1. Let $\hat{f}(\xi)$ denote the Fourier transform of a (Schwarz) function $f(x)$ on \mathbb{R}^{n}. Put for any $a=a(x, \xi) \in C\left(\mathbb{R}^{2 n}\right)$ (with suitable decay conditions)

$$
(O p(a) f)(x)=\int_{\mathbb{R}^{n}} a(x, \xi) \hat{f}(\xi) e^{2 i \pi x \cdot \xi} d \xi
$$

Find $\hat{Q}_{i}=O p\left(x_{i}\right), \hat{P}_{i}=O p\left(\xi_{i}\right)$ and $O p(x \cdot \xi)$.
2. Find the eigenvalues and eigenfunctions of the momentum operator $\hat{P}=\sum_{j} \hat{P}_{j}$ in standard representation (see previous problem). Same for $\hat{Q}=\sum_{j} \hat{Q}_{j}$.
3. In previous notation, let $n=3$. Find the expression for the angular momentum $\hat{L}=$ $\hat{Q} \times \hat{P}=\sum_{j} \hat{Q}_{j} \hat{P}_{j}$ and its square in Euclidean spherical coordinates.
4. Legendre's polynomials $P_{l}(x)$ are determined by the formula

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{l} P_{l}(x) t^{l}
$$

Prove the following properties of $P_{l}(x)$:
(a) $(l+1) P_{l+1}(x)-(2 l+1) x P_{l}(x)+l P_{l-1}(x)=0 ;$
(b) $P_{l}^{\prime}(x)-2 x P_{l-1}^{\prime}(x)+P_{l-2}^{\prime}(x)=P_{l-1}^{\prime}(x)$;
(c) $P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}$ (Rodriguez recurrence formula);
(d)

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P_{n}(x)-2 x \frac{d}{d x} P_{n}(x)+n(n+1) P_{n}(x)=0
$$

(Legendre differential equation).
5. Let $P_{n}^{m}(x)=\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d x^{m}} P_{n}(x)$ be the associated Legendre polynomial. Prove that it verifies the associated Legendre differential equation:

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P_{n}(x)-2 x \frac{d}{d x} P_{n}(x)+\left(n(n+1)-\frac{m^{2}}{1-x^{2}}\right) P_{n}(x)=0 .
$$

6. * Use previous results and the information to compute eigenvalues and eigenfunctions of the square of the angular momentum \hat{L}^{2} and of the z-component of the angular momentum operator \hat{L}_{z}.
7. Let \mathcal{H} be a Hilbert space, L any (real) vector space, L^{*} its dual and $U: L \rightarrow \mathcal{U}(\mathcal{H}), V$: $L^{*} \rightarrow \mathcal{U}(\mathcal{H})$ be two representations of the Abelian groups in \mathcal{H} such that

$$
V(f) U(x)=e^{i f(x)} U(x) V(f)
$$

This is called a Weyl representation of L.
(a) Check the formula

$$
W\left(z+z^{\prime}\right)=e^{-\frac{1}{2} \omega\left(z, z^{\prime}\right)} W(z) W\left(z^{\prime}\right)
$$

for $z=(x, f), z^{\prime}=\left(x^{\prime}, f^{\prime}\right) \in V=L \oplus L^{*}$ with standard symplectic structure, where $W(z)=e^{i \frac{1}{2} f(x)} U(x) V(f)$.
(b) Let $\hat{P}(x)$ be the infinitezimal generator of $t \mapsto U(t x), x \in L$; let $\hat{Q}(x)$ be the infinitezimal generator of $t \mapsto V(t F(x))$, where $F: L \rightarrow L^{*}$ is an isomorphism, determined by a choice of basis. Show that the operators $a_{i}=\frac{1}{\sqrt{2}}\left(\hat{Q}\left(e_{i}\right)+i \hat{P}\left(e_{i}\right)\right), a_{i}^{\dagger}=$ $\frac{1}{\sqrt{2}}\left(\hat{Q}\left(e_{i}\right)+i \hat{P}\left(e_{i}\right)\right)$ where e_{1}, \ldots, e_{n} is the basis used before, verify the relations:

$$
\left[a_{j}, a_{k}\right]=0, \quad\left[a_{j}^{\dagger}, a_{k}^{\dagger}\right]=0, \quad\left[a_{j}, a_{k}^{\dagger}\right]=\delta_{j k}
$$

