1. Let $\omega=\left(\omega_{i j}\right)$ be a constant nondegenerate anti-symmetric $2 n \times 2 n$ matrix; we define the Weyl algebra as

$$
W_{\hbar}\left(\mathbb{R}^{n}, \omega\right)=\mathbb{R}[\hbar]\left\langle y_{1}, \ldots, y_{2 n}\right\rangle /\left(\left[y_{i}, y_{j}\right]=\hbar \omega_{i j}\right)
$$

where $\mathbb{R}\left\langle y_{1}, \ldots, y_{2 n}\right\rangle$ stand for noncommutative polynomials and \hbar is a formal varialble. Let $\sigma: \mathbb{R}[\hbar]\left[y_{1}, \ldots, y_{2 n}\right] \rightarrow W_{\hbar}\left(\mathbb{R}^{n}, \omega\right)$ be the \hbar-linear map from the space of polynomials in variables $y_{1}, \ldots, y_{2 n}$ with coefficients in $\mathbb{R}[\hbar]$ into the Weyl algebra, given by

$$
\sigma\left(y_{i_{1}} \ldots y_{i_{k}}\right)=\frac{\hbar^{k}}{k!} \sum_{s \in S_{k}} y_{i_{s(1)}} \ldots y_{i_{s(k)}} .
$$

(a) Prove, that σ is linear isomorphism.
(b) Find an expression for the \star-product in $\mathbb{R}[\hbar]\left[y_{1}, \ldots, y_{2 n}\right]$ induced by

$$
f \star g=\sigma^{-1}(\sigma(f) \cdot \sigma(g)) .
$$

2. Use the integral formula

$$
a \star b=\frac{1}{(2 \hbar \pi)^{2 n}} \int_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} e^{\frac{1}{i \hbar} \omega\left(z-z^{\prime}, z-z^{\prime \prime}\right)} a\left(z^{\prime}\right) b\left(z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime}
$$

to prove the associativity of the Moyal \star-product in symplectic case.
3. Prove that differential 2 -form ω on a compact $2 n$-dimensional manifold is nondegenerate iff the form ω^{n} is non-vanishing in all points.
4. Show that all symplectic manifolds are orientable.
5. Let ξ be a vector field on a symplectic manifold M such that $\mathcal{L}_{\xi} \omega=0$. Show that locally there exists a 1 -form α on M such that $d \alpha=0$ and $\xi=\pi^{\sharp}(\alpha)$ (here $\pi=\omega^{-1}$). Such fields are called locally Hamiltonian or Poisson.
6. * Show that if $H_{d R}^{1}(M)=0$, where M is symplectic manifold, then every Poisson field on M is in fact Hamiltonian.
7. Show that the locally Hamiltonian fields on a symplectic manifold form a Lie subalgebra; moreover, for any two locally Hamiltonian fields ξ, η their commutator is in fact Hamiltonian with Hamiltonian function equal to $\omega(\xi, \eta)$.
8. Prove that the Schouten bracket, defined by explicit formula for decomposable polyvectrors (i.e. for polyvectors equal to wedge-product of vector fields) is well defined and verifies Jacobi identity.
9. Prove Lichnerowicz's formula:

$$
\langle\omega,[P, Q]\rangle=(-1)^{(p-1)(q-1)}\left\langle d i_{Q} \omega, P\right\rangle-\left\langle d i_{P} \omega, Q\right\rangle+(-1)^{p}\langle d \omega, P \wedge Q\rangle,
$$

where $\omega \in \Omega^{p+q-1}(M), P \in \Lambda^{p}(M), Q \in \Lambda^{q}(M),\langle$,$\rangle is the natural pairing between forms$ and polyvector fields and $i_{P} \omega$ is the convolution of form and polyvector.
10. Bernoulli numbers B_{n} are usually defined by the formula:

$$
\frac{t}{e^{t}-1}=\sum_{n} B_{n} \frac{t^{n}}{n!}
$$

Prove recursive formula $\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0$.
11. Prove that the bracket, which sends $a, b \in G r_{\mathscr{F}} \mathcal{U} \mathfrak{g}$ to the image in $G r_{\mathfrak{F}} \mathcal{U} \mathfrak{g}$ of the commutator of $\bar{a}, \bar{b} \in \mathcal{U} \mathfrak{g}$ (where a and b are images of \bar{a} and \bar{b} under the natural projection $\left.\mathcal{U} \mathfrak{g} \rightarrow G r_{\mathscr{F}} \mathcal{U} \mathfrak{g}\right)$ is well-defined and check the conditions of Poisson brackets for it.
12. * Open a book on homological algebra and read about the basic constructions, such as the exact sequences, chain maps, chain homotopies, 5 -lemma, spectral sequences, etc.
13. * Compute the Lichnerowicz-Poisson cohomology of \mathfrak{g}^{*} with usual Poisson structure.
14. * Compute the Lichnerowicz-Poisson cohomology of \mathbb{R}^{2} with the Poisson structure, given by equation $\{x, y\}=x^{2}+y^{2}$.

