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1 Introduction
This book is about algebra. This is a very old science and its gems 
have lost their charm for us through everyday use. We have tried in 
this book to refresh them for you.

The main part of the book is made up of problems. The best way 
to deal with them is: Solve the problem by yourself -  compare your 
solution with the solution in the book (if it exists) -  go to the next 
problem. However, if you have difficulties solving a problem (and some 
of them are quite difficult), you may read the hint or start to read the 
solution. If there is no solution in the book for some problem, you may 
skip it (it is not heavily used in the sequel) and return to it later.

The book is divided into sections devoted to different topics. Some 
of them are very short, others are rather long.

Of course, you know arithmetic pretty well. However, we shall go 
through it once more, starting with easy things.

2 Exchange of terms in addition
Let’s add 3 and 5:

3 + 5 = 8 .

And now change the order:

5 + 3 = 8 .

We get the same result. Adding three apples to five apples is the same 
as adding five apples to three -  apples do not disappear and we get 
eight of them in both cases.

3 Exchange of terms in multiplication
Multiplication has a similar property. But let us first agree on notation. 
Usually in arithmetic, multiplication is denoted as “ x ”. In algebra this 
sign is usually replaced by a dot We follow this convention.

Let us compare 3 • 5 and 5-3. Both products are 15. But it is not 
so easy to explain why they are equal. To give each of three boys five 
apples is not the same as to give each of five boys three apples -  the 
situations differ radically.
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4 Addition in the decimal number system

One of the authors of this book asked a seven-year-old girl, “How 
much is two times four?” “Eight”, she answered immediately. “And 
four times two?” She started thinking, trying to add 2 -l- 2 + 2 + 2 . 
A year later she would know very well that the product remains the 
same when we exchange factors and she would forget that it was not 
so evident before.

The simplest way to explain why 5 • 3 = 3 • 5 is to show a picture:

0 0 0 0 0  
3 X 00000 = 00000

0 0 0 0 0
000
n i

E  y  A  A  A  —  w w w
5  x  •  W  ~  ф  ф  ф

0 0 0
0 0 0

4 Addition in the decimal number system
If we want to know how much 7 + 9 is, we may draw 7 apples and then 
9 apples near them:

00000 00000+ 0000 ,
0000000 000000

00000
and then count all the apples together: one, two, three, four, . . . ,  
fifteen, sixteen. We get 7 + 9 = 16. This method can be applied for 
any numbers; however, you need a lot of patience to try it on, say, 137 
and 268. So mathematicians invented other methods. One of them is 
the standard addition method used in the positional number system.
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4 Addition in the decimal number system

In different countries and at different times, people used different 
notations for numbers, and entire books are written about them. We 
are so used to the familiar decimal number system using the digits 
0, 1, 2, . . . ,  8,9 that we don’t realize how unbelievably convenient this 
convention has proved to be. Even the possibility of writing down very 
big numbers quickly was not self-evident for ancient people. A great 
mathematician of ancient Greece, Archimedes, even wrote a book called 
The Sand Reckoner. The main point of the book was to show that it 
is possible to write down the number that is greater than the number 
of sand particles filling the sphere whose radius is the distance between 
Earth and the stars.

Now the decimal number system has no rivals -  except the binary 
number system, which is popular among computers, not people. This 
binary system has only two digits, 0 and 1 -  but numbers have more 
digits. The computer does not worry about the length of numbers, but 
still wishes to keep rules of operation as simple as possible.

We shall speak about the binary system in another section, but now 
we return to our ordinary decimal system and to the addition method. 
We shall not explain it to you once more -  you know it without us. Let 
us solve some problems instead.

P roblem  1. Several digits “8” are written and some “+ ” signs are 
inserted to get the sum 1000. Figure out how it is done. (For example, 
if we try 88 + 88 + 8 + 8 + 88, we fail because we get only 280 instead 
of 1000.)

Solution. Assume that

. . .8

. . .8
1000

We do not know how many rows are here nor how many digits are 
used in each number. But we do know that each number ends with 
“8" and that the last digit of the sum is zero. How many numbers do 
we need to get this zero? If we use only one number, we get 8. If we 
use two numbers, we get 6 (8 + 8 =  16), etc. To get zero we need at

3



4 Addition in the decimal number system

least five numbers:
. . .8
. . .8
. . .8
. . .8
...8
1000

After we get this zero, we keep “4” in mind because 8+8+8+ 8+8 = 40. 
To get the next zero in the “tens place” from this “4”, we need to add 
at least two 8 ’s since 4 + 8 + 8 = 20.

8 
8 
8 

..88 
■ ■88 
1000

We keep “2” in mind and we need only one more “8”to get 10:

8
8
8

88
888

1000

The problem is solved: 8 + 8 + 8 + 88 + 888 = 1000.

Problem  2. In the addition example

AAA
BBB

AAAC

all A’s denote some digit, all B ’s denote another digit and C denotes 
a third digit. What are these digits?

Solution. First of all A denotes 1 because no other digit can appear 
as a carry in the thousands position of the result. To find what В is 
let us ask ourselves: Do we get a (nonzero) carry adding the rightmost 
A and B? If we had no carry, we would get the same digit in the other 
two places (tens and hundreds), but this is not so. Therefore, the carry
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5 The multiplication table and the multiplication algorithm

digit is not zero, and this is possible only if В = 9 .  Therefore we get 
the answer:

111
999

1110

5 The multiplication table and the 
multiplication algorithm

To compute the product of, say, 17 and 38, we may draw a picture of 
17 rows, each containing 38 points, and then count all the points. But 
of course, nobody does this -  we know an easier method of multiplying 
using the positional system.

This method (called the multiplication algorithm) is based on the 
multiplication table for digits and requires that you memorize the table. 
There is -  sorry! -  no way around it, and if, on being asked, “What 
is seven times eight?” in the middle of the night, you cannot answer 
“Fifty-six!” immediately, and instead try to add up seven eights half- 
asleep, we are unable to help you.

There is some good news, however. You don’t need to memorize 
the product 17 • 38. Instead, you can compute it in two different ways:

17 38
38 17

136 266
51 38
646 646

Both results are equal, though the intermediate results are different. 
A lucky coincidence, isn’t  it?

Here are some problems concerning multiplication.

P rob lem  3. A boy claims that he can multiply any three-digit 
number by 1001 instantly. If his classmate says to him “715” he gives 
the answer immediately. Compute this answer and explain the boy’s 
secret.

P rob lem  4. Multiply 101010101 by 57.

P rob lem  5. Multiply 10001 by 1020304050.

5



6 The division algorithm

Problem  6. Multiply 11111 by 1111.

Problem  7. A six-digit number having 1 as its leftmost digit be­
comes three times bigger if we take this digit off and put it at the end 
of the number. What is this number?

Solution. Look at the multiplication procedure:

1 A BO D E
_________3
A B O D E  1

Here A,B,C,D and E denote some digits (we do not know whether all 
these digits are different or not). Digit E must be equal to 7, because 
among the products 3 x 0 = 0, 3 x 1 = 3 ,  3 x 2  = 6 , 3 x 3  = 9, 
3 X 4 = 12, 3 X 5 = 15, 3 X 6 = 18, 3 X 7 = 21, 3 X 8 = 24, 3 X 9 = 27 
only 3 X 7 = 21 has the last digit 1. So we get:

1 A B C D 7
________ 3
A B C D 7 1

When multiplying 7 by 3 we get a carry of 2, so 3 x D must have its 
last digit equal to 5. This is possible only if D = 5:

1 ABC 5 7
_________3
ABC 5 7 1

In the same way, we find that C = 8, В = 2 , A = 4. So we get the 
solution:

1 4 2 8 5 7
_________3
4 2 8 5 7 1

6 The division algorithm
Division is the most complicated thing among all the four arithmetic 
operations. To make yourself confident, you may try the following 
problems.

Problem  8. Divide 123123123 by 123. (Check your answer by 
multiplication!)

6



6 The division algorithm

P ro b lem  9. Can you predict the remainder when 111. . .  1 (100 
ones) is divided by 1111111?

P ro b lem  10. Divide 1000... 0 (20 zeros) by 7.

P ro b lem  11. While solving the two preceding problems you may 
have discovered that quotient digits (and remainders) became periodic:

14285? 14. . .
71100000000...

7
30
28
20
14
60
56
40
35

50
49

10
7
30
28

2 ...
Is it just a coincidence, or will this pattern repeat?

P ro b lem  12. Divide 2000...000  (20 zeros), 3000...000 (20 ze­
ros), 4000.. .000 (20 zeros), etc. by 7. Compare the answers you get 
and explain what you see.

A multiplication fan may enjoy the following problem:

P ro b lem  13. Multiply 142857 by 1, 2, 3, 4, 5, 6, 7, and look 
at the results. (It is easy to memorize these results and become a 
famous number cruncher who is able to multiply a random number, for 
example, 142857, by almost any digit!)

P ro b lem  14. Tty to invent similar tricks based on the division of
1000...  0 by other numbers instead of 7.

7



7 The binary system

7 The binary system

Problem  15. Find a generating rule, and write five or ten more 
lines:

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100

Problem  16. You have weights of 1, 2, 4, 8, and 16 grams. Show 
that it is possible to get any weight from 0 to 31 grams using the
following table ( “ + ” m eans “th e  weight is used” , m eans
used”):

A В Ç

16 8 4 2 1
0 - - - - - 00000 0
1 - — — — + 00001 1
2 — — — + - 00010 10
3 — — — + + 00011 11
4 - — + - - 00100 100
5 — — + — + 00101 101
6 - - + + - 00110 110
7 — — + + + 00111 111
8 — + — - - 01000 1000
9 — + — — + 01001 1001

10 - + — + - 01010 1010
11 — + — + + 01011 1011

We can replace “ -  ” by 0 and “ + ” by 1 (column B) and omit the lead­
ing zeros (column C). Then we get the same result as in the preceding 
problem.

8



7 The binary system

This table is called a conversion table between decimal and binary 
number systems:

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100

P roblem  17. What corresponds to 14 in the right column? What 
corresponds to 10000 in the left column?

The binary system has an advantage: you don’t  need to memorize 
as many as 10 digits; two is enough. But it has a disadvantage also: 
numbers are too long. (For example, 1024 is 10000000000 in binary.)

P rob lem  18. How is 45 (decimal) written in the binary system?

P roblem  19. What (decimal) number is written as 10101101 in 
binary?

P rob lem  20. Try the usual addition method in binary version:

1010 + 101 =  ?

1111 + 1 =  ?

1011 + 1 =  ?

1111 + 1111 =  '

Check your answers, converting all the numbers (the numbers being 
added and the sums) into the decimal system.

9



7 The binary system

P ro b le m  21. Tty the usual subtraction algorithm in its binary 
version:

1101 -  101 =  ?

110 -  1 =  ?

1000 -  1 =  ?

Check your answers, converting all the numbers into the decimal sys­
tem.

P ro b le m  22. Now try  to multiply 1101 and 1010 (in binary):

1101
1010
????

Check your result, converting the factors and the product into the 
decimal system.

H in t: Here eure two patterns:

1011 1011
11 101

1011 1011
1011 1011

100001 110111

P ro b le m  23. Divide 11011 (binary) by 101 (binary) using the 
ordinary method. Check your result, converting all numbers into the
decimal system.

H in t: Here is a pattern:

110 4— the quotient
lOOl11001

100
100
100

1 «— the remainder

P ro b le m  24. In the decimal system the fraction 1/3 is written as
0.333 —  W hat happens with 1/3 in the binary system?

