающим $d\Gamma$, Γ и b. Доказать, что в случае гиперповерхности если взять единичное поле нормалей в качестве базиса в нормальных векторных полях, то уравнение Петерсона-Кодацци не содержит K. Записать уравнение Петерсона-Кодацци в терминах Γ^l_{ij} , b^{μ}_{ij} , K_{ij}^{μ} в частном случае двумерной поверхности в \mathbb{E}^3 .

Задача 5. Выписать формулу преобразования символов Кристоффеля $\tilde{\Gamma}=T^{-1}\cdot \Gamma\cdot T+T^{-1}\cdot dT$ в терминах Γ^l_{ij} и $\tilde{\Gamma}^l_{ij}$.

Задача 6. Придумать аналог нормали средней кривизны для k-поверхности в \mathbb{E}^n . Естественно, при $k=2,\ n=3$ результат должен совпадать с классическим определением (и это надо проверить). Указание: используйте линейный функционал $\xi \mapsto \operatorname{tr} W_{\xi}$ на пространстве $N_A M$.

Задача 7. Рассмотрим кривую в \mathbb{E}^n . Легко видеть, что любое базисное касательное векторное поле e_1 можно рассматривать как вектор скорости для некоторой параметризации. Пусть t такой параметр. Доказать, что кривизна кривой может быть найдена по формуле

$$k = \sqrt{\left(\frac{b_{11}^1}{g_{11}}\right)^2 + \ldots + \left(\frac{b_{11}^{n-1}}{g_{11}}\right)^2}.$$

Задача 8. В условиях предыдущей задачи доказать, что $\Gamma_{11}^1 = \frac{1}{2} \frac{d}{dt} \ln g_{11}$.

Задача 9. Найти связность в касательном расслоении, вторую квадратичную форму и оператор Вейнгартена для прямого кругового цилиндра в \mathbb{E}^3 .

Задача 10*. Доказать первое структрурное уравнение Картана

$$d e^{\alpha} = e^{\beta} \wedge \Gamma^{\alpha}_{\beta},$$

где e^{α} — базис, дуальный к выбранному базису e_{α} пространства касательных векторных полей.