10



9 The associative law

8 The commutative law
Let us return to the rule “exchange of terms in addition does not change 
the sum”. It can be written as

First term + Second term =  Second term + First term

or in short
F.t. + S.t. =  S.t. + F.t.

But even this short form seems too long for mathematicians, and they 
use single letters such as a or 6 instead of “F .t.” and “S.t.” . So we get

a + b = b + a

The law “exchange of factors does not change the product” can be
written now as ___________

a • 6 =  ft • a

Here is a multiplication symbol. Often it is omitted:

ab =  ba

The property a + 6 = 6 +  a is called the commutative law for addi­
tion; the property ab =  ba is called the commutative law for multipli­
cation.

R em ark . Sometimes it is impossible to omit the multiplication sign 
(■) in a formula; for example, 3 • 7 = 21 is not the same as 37 = 21. 
By the way, multiplication had good luck in getting different symbols: 
the notations a x 6, a b, ab, and a*b (in computer programming) are 
all used.

9 The associative law
Now let us add three numbers instead of two:

3 + 5 + 11 = 8 + 11 = 19.

But there is another way:

3 + 5 + 1 1 = 3 + 1 6 = 1 9 .

11



9 The associative law

Usually parentheses are used to show the desired order of operations:

(3 +  5) +  11 

means tha t we have to add 3 and 5 first, and

3 +  (5 +  11)

means th a t we have to  add 5 and 11 first.
The result does not depend on the order of the operations. This 

fact is called the associative law by mathematicians. In symbols:

(о +  b) +  c =  a +  (6 +  c)

If you would like to  have a real-life example, here it is. You can get 
sweet coffee with milk if you add milk to the coffee with sugar or if you 
add sugar to the coffee with milk. You get the same result -  and this 
is the associative law:

(sugar+ coffee)+ milk =  sugar+ (coffee+ milk)

P ro b lem  25. Try it.

P ro b lem  26. Add 357 +  17999 4- 1 without paper and pencil. 
Solu tion . It is not so easy to add 357 and 17999. But if you add 

17999 +  1, you get 18000 and now it is easy to  add 357:

357 +  (17999 +  1) =  357 +  18000 =  18357.

P ro b lem  27. Add 357 +  17999 without paper and pencil. 
Solu tion . 357 +  17999 =  (356 +  1) +  17999 =  356 +  (1 +  17999) =  

356+ 18000=  18356.

P ro b lem  28. Add 899 +  1343 +  101.
H in t. Remember the commutative law.

Multiplication is also associative:

(o • b) • c =  a • (b ■ c)
or, in short,

(ab)c — o(6c).

P ro b lem  29. Compute 37-25-4.

P ro b le m  30. Compute 125 • 37 • 8 .

12



10 The use of parentheses

10 The use of parentheses
A pedant is completely right saying that a notation like

2 • 3 • 4 • 5

has no sense until we fix the order of operations. Even if we agree not 
to permute the factors, we have a lot of possibilities:

((2 • 3) • 4) • 5 =  (6 • 4) • 5 =  24 • 5 =  120 

(2 (3-4)) -5  =  (2-12) -5  =  24-5 =  120 

(2 -3) (4-5) =  6 -20 =  120 

2 - ( (3 -4 ) -5 )  =  2-(12-5) =  2-60 = 120 

2 • (3 • (4 • 5)) =  2 • (3 • 20) =  2 • 60 =  120

P rob lem  31. Find all possible ways to put parentheses in the 
product 2 • 3 • 4 • 5 • 6 (not changing the order of factors; see the example 
just shown). Try to invent a systematic way of searching so as not to 
forget any possibilities.

P rob lem  32. How many “(” and “)” symbols do you need to 
specify completely the order of operations in the product

2 - 3 - 4 - 5 - 6 - - 9 9  100?

The parentheses are often omitted because the result is independent 
of the order of the operations. The reader may reconstruct them as he 
or she wishes.

The following problem shows what can be achieved by clever per­
mutation and grouping.

P rob lem  33. Compute 1 + 2 + 3 + 4 H ---- + 98 + 99 + 100.
Solution. Group the 100 terms in 50 pairs: 1+ 2+ 3 + 4H------h 98 +

99 + 100 =  (1 + 100) + (2 + 99) + (3 + 98) H------1- (49 + 52) + (50 + 51).
Each pair has the sum 101. We have 50 pairs, so the total sum is 
50-101 =5050.

A legend says that as a schoolboy Karl Gauss (later a great German 
mathematician) shocked his school teacher by solving this problem in­
stantly (as the teacher was planning to relax while the children were 
busy adding the hundred numbers).

13



11 The distributive law

11 The distributive law
There is one more law for addition and multiplication, called the dis­
tributive law. If two boys and three girls get 7 apples each, then the 
boys get 2 -7= 14  apples, the girls get 3 • 7 = 21 apples -  and together 
they get

2 • 7 + 3 • 7 = 14 + 21 = 35

apples. The same answer can be computed in another way: each of 
2 + 3 = 5 children gets 7 apples, so the total number of apples is

(2 + 3) -7 = 5-7  = 35.

Therefore,
(2 + 3)-7 = 2- 7 + 3- 7

and, in general,
(o + 6) -c  = a- c + 6 - c

This property is called the distributive law. Changing the order of 
factors we may also write

c-(o + 6) = c- o + c- 6

Problem  34. Compute 1001 • 20 without pencil and paper.
Solution. 1001 • 20 = (1000 + 1) • 20 = 1000 - 20 + 1-20  =

20,000 + 20 = 20,020.

Problem  35. Compute 1001 -102 without pencil and paper. 
Solution. 1001 • 102= 1001 • (100 + 2) = 1001 • 100 + 1001 • 2 = 

(1000 + 1) - 100+ (1000 + 1)-2 = 100,000 + 100 + 2000 + 2 = 102,102.
The distributive law is a rule for removing brackets or parentheses. 

Let us see how it is used to transform the product of two sums

(o + 6)(m + n ) .

The number (m + n) is the sum of the two numbers m and n and 
can replace c in the distributive law above:

(а + 6)-Гс1 = а- Гс1+6-Гс1

(о + 6) • |m  + n |  = a • I m + n I + b • | m + n

14



12 Letters in algebra

Now we remember that | m + n | is the sum of m and n and continue:

. . .  =  a(m + n) + b(m + n) =  am + an + bm +bn.

The general rule: To multiply two sums you need to multiply each 
term of the first sum by each term of the second one and then add all 
the products.

P ro b lem  36. How many additive terms would be in 

(o + 6 + c + d + e)(x + y + z) 

after we use this rule?

12 Letters in algebra
In algebra we gradually make more and more use of letters (such as 
a,b,c , . . . ,x ,y ,z ,  etc.). Traditionally the use of letters ( x ’s) is consid­
ered one of the most difficult topics in the school mathematics curricu­
lum. Many years ago primary school pupils studied “arithmetic” (with 
no x ’s) and secondary school pupils started with “algebra” (with x ’s). 
Later “arithmetic” was renamed “mathematics” and x ’s were intro­
duced (and created a mess, some people would say).

We hope that you, dear reader, never had difficulties understanding 
“what all these letters mean” , but we still wish to give you some advice. 
If you ever want to explain the meaning of letters to your classmates, 
brothers and sisters, your parents, or your children (some day), just 
say that the letters are abbreviations for words. Let us explain what 
we mean.

In the equality
a + b = b+a

the letters a and 6 mean “the first term” and “thesecond term”. When 
we write a + 6 =  6 + a we mean that any numbers substituted instead 
of a and b give a true assertion. Therefore, a + b = b + a can be 
considered as a unified short version of the equalities l + 7 = 7 + l or 
1028 + 17 =  17 + 1028 as well as infinitely many other equalities of the 
same type.

15



12 Letters in algebra

Another example of the use of letters:

P rob lem  37. A small vessel and a big vessel contain (together) 5 
liters. Two small and three big vessels contain together 13 liters. What 
are the volumes of the vessels?

Solution. (The "arithmetic” one.) The small and big vessels to ­
gether contain 5 liters. Therefore, two small vessels and two big vessels 
together contain 10 liters (10 =  2 • 5). As we know, two small vessels 
and three big vessels contain 13 liters. So we get 13 liters instead of 
10 by adding one big vessel. Therefore the volume of a big vessel is 3 
liters. Now it is easy to find the volume of a small vessel: together they 
contain 5 liters, so a small vessel contains 5 - 3  =  2 liters. Answer: 
The volume of a small vessel is 2 liters, the volume of a big vessel is 3 
liters.

This solution can be shortened if we use “Vol.SV” instead of “Vol­
ume of a Small Vessel” and “Vol.BV” instead of “Volume of a Big 
Vessel” . Thus, according to the statement of the problem,

Vol.SV +  Vol.BV =  5,

therefore
2 • Vol.SV +  2 • V61.BV = 10.

We know also that

2 • Vol.SV +  3 • Vol.BV = 13.

If we subtract the preceding equality from the last one we find that 
Vol.BV = 3. Now the first equality implies that Vol.SV = 5  — 3 = 2 .

Now the only thing to do is to replace our “Vol.SV” and “Vol.BV” 
by standard unknowns x and y -  and we get the standard “algebraic” 
solution of our problem. Here it is: Denote the volume of a small vessel 
by x and the volume of a big vessel by y. We get the following system 
of equations:

x -f y = 5 

2x +  3y =  13

Multiplying the first equation by 2 we get

2x 4- 2y =  10

16



13 The addition of negative numbers

and subtracting the last equation from the second equation of our sys­
tem  we get

y =  1 3 - 1 0  =  3.

Now the first equation gives

x =  5 — y =  5 — 3 =  2 .

Answer: x  =  2 , y =  3.

Finally, one more example of the use of letters in algebra.

“M ag ic  tr ic k ” . Choose any number you wish. Add 3 to it. Multiply 
the result by 2. Subtract the chosen number. Subtract 4. Subtract the 
chosen number once more. You get 2, don’t  you?

P ro b le m  38. Explain why this trick is successful.

S o lu tion . Let us follow what happens with the chosen number (we 
denote it by x):

Choose the number you wish X
add 3 to it x  +  3

multiply the result by 2 2 • (x +  3) =  2x +  6

subtract the chosen number (2x +  6) — x  =  x  +  6

subtract 4 (x +  6 ) - 4  =  x  +  2

subtract the chosen number
(x +  2) -  x  =  2once more. You get 2.

13 The addition of negative numbers

It is easy to check th a t 3 +  5 =  8 : just take three apples, add five 
apples, and count all the apples together: “one, two, three, four, . . . ,  
seven, eight” . B ut how can we check th a t ( -3 )  +  ( -5 )  =  ( - 8) or 
th a t 3 +  ( -5 )  =  ( - 2 ) ?  Usually this is explained by examples like the 
following two:

17



14 The multiplication of negative numbers

3 + 5 =  8
Yesterday it was +3. Today the tempera­
ture is 5 degrees warmer and is 8 degrees.

( -3 )  + 5 =  2
Yesterday it was - 3  degrees. Today it is 
5 degrees warmer, that is, +2.

3 +  ( -5 )  =  - 2
Yesterday was +3, today it is 5 degrees 
colder, that is, - 2.

( -3 )  + (-5 )  =  ( - 8)
Yesterday was —3, today it is 5 degrees 
colder, that is, —8.

(Here all temperatures are measured in Celsius degrees.) 

Here is another example:

3 +  5 =  8
Three protons + five protons =  
=  eight protons.

( -3 )  +  5 =  2
Three antiprotons +  five protons = 
=  two protons (ignoring 7 -radiation).

3 +  ( -5 )  =  -2
Three protons + five antiprotons =
= two antiprotons (ignoring 7-radiation).

( -3 )  +  (-5 )  = ( - 8)
Three antiprotons +  five antiprotons =  
=  eight antiprotons.

(Protons and antiprotons are elementary particles. When a proton 
meets an antiproton they annihilate one another, producing gamma 
radiation.)

14 The multiplication of negative numbers

To find how much three times five is, you add three numbers equal to 
five:

5 + 5 + 5 =  15.

The same explanation may be used for the product 1-5 if we agree that 
a sum having only one term is equal to this term. But it is evidently 
not applicable to the product 0 • 5 or (—3) -5: can you imagine a sum 
with zero or with minus three terms?

18



14 The multiplication of negative numbers

However, we may exchange the factors:

5 0  =  0 +  0 +  0 +  0 +  0 =  0 ,

5 - ( -3 )  =  ( -3 )  +  ( -3 )  +  ( -3 )  +  ( -3 )  +  ( -3 )  =  - 1 5 .

So if we want the product to  be independent of the order of factors (as 
it was for positive numbers) we must agree th a t

0 -5  =  0, ( - 3 ) 5  =  -1 5 .

Now let us consider the product (—3) • (—5). Is it equal to  —15 or 
to  +15? Both answers may have advocates. FVom one point of view, 
even one negative factor makes the product negative -  so if both factors 
are negative the product has a very strong reason to  be negative. FVom 
the other point of view, in the table

3 • 5 =  +15 3 • (—5) =  - 1 5

T СЛ II СЛ ( -3 )  • ( - 5 )  =  ?

we already have two minuses and only one plus; so the “equal oppor­
tunities” policy requires one more plus. So what?

Of course, these “arguments” are not convincing to  you. School 
education says very definitely th a t minus times minus is plus. But 
imagine th a t your small brother or sister asks you, “Why?” (Is it 
a  caprice of the teacher, a law adopted by Congress, or a theorem 
th a t can be proved?) You may try  to answer this question using the 
following example:

3 -5  =  15
Getting five dollars three times is getting 
fifteen dollars.

3 • (—5) =  - 1 5 Paying a five-dollar penalty three times is 
a  fifteen-dollar penalty.

( - 3 ) 5  =  - 1 5 Not getting five dollars three times is not 
getting fifteen dollars.

( -3 )  • ( -5 )  =  15 Not paying a five-dollar penalty three 
times is getting fifteen dollars.
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14 The multiplication of negative numbers

Another explanation. Let us write the numbers

1, 2, 3, 4, 5 , . . .  

and the same numbers multiplied by three:

3, 6, 9, 12, 15, .. .

Each number is bigger than the preceding one by three. Let us write 
the same numbers in the reverse order (starting, for example, with 5 
and 15):

5, 4, 3, 2, 1
15, 12, 9, 6, 3

Now let us continue both sequences:

5, 4, 3, 2, 1, 0, -1 ,  -2 ,
15, 12, 9, 6, 3, 0, -3 ,  - 6,

-3 ,  -4 ,  -5 ,  . . .
-9 ,  -12 , - 1 5 , . . .

Here -1 5  is under - 5 ,  so 3 • ( -5 )  =  -1 5 ; plus times minus is minus.

Now repeat the same procedure multiplying 1 ,2 ,3 ,4 ,5 , . . .  by —3 
(we know already that plus times minus is minus):

1, 2, 3, 4, 5
-3 , - 6, - 9 ,  -1 2 , -15

Each number is three units less than the preceding one. Now write the 
same numbers in the reverse order:

5, 4, 3, 2, 1
-15 , -12 , -9 ,  - 6, - 3

and continue:

5, 4, 3, 2,
-15 , -12 , -9 ,  - 6,

1, o, - 1, - 2, -3 , -4 , - 5
3, o, 3, 6, 9, 12, 15

Now 15 is under - 5 ;  therefore (—3) • (—5) =  15.

Probably this argument would be convincing for your younger 
brother or sister. But you have the right to ask: So what? Is it possible 
to prove tha t ( -3 )  • ( -5 )  =  15?

Let us tell the whole tru th  now. Yes, it is possible to prove that 
( -3 )  • ( -5 )  must be 15 if we want the usual properties of addition,
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15 Dealing with fractions

subtraction, and multiplication th a t are true for positive numbers to  
remain true for any integers (including negative ones).

Here is the outline of this proof: Let us prove first th a t 3 • ( -5 )  =  
-1 5 . W hat is -1 5 ?  I t is a  number opposite to 15, th a t is, a  number 
th a t produces zero when added to 15. So we must prove tha t

3 • (—5) +  15 =  0 .

Indeed,

3 . ( _ 5) +  15 =  3• ( -5 )  +  3- 5 =  3- ( - 5  +  5) =  3- 0 =  0.

(When taking 3 out of the parentheses we use the law ab+ac = o(b+c) 
for a =  3, 6 =  - 5 ,  c =  5; we assume tha t it is true for all numbers, 
including negative ones.) So 3 • ( -5 )  =  -1 5 . (The careful reader will 
ask why 3-0 =  0. To tell you the tru th , this step of the proof is omitted 
-  as well as the whole discussion of what zero is.)

Now we are ready to prove tha t ( -3 )  • ( -5 )  =  15. Let us s ta rt with

( -3 )  +  3 =  0

and multiply both sides of this equality by —5:

((—3) +  3) • (—5) =  0 • ( -5 )  =  0.

Now removing the parentheses in the left-hand side we get

(—3) • ( -5 )  +  3 • ( -5 )  =  0,

th a t is, ( -3 )  • ( -5 )  +  (-1 5 ) =  0. Therefore, the number ( -3 )  • ( -5 )  
is opposite to  -1 5 , tha t is, is equal to 15. (This argument also has 
gaps. We should prove first tha t 0 • (—5) =  0 and tha t there is only 
one number opposite to -1 5 .)

15 Dealing with fractions

If somebody asks you to compare the fractions
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15 Dealing with fractions

you would answer immediately that they are equal:

9 3 3 3
15 “  3 -5  ”  5 '

But what would you say now: Are the fractions

221
391

and
403
713

equal or not?
If you remember the multiplication table for two-digit numbers, you 

would say immediately tha t they are equal:

221 17 • 13 13 31 • 13 403
391 ~  17 • 23 ”  23 ~  31 • 23 ~  713

But what are we to do if we do not remember this multiplication table? 
Then we should find the common denominator for the two fractions,

221 221 • 713 403 403 • 391
391 ”  391 • 713 аП 713 ~  713 • 391

and compare numerators,

713 391
221 403
713 1173

1426 1564
1426 157573
157573

After th a t we would know tha t the fractions are equal but would never 
discover tha t in fact they are equal to 13/23.

P ro b le m  39. Which is bigger, 1/3 or 2/7?

Solu tion . 1/3 =  7 /21 , 2/7 =  6/ 21, so 1/3 > 2/7.

The real-life version of this problem says, “Which is better, one 
bottle for three or two bottles for seven?” It suggests another solution: 
One bottle for three is equivalent to getting two bottles for six (and not 
for seven), so 1/3 >  2/7. In scientific language, we found the “common 
numerator” instead of the common denominator:

1 _  2 2 
3 ~  6 >  7 '
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15 Dealing with fractions

P ro b le m  40. Which of the fractions

10001 100001 
10002 аП 100002

is bigger?

H in t. Both fractions are less than 1. W hat is the difference between 
them and 1?

P ro b lem  41. Which of the fractions

12345 . 12346
-------  and -------
54321 54322

is bigger?

Finding a common denominator is a  traditional problem in teaching 
arithmetic. How much pie remains for you if your brother wants one- 
half and your sister wants one-third? The answer to this question is 
explained by the following picture:

Generally speaking, you need to find a common denominator when 
adding fractions. It is a horrible error (which, of course, you avoid) to 
add numerators and denominators separately:

2 5   2 +  5 _  7
3 +  7 3 +  7 “  10 '

Instead of the sum this operation gives you something in between the 
two fractions you started with (7/10 = 0.7 is between 2/3 =  0.666...  
and 5/7 = 0.714285...).

This is easy to understand in a real-life situation. Assume that one 
team has two bottles for three people (2/3 for each) and the other team
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15 Dealing with fractions

has five bottles for seven people (5/7  for each). After they meet they 
have something in between (2 +  5 bottles for 3 + 7 people).

CL C
P ro b le m  42. Fractions -  and -  are called neighbor fractions if 

b b a
their difference — ——  has numerator ± 1, tha t is, ad — be =  ± 1 . bd
Prove tha t

(a) in this case neither fraction can be simplified (that is, neither 
has any common factors in numerator and denominator);

d  C CL 4* 6
(b) if — and -  are neighbor fractions, th e n ----- j  is between themb a c -f aa c

and is a neighbor fraction for both 7 and -  ; moreover,b ag
(c) no fraction — with positive integer e and /  such tha t f  < b+d

is between 7  and ^ .b d
P ro b le m  43. A stick is divided by red marks into 7 equal segments 

and by green marks into 13 equal segments. Then it is cut into 20 
equal pieces. Prove that any piece (except the two end pieces) contains 
exactly one mark (which may be red or green).

S o lu tion . End pieces carry no marks because ^  is smaller than

i  and ^ . We have 18 other pieces -  and it remains to prove tha t 
none of them can have more than one mark. (We have 18 marks -  
6 red and 12 green -  so no piece will be left without a mark.) Red

k
marks correspond to numbers of the form - ,  green marks correspond

I
to numbers of the form — . A fraction

k + l k + l 
7 + 13 "  20

is between them and is a cut point dividing these marks. Therefore, 
two marks of different colors cannot belong to the same piece. Two 
marks of the same color also cannot appear on one piece because the 
distance between them (either 1/7 or 1/13) is bigger than the piece 
length 1/ 20.)

P ro b le m  44. W hat is better, to get five percent of seven billion 
or seven percent of five billion?
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16 Powers

P ro b le m  45. How can you cut from a 2/ 3-meter-long string a 
piece of length 1/2 meter, without having a meter stick?

Solu tion . A piece of length 1/2 m constitutes three-fourths of the 
whole string:

3 2 2 1 
4 ’ 3 “  4 ”  2 

and you need to cut off one-fourth of the string.

16 Powers

in the sequence of numbers

2, 4, 8, 16, . . .  

each number is twice as large as the preceding one:

4 =  2 -2

8 =  4 • 2 =  2 ■ 2 • 2 (3 factors)

16 =  8 -2  =  2- 2- 2- 2 (4  factors)

Mathematicians use the following useful notation:

2 -2  =  22 

2 -2 -2  =  23 

2 • 2 • 2 • 2 =  24

so, for example, 26 =  64.
Now the sequence 2 ,4 ,8,16 , . . .  can be written as 2 ,22,23,24, —  

We read an as “a to the n -th  power” or “the n -th  power of a ” ; a is 
called the base, and n  is called an exponent

There are special names for a2 and a3. They are “a squared” and 
~a cubed” , respectively. (A square with side a has area a2 ; a cube 
with edge a has volume a3 .)

P ro b le m  46. Compute: (а) 210; (b )103; (c)107 .

P ro b le m  47. How many decimal digits do you need to write down
•QiOOO?
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17 Big numbers around us

Astronomers use powers of 10 to write big numbers in a short form. 
For example, the speed of light is about 300,000 kilometers per second 
=  3 • 10® km /s — 3 • 10® m /s =  3 • 1010 cm/s.

P ro b le m  48. In astronomy the distance covered by light in one 
year is called a light-year. W hat is the distance (approximately) be­
tween the Sun and the closest star measured in meters if it is about 4 
light-years?

17 Big numbers around us

The number of molecules in one gram 
of water — 3 1022

The radius of Earth ~  6 • 10® m

The distance between Earth and the 
Moon ~  4 • 10® m

The distance between Earth and the 
Sun (the “astronomical unit”) ~  1.5- 10, l m

The radius of the part of the universe 
observed up to  now ~  1026 m

The mass of Earth ~  6 - 1024kg

The age of Earth 5 • 109 years

The age of the universe ~  1.5 • 1010 years

The number of people on Earth *  5 • 10®

The average duration of a human life 2 - 10® seconds

R em ark . When speaking of big numbers you must keep in mind 
tha t the same quantity may be big or small, depending on the unit 
you choose. For example, the distance between Earth and the Sun, 
measured in light-years, is about 0.000015 lt-yr, or, in meters (as seen 
from the table above), 1.5 • 10u  m.

We shall see later that not only big numbers but also small numbers 
can be written conveniently using powers.

Programmers prefer to deal with powers of 2 (and not of 10). It 
turns out that 210 =  1024 is rather close to 1000 = 103 . So the prefix 
kilo, which usually means 1000 (1 kilogram =  1000 grams, 1 kilometer
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18 Negative powers

= 1000 meters, etc.), means “1024” in programming: 1 kilobyte is 1024 
bytes.

P ro b le m  49. (a) How many decimal digits do you need to write 
down 220 ? (b) How many for the number 2100 ? (c) Draw the graph 
showing how the number of decimal digits in 2n depends on n .

(To answer the last question, the number of decimal digits in 2n 
.i approximately 0.3n: 210 ~  1003 10, 2n ~  100 3 n . Remember this 
when studying logarithms.)

Many types of pocket calculators use powers of 10 to show the 
rroduct of two big numbers. For example,

370,000 • 2,100,000 =  7.77 • 1011,

cut on the screen you do not see the dot and the base 10, just

7.77 11 or 7.77 E l l

recause of the screen limitations. In the usual form

777000000000

:he answer would overflow the calculator screen.

18 Negative powers

'•Ve have seen the sequence of powers of 2 :

2, 4, 8, 16, 32, 64, 128, . . .

h'ow let us s tart with some number of the sequence (for example, 128) 
ic.d write it in the reverse order:

128, 64, 32, 16, 8, 4, 2.

In the first sequence each number was two times bigger than the 
: receding one; in the second each number is two times smaller than the 
: receding one. Let us continue this sequence:

128, 64, 32, 16, 8, 4, 2, 1, 1 I  I  1  . . . .
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18 Negative powers

The sequence

2, 4, 8, 16, 32, 64, 128, . . .

could be written as

2, 22, 23, 24, 2s , 26, 27, —

In reverse order,
128, 64, 32, 16, 8, 4, 2

could be written as

27, 2e, 25, 24, 23, 22, 2.

The analogy suggests the following continuation:

128, 64 , 32, 16 , 8 , 4 , 2 , 1, $ ,  i ,  |  , •& , . . .

27, 26, 25, 24 , 23, 22, 2‘ . 2°, 2 "1, 2"2, 2’ 3, 2 ' 4 . . . .

This notation is widely used. So, for example,

23 = 8 , 21 =  2, 2° =  1, 2“ 1 =  - ,  2"2 =  i ,  2 "3 =  i ,  etc.

When we spoke about powers before we said that 23 is “2 used 3 
times as a factor” and 2s is “2 used 5 times as a factor” . We can even 
say that 21 is “2 used once as a factor” , but for 2° or 2~l such an 
explanation cannot be taken seriously. It is just an agreement between
mathematicians to understand 2~n (for positive integer n ) as — .

We hope that this agreement seems rather natural to you. Later we 
shall see that it is convenient and -  in a sense -  unavoidable.

P ro b lem  50. Writedown (a) 10“ 1 ; (b) 10“2 ; (c) 10~3 as decimal 
fractions.
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19 Small numbers around us

19 Small numbers around us

1cm =  10”2 m

1mm SCO1оiHII
1/Ш1 =  i c r 6 m

1 nanometer 6Oi1ОII

1 angstrom sоÔII

The mass of a water molecule ~  3 • 10“ 23g

The size of a living cell ~  15 to 350 • 10-9 m

The size at which modern physical 
laws become inapplicable (the “ele­
mentary length” , as physicists say)

~  10-31 cm

The wavelength of red light ~  7 • 10- 7 m

As we have said already, there is no difference, in principle, be­
tween “big” and “small” numbers. For example, E arth’s radius is about 
6 • 103 km and at the same time about 4 • 10~5 astronomical units.

Now let us return to  the general definition of powers.

D efin ition . For positive integers n ,

an = a -a ---a  (n times)

P ro b le m  51. Is the equality a~n =  —  valid for negative n  and 
for n =  0?

Is it possible to prove th a t a~n =  No, because the notationan
o-n  makes no sense without an agreement (called a definition by math­
ematicians). If suddenly all mathematicians change their mind and

agree to understand a~n in another way, then the equality a~n = —
ct

would be false. But you may be sure tha t this would never happen be­
muse nobody wants to violate such a convenient agreement. We would 
get into a mess if we did so.
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20 How to multiply oTO by on

Our notation allows us to write the long expression 

2 ‘ a - a -a -a -b -b -b -c -c -d

in the shorter form
2a*b3<?d

and also rewrite

as

2 - a - a - a - a - c - c
b b b d

2a*b-3<?d~l .

P ro b lem  52. Write the short form for the following expressions:

(a)

(b)

a a a a a a a a a a b b b b  
2 • a ■ a • a 

b b

A nsw er: (a) o1064; (b) 2a36-2 .

P ro b lem  53. Rewrite using only positive powers:

(a) a3b~5; (b) a~2b~7.

Q? 1
A nsw er: (a) (b)

20 How to  multiply a m by on , or 
why our definition is convenient

It is easy to multiply am by an if m  and n  are positive. For example,

o5 • o3 =  (e • a • a • a  • a) • (a • a  • a) =  a8.

5 times 3 times

In general, am ■ an — am+n (indeed, eTO is a repeated m  times and 
an is a  repeated n  times). Also



20 How to multiply a m by a n

But the powers may also be negative. It turns out th a t our rule is valid 
in this case, too. For example, for m  =  5, n  =  - 3 ,  it states tha t

a5 . a - 3 =  a 5+<-3W .

Let us check it: By definition, a5 • a -3 is

*‘ . i  =
a • a • a • a • a 

a -a -a
= a2.

More pedantic readers would ask us to check also tha t

o-5 • a3 =  a " 5+3 =  a “ 2.

O.K. By definition,

Even more pedantic readers would remember th a t both numbers m 
and n  may be negative and ask to  check, for example, tha t

a “ 5 • a ' 3 =  a<-5>+<-3> =  a " 8.

Indeed,

Don’t  relax -  there are still other cases. One of the exponents (or even 
both) may be equal to zero, and a° was defined by a special agreement. 
So let us check tha t

am a° = am+0 = am.

Indeed, a° =  1 by definition, so

am • a° = am • 1 = aTO.

Q uestion . Is it necessary to consider the cases m  < 0, m  =  0 and 
m  > 0 in the last argument separately?

am
P ro b le m  54. Find a formula for — . Is your answer valid for allan

integers m  and n?
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21 The rule of multiplication for powers

21 The rule of multiplication for powers

When multiplying powers with the same base, you need to add expo­
nents:

qm • on =  am+n

This rule can be used to multiply small and big numbers in a  con­
venient way. For example, to multiply 2 • 107 and 3 • 10“ 11 we multiply 
2 and 3 and add 7 and -1 1 :

(2 • 107) • (3 • 10“ 11) =  (2 • 3) • (107 • 10"11) =  6 • 107+(" u) =  6 • 10"4. 

This method is used in computers (but with base 2 instead of 10).

P ro b le m  55. (a) You know tha t 21001 • 2n =  22000. W hat is n?

(b) You know that 21001 • 2n =  1/4. W hat is n?
(c) Which is bigger: 10“ 3 or 2“ 10?

2 looo
(d) You know that — =  2601. W hat is n?&

21000
(e) You know that — =  1/16. W hat is n?

(f) You know that 4100 =  2n . W hat is n?

(g) You know that 2100 • 3100 =  a 100. W hat is a?

(h) You know that (210)15 =  2n . W hat is n?

We said earlier that the definition of negative powers is in a sense 
unavoidable. Now we shall explain what we mean. Assume that we 
want to define negative power in some way, but want to keep the rule 
am+n =  om . an true for all m  and n . It turns out tha t the only way 
to  do so is to follow our definition. Indeed, for n  =  0 we must have 
oTO • o° =  em+0, that is, am a° = am . Therefore, o° =  1. But then 
o" • a “ n =  0n+*“ n) =  o° =  1 implies that a~n = l/a n .

W hat do we get if the power is used as a  base for another power? 
For example,

(a2)3 =  a2 • a2 ■ g2 = (a -a) -(a a) -(a a) = a®.
3 times

(am)n =  emn

32
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22 Formula for short multiplication: The square of a sum

for any positive m , n . And again our conventions “think for us” : the 
same formula is also true for negative m and n . For example,

(a" 2)3 = (à ï ±  =  a " 6 =  û<-2>'3.

P ro b le m  56. Check this formula for other combinations of signs 
(if m > 0, n  <  0; if both m  and n  are negative; if one of them is equal 
to zero).

The last formula about powers:

(ab)n =  an bn

P ro b le m  57. Check this formula for positive and negative inte­
gers n .

P ro b le m  58. W hat is ( - a ) 775? Is it a775 or - a 775? 

P ro b le m  59. Invent a formula for

Now a n is defined for any integer n  (positive or not) and for any a. 
But th a t is not the end of the game, because n  may be a number th a t 
is not an integer.

P ro b le m  60. Give some suggestions: W hat might 41/ 2 be? And 
271/3? Motivate your suggestions as well as you can.

The definition of am^n will be given later. (But th a t also is not the 
last possible step.)

22 Formula for short multiplication:
The square of a sum

As we have seen already,

(a +  b)(m + n) =  am  + an  +  bm +  bn

(to multiply two sums you must multiply each term  of the first sum 
by each term of the second sum and then add all the products). Now 
consider the case when the letters inside the parentheses are the same:

(a +  b)(a +  6) — aa +  ab +  id  +  bb.
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23 How to explain the square of the sum formula

Remember tha t ab = ba and that aa and 66 are usually denoted as a2 
and 62; we get

(a +  6)(a +  6) =  a2 +  2a6 +  62,

or
(a + 6)2 = a2 +2a6 + 62

P ro b le m  61. (a) Compute 1012 without pencil and paper.

(b) Compute 10022 without pencil and paper.

P ro b lem  62. Bach of the two factors of a product becomes 10 
percent bigger. How does the product change?

The rule in words: “The square of the sum of two terms is the sum 
of their squares plus two times the product of the terms” .

Be careful here: “the square of the sum” and “the sum of the 
squares” sound very similar, but are different; the square of the sum is 
(a +  6)2 and the sum of the squares is o2 +  62.

P ro b le m  63. Are the father of the son of NN and the son of the 
father of NN the same person?

23 How to  explain the
square of the sum formula to  
your younger brother or sister

A kind wizard liked to  talk with children and to make them gifts. He 
was especially kind when many children came together; each of them 
got as many candies as the number of children. (So if you came alone, 
you got one, and if you came with a friend you got two and your friend 
got two.)

Once, a boys came together. Bach of them got a candies -  together 
they got a2 candies. After they went away with the candies, 6 girls 
came and got 6 candies each -  so the girls together got 62 candies. So 
tha t day, the boys and girls got a2 +  62 candies together.

The next day, a boys and 6 girls decided to come together. Bach of 
a + 6  children got a +6 candies, so all the children together got (a+ 6 )2 
candies. Did they get more or fewer candies than yesterday -  and how 
big is the difference?
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23 How to explain the square of the sum formula

To answer this question we may use the following argument. The 
second time, each of the a boys got 6 more candies (because of the 6 
girls), so all the boys together got ab more candies. Each girl got a 
more candies (because of the a boys), so all the girls got ba additional 
candies. So together, the boys and girls got ab+ba = 2ab candies more 
than on the previous day. So (a +  6)2 is 2a6 more than a2 +  62 , that 
is, (a +  b)2 =  a2 +  62 +  2ab.

P ro b lem  64. Cut a square with edge a +  6 into one square a x  a, 
one square 6 x 6  and two rectangles a x  b.

Solution.
a 6

a

6

The formula (a+ 6 )2 =  a2 + 62 +2a6 may be considered as a generic 
formula for infinitely many equalities like (5 +  7)2 =  52 +  2 • 5 • 7 +  72 or 
(13 +  i ) 2 =  132 +  2 -1 3 4  +  ( i ) 2 ; we get tnese equalities by replacing a 
and 6 by specific numbers. These numDer may, of course, be negative. 
For example, for a =  7, 6 =  - 5  we get

(7 +  (—5))2 =  72 +  2 • 7 • ( -5 )  +  (—5)2.

Plus times minus is minus, and minus times minus is plus, so we get

(7 — 5)2 =  72 — 2 • 7 • 5 +  52.

The same thing could be done for anv other numbers, so the general 
rule is that

(a -  6)2 =  a2 -  2a6 +  62

Or in words- “The square of the difference is the sum of the squares 
minus two times the product of the terms”.
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24 The difference of squares

P ro b le m  65. Compute (a) 992; (b) 9982 without pencil and 
paper.

P ro b le m  66. W hat do the formulas (a +  b)2 =  a2 +  2ab +  b2 and 
(a -  b)2 =  a2 — 2ab +  b2 give when (a) a =  b; (b) a =  2b?

24 The difference of squares

P ro b le m  67. Multiply a + b and a — b.

S o lu tion , (a +  b)(a — b) =  a(a — b) +  b(a — b) =  a2 — ab+ ba — b2 
=  a2 -  b2 (here ab and ba compensate for each other). So we get the 
formula

o2 - b 2 =  (o +  b ) (o -b )

P ro b le m  68. Multiply 101 - 99 without pencil and paper.

P ro b le m  69. A piece of size b x b was cut from an a x  a square.

a

Cut the remaining part into pieces and combine the pieces into a rect­
angle with sides a - b  and a +  b.

These three formulas -  the square of a  sum, the square of a differ­
ence, and the difference of squares -  are called “short multiplication 
formulas” .

P ro b le m  70. Two integers differ by 2. Multiply them and add 1 
to the product. Prove th a t the result is a  perfect square (the square of 
an integer). For example,

=  16 =  42,

=  196 = 142.
3 -5  +  1 

13-15 +  1
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24 The difference of squares

S o lu tion . (First version.) Let n  denote the smaller number. Then 
the other number is n  +  2. Their product is n (n  +  2) =  n 2 +  2 n . 
Adding 1, we get n2 +  2n + 1  =  (n +  l ) 2 (the formula for the square of 
the sum).

(Second version.) Let n  denote the bigger number. Then the 
smaller one is n  -  2. The product is n (n  -  2) =  n 2 -  2n. Adding 
1 we get n2 — 2n + 1  =  (n — l ) 2 (the square of the difference formula).

(Third version.) If we want to be fair and not choose between the 
bigger and the smaller number, let us denote by n  the number halfway 
between the numbers. Then the smaller number is n  -  1, the bigger 
one is n  + 1 ,  and the product is (n +  l)(n  - 1 )  =  n 2 -  1 (the difference 
of squares formula), tha t is, it is a perfect square minus one.

P ro b le m  71. Write the sequence of squares of 1,2, 3 , . . .  :

1, 4, 9, 16, 25, 36, 49, . . .

and under any two consecutive numbers of this sequence write their 
difference:

1 4 9 16 25 36 49 . . .
3 5 7 9 11 13 . . .

In the second sequence any two consecutive numbers differ by 2. Can 
you explain why?

S o lu tion . The consecutive numbers n  and n  +  1 have squares n 2 
and (n +  l ) 2 =  n 2 +  2n +  1. The difference between these squares is 
2n +  1, and it becomes greater by 2 if we add 1 to n .

R e m a rk . A sequence where each term  is greater than the preceding 
one by a fixed constant (as in 3 ,5 ,7 ,9 , . . . )  is called an arithmetic 
(pronounced “arithm Etic” , not “arithm etic” ) progression. We shall 
meet progressions again later.

P ro b le m  72. There is a rule th a t allows us to square any number 
with the last digit 5, namely, “Drop this last digit out and get some 
n ; multiply n  by n  +  1 and add the digits 2 and 5 to  the end” . For 
example, for 352 , we delete 5 and get 3, multiplying 3 and 4 we get 12, 
adding “2” and “5” we get the answer: 1225. Explain why this rule 
works.
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24 The difference of squares

P ro b le m  73. Compute (a +  6 +  c)2.

Solu tion , (a +  6 +  c)2 =  (a +  6 +  c)(a +  6 +  c) =  a2 +  ab +  ас +  
6a +  62 +  6c + ca +  c6 +  с2 =  a2 +  62 +  с2 +  2a6 +  2ac +  26c.

a 6 c

a2 ab ac

6a 62 be

ca cb

P ro b le m  74. Compute (a +  6 -  c)2 .

H in t. Use the answer of the preceding problem.

P ro b lem  75. Compute (a + 6 +  c)(a +  6 -  c ) .

H in t. Use the difference-of-squares formula.

P ro b le m  76. Compute (a +  6 +  c)(a -  6 -  c ) .

H in t. The difference-of-squares formula is useful here also.

P ro b le m  77. Compute (a +  6 — c)(a -  6 +  c ) .

H in t. Even here the difference-of-squares formula can be used!

P ro b le m  78. Compute (a2 -  2a6 +  62)(a2 +  2a6 +  62) . 

Solu tion . This is equal to

(a -  6)2(a + 6)2 =  ((a -  6)(a +  6))2 =  (a2 -  62)2 =  a4 -  2a262 +  64.

Another solution:

(a2 -  2ab +  62)(a2 +  2a6 +  62) =

=  ((a2 +  62) +  2a6)((a2 +  62) -  2a6) =  (a2 +  62)2 -  (2a6)2 =

= a4 +  2a262 + 64 -  4a262 =  a4 +  64 -  2a262.
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25 The cube of the sum formula

25 The cube of the  sum formula

Let us derive the formula for (a +  b)3. By definition,

(a +  b)3 =  (o +  b)(a +  b)(a +  b),

and we may start here. But part of the job is done already:

(о +  b)3 =  (a +  b)2(a +  6) =  (a2 +  2ab +  b2)(a + b).

Now we have to  multiply each term of the first sum by each term  of 
the second one and take the sum of all products:

(o2 +  2ab +  b2)(a +  b) =

=  e2 • a + 2ab • a+  b2 - a +
+  e2 • b +  2ob • b +  b2 • b .

Remembering how to  multiply powers with a common base (that is, 
that am - an = om+n ) and putting о -factors first, we get

a 3 +  2a2b +  ob2 +

+  a2b +  2ab2 +  b3.

Here some terms are similar (only the numerical factors are different); 
they are written one under another. Collecting them, we get

(o +  b)3 =  o3 +  3e2b +  3ob2 +  b3

P ro b le m  79. Compute l l 3 without pencil and paper.

H in t. 11 =  10 +  1.

P ro b le m  80. Compute 1013 without pencil and paper.

P ro b le m  81. Compute ( o - b ) 3 .

S o lu tion . We may compute it in the same way as before, writing 
o - b ) 3 =  (a — b)2( o - b) =  (a2 -  2ab +  b2) ( o - b) etc. But an easier 

way is to  substitute (—b) for b in the formula for (o +  b)3 :

(o +  ( -b ))3 =  o3 +  3o2 • ( -b )  +  3o (-b )2 +  ( -b )3

ЭГ

( o - b )3 = o 3 - 3 o 2b +  3ob2 - b 3 

recall th a t minus times minus is plus and plus times minus is minus).
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26 The formula for (a +  6)4

26 The formula for (a +  b)4
Before computing (a +  6)4 let us try  to guess the answer. To do so, 
look at the formulas we already have:

(a +  6)2 =  a2 +  2a6 +  62

(a +  6)3 =  a3 +  3a26 + 3a62 + 63.

To get more “experimental data” we can add the formula

(a +  6)1 =  a +  6.

So we have:

(a +  6)1 =  a +  6

(a +  6)2 =  a 2 +  2a6 +  62

(a +  6)3 =  a3 +  3a26 + 3a62 +  63

(a +  6)4 = ???

How many additive terms do you expect in (a +  6)4 ? Five, of course. 
W hat is the first term? Definitely, a4 . The next term is a more difficult 
puzzle. (To tell you the truth, it will be 4a36.) To explain how it can 
be guessed let us divide our question into two parts:

(1) W hat powers of a and b will appear?

(2) W hat numeric coefficients will appear?

Part (1) is simpler. If the formula for

(a +  6)* uses a and 6,
(a + 6)2 uses a2, ab and 62,
(a +  6)3 uses a3, a 26, ab2 and 63,

we may expect tha t

(a +  6)4 uses a4, a36, a 262 , a63 , and 64.

Now look at the coefficients (we write the factor “1” to make our 
formulas more uniform):

(в 4* 6)  ̂ =  la  +  16

(a +  6)2 =  la 2 + 2a6 +  162

(a +  6)3 =  la 3 +  3a26 +  3a62 +  163
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26 The formula for (o +  6)4

or, without terms (only the coefficients):

1 1 
1 2 1
1 3  3 1
? ? ? ? ?

(we have already said tha t we expect five terms in the (a+ 6)4 formula). 
The first coefficient is, of course, 1. I t seems th a t the second is 4 
(because in the second column we have 1, 2 and 3). So we get

1 1 
1 2 1
1 3  3 1
1 4 ? ? ?

Two more coefficients can be guessed. In (a +  6)4 , the letters e and b 
have equal rights, so 64 must have the same coefficient as a4 , and ab3 
must have the same coefficient as o36 -  to  avoid discrimination:

1 1
1 2 1 
1 3  3 1
1 4 ? 4 1.

Now only a2b2 remains, and if we cannot guess it, we must compute it 
by brute force:

(a +  6)4 =  (o +  6)3(o +  6) =  (a3 +  3o26 +  3ab2 + b3)(a +  b) =

=  a3 - a +  3o26 •о +  Зоб2 •о 
+  о3 • б +  Зо2б •b

+  bP a  +
+  Зоб2 • б +  б3 • б =

=  a4 +  Зо3б +  За2б2 
+  a3b +  3o262

+  об3 +
+  Зоб3 + б 4

(again the similar terms are written one 
them, we get

under another). Collecting

(o +  b)4 =  o4 +  4a3b +  6a.2 b2 +  4об3 +  b4

All our guesses turn  out to be true and we find the remaining coefficient 
of a2b2, which turns out to be 6.
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27 Formulas for (a + 6)5, (a +  6)6, . . .  and Pascal's triangle

27 Formulas for (o +  6)5, (a  +  6)e, . . .  
and Pascal’s triangle

In (a +  6)5 we expect terms

a s a 46 a362 a 263 ab4 6s

with coefficients
1 5 ? ? 5 1

To find the two remaining coefficients (they are expected to  be 
equal, of course) let us proceed as usual:

(a +  b)5 =  (a4 +  4a36 +  6a262 + 4a63 + b4)(a +  6) =

=  a4 • a +  4a36 • a +  6a2fe2 • a + 4a63 •a + b4 - a +
+ a 4 • 6 +  4a3 • 6 +  6a262 • b +  4a63 -6 +  b4 • b =

= a 5 +  5a46 +  10a362 +  10a263 +  5a64 +  6s .

So our table of coefficients has one more row:

1 1
1 2 1
1 3  3 1
1 4 6 4 1
1 5 10 10 5 1

Probably you have already figured out the rule: Each coefficient is 
equal to the sum of the coefficient above it and the one to the left of 
it: 1 + 4  =  5 ,4  +  6 =  1 0 ,6  +  4 =  1 0 , 4  +  1 =  5.

The reason this is so becomes clear if we look a t our computation 
ignoring everything except coefficients:

1 . .  . + 4 . . .  +  6 . . .  +  4 . . .  +  1 . . .  +
+ 1 . . .  + 4 . . .  + 6 . . .  + 4 . . .  + 1 . . . =

1 .. . + 5 ... + 10 ... + 10... + 5 ... + 1 ...

They are added exactly as the rule says.
For aesthetic reasons, we may write the table in a more symmetric
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27 Formulas for (a +  b)5, (o +  b)6, . . .  and Pascal's triangle

way and add “1” on the top (because (a +  b)° =  1). We get a  triangle

1
1 1

1 2 1 
1 3  3 1

1 4 6 4 1
1 5 10 10 5 1

which can be continued using the rule th a t each number is the sum of 
the two numbers immediately above it (except for the first and the last 
numbers, which are equal to  1). For example, the next row will be

1 6 15 20 15 6 1

and it corresponds to the formula

(c +  b)6 =  a6 +  6a 5b +  15a4 b2 +  20o3b3 +  15c2b4 +  6ab5 +  b6

This triangle is called Pascal’s triangle (Blaise Pascal [1623-1662] 
was a French mathematician and philosopher.)

P ro b le m  82. Compute 113, 114 , l l 5 and l l 6 .

P ro b le m  83. Write a formula for (a +  b)7 .

P ro b le m  84. Find formulas for (a -  b)4 , (a -  b)5 and (a -  b)6 .

P ro b le m  85. Compute the sums of all the numbers in the first, 
second, third, etc., rows of Pascal’s triangle. Can you see the rule? Can 
you explain the rule?

P ro b le m  86. W hat do the formulas for (a+b)2 , ( a+ b )3, (a+ b)4 , 
etc., give when a =  b?

P ro b le m  87. Do you see the connection between the two preceding 
problems?

P ro b le m  88. W hat do the formulas for (a+ b)2, ( a+ b)3 , ( a+ b)4 , 
etc., give when a =  —b?
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28 Polynomials

28 Polynomials
By a polynomial we mean an expression containing letters (called vari­
ables), numbers, addition, subtraction and multiplication. Here are 
some examples:

+  e36 +  ab3 +  64 

(5 -  7x)(x — l)(x  — 3) +  11 

(a +  6) (a3 +  63)

(a +  6)(a +  26) +  ab 

(x +  y)(x -  y) + (y -  x)(y + x)

0

(x +  y)100

These examples contain not only addition, subtraction and multipli­
cation, but also positive integer constants as powers. These are legal 
because they can be considered as shortcuts (for example, a4 may be 
considered as short notation for a - a - a - a, which is perfectly legal). 
But a~7 or xv are not polynomials.

A monomial is a polynomial that does not use addition or subtrac­
tion, that is, a product of letters and numbers. Here are some examples 
of monomials:

5 • a • 7 ■ b • a 

127a 15 

(-2 )a 26

(in the last example the minus sign is not subtraction but a part of the 
number " - 2 ”).

Usually numbers and identical letters are collected: for example, 
5 • a • 7 • b • a is written as 35a26.

Please keep in mind that a monomial is a polynomial, so sometimes 
for a mathematician one ( “mono”) is many (“poly”).

Each polynomial can be converted into the sum of monomials if we 
remove parentheses. For example,

(a +  6) (a3 +  63) =  aa3 +  ab3 + 6o3 +  bb3 =  a4 +  ab3 +  6a3 +  64,
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28 Polynomials

(о +  6) (о +  26) — о2 +  2а6 +  6о +  2б2.

When doing so we can get similar monomials (having the same letters 
with the same powers and differing only in the coefficients). For exam­
ple, in the second polynomial above, the terms 2a6 and 6a are similar. 
They can be collected into 3a6 and we get

(a +  6)(a +  26) =  a 2 +  2a6 +  6a +  262 =  о2 +  3a6 +  262.

P ro b le m  89. Convert (1 +  x -  y)(12 -  zx -  y) into a sum of 
monomials and collect the similar terms.

S o lu tion .

(1 +  x - y ) ( 1 2  - z x  - y )  =

=  12 — z x - y  + 12s — xzx -  xy  -1 2 у +  yzx  +  y2 =

=  12 -  zx  -  13y +  12s -  zx2 -  y s  +  yzx  +  y2.

(The similar terms are underlined.)
Strictly speaking, this is not enough, because we need a sum of 

monomials and now we have subtraction. Therefore we need to do one 
more step to get

12 +  ( - l ) z x  +  (-13 )y  +  12s +  ( - l ) z x 2 +  ( - l ) y x  +  lyzx +  ly 2

(to make the terms more uniform we added the factor “1” before xyz 
and before y2).

A standard form of a  polynomial is a  sum of monomials, where each 
monomial is a product of a number (called a coefficient) and of powers 
of different letters, and where all similar monomials are collected.

To add two polynomials in standard form we must add the coeffi­
cients of similar terms. If we get a  zero coefficient, the corresponding 
term vanishes:

( I s  +  (—l)y) +  ( ly +  (—2)x +  lz) =

(1 +  (~2))x +  ( ( -1 )  +  l)y  +  lz  =  (—l)x  +  Oy +  lz  =  ( - l ) s  +  l z .

To multiply two polynomials in standard form we need to multiply 
each term  of the first polynomial by each term of the second polynomial. 
When multiplying monomials, we add powers of each variable:

(asb7c) ■ (a3bd4) =  aM b7+lcd* =  aW cd4.
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29 A digression: When are polynomials equal?

After this is done, we have to collect similar terms. For example,

(x -  y)(x2 +  xy +  y2) =  X 3 + x^y + xy2 -  yx^ -  xy^ -  y3 =  X3 -  y3.

(The pedantic reader may find that we have violated the rules adopted 
for the standard form of a polynomial, because the coefficients - 1  and 
1 are omitted.)

P ro b le m  90.

(a) Multiply (1 + x)( l +  x2).

(b) Multiply (1 +  x)( l +  x2)(l +  x4)(l + x8).

(c) Compute (1 +  x + x2 +  x3)2.

(d) Compute (l + x +  x2 + x3 H-----+  x9 +  x 10)2 .

(e) Find the coefficients of x30 and x29 in
(1 +  x +  x2 +  x3 H-----+  x9 + x 10)3.

(f) Multiply (1 -  x)( l  +  x +  x2 +  x3 +  • • • + x9 +  x 10) .

(g) Multiply (a +  6) (a2 -  ab +  62) .

(h) Multiply (1 — x +  x2 — x3 +  x4 — x5 +  x6 — x7 + x8 — x9 +  x 10) 
by (1 +  x +  x2 + x3 + x4 +  Xs  + x8 +  x7 +  x8 +  x9 +  x 10) .

29 A digression: When are polynomials equal?

The word “equal” for polynomials may be understood in many dif­
ferent ways. The first possibility: Polynomials are equal if they can 
be transformed into one another by using algebraic rules (removing 
parentheses, collecting similar terms, finding common factors, and so 
on). Another possibility: Two polynomials are considered to be equal 
if after substituting any numbers for the variables they have the same 
numeric value. It turns out tha t these two definitions are equivalent; if 
two polynomials are equal in the sense of one of these definitions they 
are also equal in the sense of the other one. Indeed, if one polynomial 
can be converted into another using algebraic transformations, these 
transformations are still valid when variables are replaced by numbers.
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29 A digression: When are polynomials equal?

So these polynomials have the same numeric value after replacement. 
It is not easy to prove the reverse statement: If two polynomials are 
equal for any values of variables, they can be converted into each other 
by algebraic transformations. So we shall use it -  sorry! -  without 
proof.

If we want to convince somebody that two given polynomials are 
equal, the first version of the definition is preferable; it is enough to 
show the sequence of algebraic transformations needed to get the sec­
ond polynomial from the first one. On the other hand, if we want to 
convince somebody tha t two polynomials are not equal, the second def­
inition is better; it is enough to find numbers tha t lead to the different 
values of the polynomials.

P ro b le m  91. Prove that 

(x -  l )(x -  2)(x — 3)(x -  4) Ф (x +  l)(x +  2)(x +  3)(x +  4)

without computations.
S o lu tion . When x =  1 the left-hand side is equal to zero and 

the right-hand side is not, therefore these polynomials are not equal 
according to the second definition.

P ro b le m  92. In the (true) equality

(x2 -  l )(x +  •••) =  (* -  1)(* + 3)(x +  • • •)

some numbers are replaced by dots. W hat are these numbers?

H in t. Substitute —1 and - 3  for x .

Now assume tha t somebody gives us two polynomials, not saying 
whether they are different or equal. How can we check this? We can 
try  to substitute different numbers for the variables. If a t least once 
these polynomials have different numeric values we can be sure tha t 
they sure different. Otherwise we may suspect tha t these polynomials 
sure in fact equal.

P ro b lem  93. George tries to check whether the polynomials (x + 
l ) 2 — (x — l ) 2 smd x2 +  4x — 1 sure equal or not by substituting 1 suad 
—1 for x . Is it a  good idea?
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30 How many monomials do we get?

Solu tion . No. These polynomials have equal values for x — -1  
(both values are - 4 )  and for x =  1 (both give 4). However, they are 
not equal; for example, they have different values for x =  0.

To check whether two polynomials are equal or not in a more regular 
way, we may convert them to a standard form. If after this they differ 
only in the order of the monomials (or in the order of the factors inside 
the monomials), then the polynomials are equal. If not, it is possible 
to prove that the polynomials are different.

Sometimes equal polynomials are called “identically equal” , mean­
ing that they are equal for all values of variables. So, for example, 
a2 -  62 is identically equal to (a -  6) (a +  6).

R em ark . Later we shall see that sometimes a finite number of tests 
is enough to decide whether two polynomials are equal or not.

30 How many monomials do we get?
P ro b lem  94. Each of two polynomials contains four monomials.

W hat is the maximal possible number of monomials in their product?

R em ark . Of course, any polynomial can be extended by monomials 
with zero coefficients like this:

x3 +  4 =  x3 +  Ox2 +  Ox +  4

Such monomials are ignored.

S o lu tion . Multiply (a + b + c + d ) by (x +  y +  z +  u) :
(a +  6 +  c + d)(x + y + z +  u) =

= ax + ay + az + au + 
bx + by + bz + bu + 
cx + cy + cz + cu + 
dx + dy + dz + du.

We get 16 terms. It is clear tha t 16 is the maximum possible number 
(because each of 4 monomials of the first polynomial is multiplied by 
each of 4 monomials of the second one).

P ro b lem  95. Each of two polynomials contains four monomials. 
Is it possible that their product contains fewer than 16 monomials?
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31 Coefficients and values

S o lu tion . Yes, if there are similar monomials among the products. 
For example,

(1 +  X +  x2 +  x3)(l +  x +  X2 +  X3) =  1 +  2x +  3x2 +  4x3 +  3x4 +  2x5 + x6, 

that is, after collecting similar terms we get 7 monomials instead of 16.

P ro b le m  96. Is it possible when multiplying two polynomials that, 
after collecting similar terms, all terms vanish (have zero coefficients)?

A nsw er. No.

R em ark . Probably this problem seems silly; it is clear th a t it 
cannot happen. If you think so, please reconsider the problem several 
years from now.

P ro b le m  97. Is it possible when multiplying two polynomials tha t 
after the collection of similar terms all terms vanish (have zero coeffi­
cients) except one? (Do not count the case when each of the polyno­
mials has only one monomial.)

P ro b le m  98. Is it possible tha t the product of two polynomials 
contains fewer monomials than each of the factors?

S o lu tion . Yes:

(x2 +  2xy +  2y2)(x2 -  2xy + 2y2) =

=  ((x2 +  2y2) +  2xy)((x2 +  2y2) -  2xy) =

= (x2 +  2y2)2 -  (2xy)2 =

=  X 4 + 4x2y2 +  4y4 -  4x2y2 =

= x4 +  4y4.

31 Coefficients and values

Recall Pascal’s triangle and the formulas for (o +  6)n for different n  :

1 (a +  6)°
1 1  (a +  6)1

1 2  1 (a +  b)2
1 3  3 1 (a +  6)3

1 4 6 4 1 (a +  6)4

1
l a +  16
la 2 +  2a6 +  162
la 3 +  3a26 + 3a62 +  163
la 4 +  4a36 + 6o262 +  4a63 + 164

etc. Each of these formulas is an equality between two polynomials.
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P ro b le m  99. W hat do we get for a  =  1, 6 =  1? 

S o lu tion .

(1 + 1)° = 1

(1 + I )1 1 + 1

(1 + I)2 = 1 + 2 + 1

(1 + l)3 1 + 3 + 3 + 1

(1 + I)4 = 1 + 4 + 6 + 4 + 1

etc. Recall that 1 +  1 =  2; so we proved that the sum of any row of 
Pascal’s triangle is a power of 2. For example, the sum of the 25th row 
of Pascal’s triangle is equal to 224.

P ro b le m  100. Add the numbers of some row of Pascal’s triangle 
with alternating signs. You get 0 :

1 - 1 = 0  

1 - 2 + 1 = 0  

1 - 3 + 3 - 1 = 0  

1 —4 + 6 — 4 +  1 =  0

etc. Why does this happen?

H in t. Try a =  1, 6 =  - 1 .

P ro b le m  101. Imagine tha t the polynomial (1 +  2x)200 is con­
verted to the standard form (the sum of powers of x with numerical 
coefficients). W hat is the sum of all the coefficients?

H in t. Tty x =  1.

P ro b le m  102. The same question for the polynomial (1 -  2 X )200 

instead of (1 +  2x)200.

P ro b le m  103. Imagine tha t the polynomial (1 +  x -  y)3 is con­
verted to the standard form. W hat is the sum of its coefficients?

P ro b le m  104. (continued) W hat is the sum of the coefficients of 
the terms not containing y?

P ro b le m  105. (continued) W hat is the sum of the coefficients of 
the terms containing x?

50



32 Factoring

32 Factoring

To multiply polynomials you may need a lot of patience, but you do 
not need to think; just follow the rules carefully. But to reconstruct 
factors if you know only their product you sometimes need a lot of 
ingenuity. And some polynomials cannot be decomposed into a product 
of nontrivial (nonconstant) factors a t all. The decomposition process is 
called factoring, and there are many tricks tha t may help. We’ll show 
some tricks now.

P ro b le m  106. Factor the polynomial ac +  ad +  6c +  bd.
S olu tion . ac + ad + bc + bd =  a(c +  d) +  b(c +  d) =  (a + 6)(c + d).

P ro b le m  107. Factor the following polynomials:
(a) ac + be — ad — bd;
(b) 1 +  о +  a2 + a3 ;

(c) 1 +  a +  a2 + a3 + -----h a 13 + a 14 ;

(d) X4 -  i 3 +  2x -  2.

Sometimes we first need to cut one term into two pieces before it is 
possible to proceed.

P ro b le m  108. Factor a2 +  3a6 +  262 .

S o lu tion . a2+3ab+262 =  a 2+ ab+ 2ab+ 2b2 =  a(a+b)  + 2b(a+b) 
= (a +  2b)(a +  b).

R em ark . When multiplying two polynomials we collect the similar 
terms into one term. So it is natural to expect tha t when going in the 
other direction we may have to split a  term into a sum of several terms.

P ro b le m  109. Factor:

(a) a2 -  3ab +  2b2 ;

(b )  a2 +  3a +  2.

The formula for the square of the sum can be read “from right 
to left” as an example of factoring: the polynomial a 2 +  2ab +  b2 is 
factored into (a+6) (a +6). The same factorization can also be obtained 
as follows:

a2 +  2ab +  b2 =  a 2 + ab +  ab +  b2 =  a(a +  b) +  b(a +  b) =  (a +  6)(a +  6).
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P ro b lem  110. Factor:

(a) e2 +  4efe +  4fe2;

(b) a* + 2a2fe2 + fe4 ;

(c) a2 -  2a + 1.

Sometimes it is necessary to add and subtract some monomial (re­
constructing the annihilated terms). We show this trick factoring a2 -  
b2 (though we know the factorization in advance: it is the difference- 
of-squares formula):

o2 -  fe2 =  a2 -  ab +  a b - b2 =  a(a -  fe) +  fe(o -  fe) =  (о +  fe)(o -  fe).

P ro b lem  111. Factor i 5 +  i  +  1.

Solution. xs +  X + 1  =  Xs + 14 + z 3 -  x4 -  X3 -  X2 +  x2 +  x + 1  =  
x3(x2 + x  + l ) - x 2(x2 + x + l )  +  (x2+ x  +  l) =  (x3 - x 2 +  l)(x2 +  x +  l) .

Probably you are discouraged by this solution because it seems im­
possible to invent it. The authors share your feeling.

Let us look a t the factorization a2 — fe2 =  (a + fe)(a — fe) once more 
from another viewpoint. If a = fe, then the right-hand side is equal to 
zero (one of the factors is zero). Therefore the left-hand side must be 
zero, too. Indeed, a2 =  fe2 when a =  fe. Similarly, if a +  fe =  0 then
02 =  fe2 (in this case о =  -fe and a2 =  fe2 because in changing the sign 
we do not change the square).

P ro b lem  112. Prove that if o2 =  fe2 then a =  fe or a =  -fe.

The moral of this story: When trying to factor a polynomial it is 
wise to see when it has a zero value. This may give you an idea what 
the factors might be.

P ro b lem  113. Factor e3 -  fe3.

Solution. The expression a3 -  fe3 has a zero value when a = b. 
So it is reasonable to expect a  factor a — fe. Let us try: a3 -  fe3 =
03 -  o2fe +  o2fe — ofe2 +  ofe2 -  fe3 =  e2(e -  fe) + ofe(e -  fe) +  fe2(a -  fe) =  
(a2 +  afe +  fe2)(a -  fe).

P ro b lem  114. Factor o3 +  fe3.
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Solution, a3 + 63 =  a3 + e26 — a26 — e62 + ob2 + b3 = a2 (a + b) — 
ab(a + b) + b2(a + 6) = (a2 -  ab + 62)(a + 6).

The same factorization can be obtained from the solution of the 
preceding problem by substituting (-6 ) for b.

P rob lem  115. Factor a4 -  64.

Solution, e4 — 64 = e4 — a3b + a3b — a2b2 + a2b2 — ab3 + ab3 — b4 — 
a3(a-b)+a2b(a-b)+ab2(a-b)+b3(a-b) =  (a -  6) (a3 + a26+ аб2 + 63 ) •

P rob lem  116. Factor:

(a) a5 - 6 5;
(b) о 10 -  610;

(c) o7 - l .

Another factorization of a4 -  b4:

a4 - b 4 — (e2 -  62)(a2 + b2) .

These two factorizations are in fact related; both can be obtained from 

(e4 -  64) =  (e -  6)(e + 6)(û2 + 62) 

by a suitable grouping of factors.

P rob lem  117. Factor a2 -  4b2.
Solution. Using that 4 =  22 we write:

e2 -  462 =  e2 -  2262 =  e2 -  (26)2 = (e -  26)(a + 26)

Let us try to apply the same trick to a2 -  2b2. Here we need a 
number called “the square root of two” and denoted by \f2. It is 
approximately equal to 1.4142... ; its main property is that its square 
is equal to 2: (V2)2 =  2. (Generally speaking, a square root of a 
nonnegative number a is defined as a nonnegative number whose square 
is equal to o. It is denoted by y/â. Such a number always exists and 
is defined uniquely; see below.)

Using the square root of two we may write:

e2 -  262 =  o2 -  (V26)2 =  ( a -  y/2b){a + л/26).
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So we are able to factor a2 — 2b2, though we are forced to use \/2  as 
a coefficient.

R em ark . Look at the equality

a -  b = (>/a)2 -  (у/Ь)2 — (y/â -  >/b)(y/â +  Vb).

So we have factored a—b, haven’t  we? No, we haven’t, because y/a—y/b 
is not a  polynomial; taking the square root is not a  legal operation 
for polynomials -  only addition, subtraction and multiplication are al­
lowed. But how about a—>/26? Why do we consider it as a polynomial? 
Because our definition of a polynomial allows it to be constructed from 
letters and numbers using addition, subtraction, and multiplication. 
And y/2 is a  perfectly legal number (though it is defined as a square 
root of another number). So in this case everything is O.K.

P ro b le m  118. Factor: (a) a 2- 2 ;  (b) o2-3 6 2; (с) а2+2аЬ+Ь2—<?\
(d) a2 +  4ab +  362.

P ro b le m  119. Factor a 4+ ft4 . (The known factorization of e4 - 6 4 
seems useless because substituting (-6 ) for b we get nothing new.)

Solu tion . A trick: add and subtract 2o262. It helps:

a4 +  64 =  a4 +  2o262 + 64 -  2a262 =

= (a2 +  62)2 -  (Viab)2 =  (a2 +  b2 +  y/2ab)(a2 +  b2 — y/2ab).

Let us see what we now know. We can factor on - 6 n for any positive 
integer n  (one of the factors is a - b ) .  If n  is odd, the substitution of 
-b  for b gives a factorization of an +  bn (one of the factors is a + b). 
But what about o2 + b2, о4 +  64 , a® +  6e , etc.? We have just factored 
the second one.

P ro b le m  120. Can you factor any other polynomial of the form 
a2n + b2n?

H in t, o® + b® =  (o2)3 +  (b2)3 . The same trick may be used if n 
has an odd divisor greater than 1.

But the simplest case, a2 + b2, remains unsolved. It would be 
possible to write

a2 +  b2 =  o2 -  (V ^T • b)2 =  (a -  \ / - T  • b)(a +  %/-T • b)
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if a square root of — 1 exists. But -  alas -  it is not the case (the square 
of any nonzero number is positive and therefore not equal to - 1  ). But 
mathematicians are tricky; if such a number does not exist, it must 
be invented. So they invented it, and got new numbers called complex 
numbers. But this is another story.

P ro b le m  121. W hat would you suggest as the product of two 
complex numbers (2 +  3v^T ) and (2 -  3 \/-T ) ?

Let us finish this section with more difficult problems.

P ro b le m  122. Factor:

(a) X4 + 1 ;

(b) x{y2 -  z2) + y{z2 -  X2) +  z(x2 -  y2) ;
(c) o ,0 +  a5 +  l ;

(d) a 3 + 63 +  c3 -  3a6c;

(e) (a +  6 +  c)3 -  a3 -  63 -  c3 ;

(f) (a -  6)3 +  (b -  c)3 +  (c -  a)3 .

P ro b le m  123. Prove that if a,b > 1 then a +  b < 1 +  ab.
H in t. Factor (1 +  ab) -  (a + b).

P ro b le m  124. Prove tha t if a2 +  аб +  62 = 0 then a = 0 and 
6 =  0 .

H in t. Recall the factorization of a 3 - 6 3. (Another solution will be 
discussed later when speaking about quadratic equations.)

P ro b le m  125. Prove that i f a  +  6 + c = 0 then a 3 + 63 + c 3 =  3a6c.

P ro b le m  126. Prove tha t if

1 1 1 1
— I i . —  — ~  - f  t  "F — a + 6 + c  a 6 c

then there are two opposite numbers among a, b, c (i.e. a = -6 ,  a = - c  
or 6 = - c ) .
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33 Rational expressions

One is not allowed to use division in a polynomial (only addition, sub­
traction, and multiplication). If we allow division too, we get what are 
called “rational expressions” . (The only restriction is that the divisor 
must not be identically equal to zero.)

Examples:
ab „ v a/b , x 1 , 1

(a )  —  ;c (c)
1 +  -

X

(«*)
1 +

1 + 1

1 + i

w
X3 +  X3 +  X  +  1

x +  1 ’

X3 _X3
Let us mention that, for exam ple,----------is not a  rational expression

X -  X
because the denominator is identically equal to 0.

Let us mention as well that the permisson to use division is not an 
obligation to use it; therefore, any polynomial is a  rational expression.

34 Converting a rational expression into 
the quotient of two polynomials

A rational expression may include several divisions (as in examples (b), 
(c), (d), or (g)). But it can be converted into a form in which only 
one division is used and the division operation is the last one. In other 
words, any rational expression may be converted into the quotient of 
two polynomials.

The following transformations are used to do the conversion:
P R

1. Addition: Assume that we want to add -pr and — where
Q ^  p

P, Q, R, S  are polynomials. Find the common denominator for — and
R **
— (if we have no better idea, just multiply P and Q by S  and mul­
tiply R  and S  by Q):

P R PS QR P S + QR 
Q *  S ~ QS + QS ~ QS 

We’ve got a quotient of two polynomials.
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2. The subtraction case is similar:
P R PS QR 
Q S ~ QS QS

3. Multiplication:

P S - Q R
QS

P
Q

R
S

PR
QS

4. Division:
Р / R PS  
Q /  S ~ Q R ’

Sometimes during the transformation we are able to simplify the ex­
pression, eliminating a common factor in the numerator and the de­
nominator:

PX _ P 
Q X ~  Q '

P ro b lem  127. Convert the expressions from the examples (b), 
(c), (d), (e), and (g) to this form (expressions (a) and (f) already are 
in this form).

A nsw ers an d  so lutions.

( b ) ^ ;  (c) 1

(d)
1 +  -  

X
1.

1 + 1

x + 1
X

X +  1 '  

X +  1

2x + 1

1 + 1

1 +  -  
X

=  1 +

1 +

1 +  -  
X

1 + 1

X _  2x + 1
X + 1 _  X + 1

3x + 2 
“  2x + 1 :

i + l
X

thus, the answer is 2x +1 
3x + 2

(e )
-  +  ^ +  -y z X (x2z + y2x + z2y)/xyz
U. +  £ 4. Î  (y2z + z2x  +  x2y)/xyz
X y z
xyz • (x2z -f y2x + z2y)/xyz 
xyz • (y2z + z2x + x2y)/xyz  

x2z + y2x  +  z2y +  y2z +  z2x +  x2y

+ 1 =
(x2z -f y2x + z2y) 
(y2z +  z2x  +  x2y) + 1 =

(g)
2ab 

a + b'

y2z + z2x +  x2y
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Let us mention that in such problems the answer is not defined 
uniquely. For example, the expression

X3 +  X2 +  X  +  1 

X2 -  1

may be left as is, but may also be transformed as follows:

X3 4- X2 + X + 1 _  (x + l)(x2 +  1) _  x2 + 1  
(x +  l ) ( x - l )  (x +  l)(x — 1) x - 1

R em ark . Strictly speaking, the cancellation of common factors 
is not a  perfectly legal operation, because sometimes the factor being

cancelled may be equal to zero. For example,
xJ +  x2 +  x + 1 

x2 — 1
is un­

defined when x — - 1 ;  it is equal to
x2 + 1  
x - 1

where both are defined.
Usually this effect is ignored but sometimes it may become important.

Sometimes the statement of a problem requires us to “simplify the 
expression” -  to convert it to the simplest possible form. Though sim­
plicity is a matter of taste, usually it is clear what the author of the 
problem meant.

P ro b lem  128. Simplify the expression

(x -  o)(x -  b) (x -  q)(x -  c) (x -  6)(x -  c)
(c — a)(c — b) + (6 — o)(6 — c) +  ( o - 6 ) ( a - c ) ’

Solution. Let us first add two fractions. The common denominator 
is (c -  a) (c -  b)(b -  a ) . Additional factors are 6 -  a for the first fraction 
and c -  a for the second. We use the fact that 6 -  c = ~(c — b), so

(x -  a)(x -  b) (x -  a)(x -  c) _
(c -  a)(c — b) + (6 — a)(6 — c) “

(x -  a)(x -  b)(b -  a) -  (x -  a)(x -  c)(c -  a)
(c -  a)(c -  b)(b -  a)

(x -  a)[(x -  6)(6 -  a) -  (x -  c)(c -  a)) _
“  (c -  a)(c -  b)(b -  a)
_  (x -  a)(xfe -  xa -  62 +  ab — xc +  xa +  c2 -  ac| _
~ (c -  a)(c -  b)(b -  a)
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_  (x -  q)[x(6 -  c) +  a(b -  c) -  (6 -  c)(b + c)) _
(c — a)(c -  6)(6 -  a)

_  (X -  a)(fc -  c)(x +  a -  6 -  c)
(c -  a)(c -  b)(b — a)

Reducing the common factors (c -  6) =  - (6  -  c) we get

(x - a)(b + c - a - x )
(c -  a)(b -  a)

Now we can add the third fraction (it has the same denominator, be­
cause minus times minus is plus):

(x -  a)(b + c - a - x )  (x -  fe)(x -  c) _
(c — a)(b — a) *  (o — 6)(o -  c)

_  xb +  xc -  ха — x2 -  ab -  ас +  о2 +  ox +  x2 — xb -  xc +  be _
(c -  a)(b -  a)

_  о2 +  b e -  a b -  ас _  a(a -  b) -  c(a -  b) _  (a -  c)(a -  6) _
(c -  a)(b -  a) (c -  a)(6 -  a) (c -  a)(6 -  a)

So we have proved the identity

(x -  a)(x -  b) (x -  o)(x -  c) (x -  fe)(x -  c) __
(c -  û)(c -  b) (6 -  o)(b -  c) (a — 6)(a — c)

P ro b le m  129. Check this identity in the special cases x =  a, 
x = b, and x =  c.

We shall see later that in fact these three cases are sufficient to 
be sure tha t the identity is true in the general case. (So the long 
computations we have done could be avoided.) But we need more 
theory to realize this.

To conclude this section we state some problems involving rational 
expressions.

The expression

(the inverse of the arithmetic mean of the inverses of a and 6; see 
below) is called the harmonic mean of a and 6. You may meet it in 
some situations.
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P ro b lem  130. A swimming pool is divided into two equal sections. 
Each section has its own water supply pipe. To fill one section (using 
its pipe) you need a hours. To fill the other section you need b hours. 
How many hours would you need if you turn on both pipes and remove 
the wall dividing the pool into sections?

P ro b lem  131. A motor boat needs a hours to go from A to В 
down the river and needs b hours to go from В to A (up the river). 
How many hours would it need to go from A to В if there were no 
current in the river?

P ro b lem  132. For the first half of a trip a car has velocity vi ; 
for the second half of a  trip it has the velocity t^ . What is the mean 
velocity of the car?

P ro b lem  133. You know that x + -  = 7 .  Compute (a) x2 +  i  ;
X X *

P ro b lem  134. You know that x + -  is an integer. Prove that
X

xn H----- is an integer for any n  =  1,2,3, etc.xn
P ro b lem  135. Solving problem (d) on pages 56-57 we have seen 

that

1 1

i  + l  * + »’ i + _ L _
1 i  + -

X

Represent the fractions 

1

x +  1

* + 1  1 + — Î.

2x4-1 
3x +  2 ‘

1 + 1

i + ix

1 +
1

1 +
1 1 +

1 + 1 1 +

i  + i
X

1 +
1 + 1

1 + 1
X

as quotients of two polynomials and try to find a law governing the coef­
ficients of these polynomials. (These fractions are examples of so-called
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continued fractions. The coefficients of the polynomials in question turn 
out to be the so-called Fibonacci numbers; see page 87)

35 Polynomial and rational fractions in 
one variable

If a  polynomial contains only one variable, its standard form consists 
of its monomials written in the order of decreasing degrees. The mono­
mial having the highest degree is called the first monomial. Its degree 
is called the degree of the polynomial. (Of course, monomials with 
zero coefficients must be ignored. For a zero polynomial the degree is 
undefined.) For example, the polynomial 7x2 +  3x +  1 has the first 
monomial 7x2 and degree 2. Constants (not equal to zero) are consid­
ered as polynomials of degree 0.

P ro b lem  136. W hat is the first term of the polynomial (2x+ 1)5?

P ro b lem  137. Assume that a polynomial P  has degree m  and the 
polynomial Q has degree n . Find the degree of their product P Q.

Solu tion . When multiplying the first monomials we get a  mono­
mial of degree m +  n  (because xTO • xn =  xm+n ); its coefficient is the 
product of the coefficients of xm and xn in P  and Q. This monomial 
is the only one having degree m + n ; all the others have smaller degree. 
So there is nothing to cancel it and thus it will remain after reducing 
similar terms.

P ro b lem  138. (a) W hat can be said about the degree of the sum 
of two polynomials having degrees 7 and 9? (b) W hat can be said 
about the degree of the sum of two polynomials both having degree 7?

A nsw er, (a) It is 9; (b) any degree not exceeding 7 is possible.

P ro b lem  139. Consider a  polynomial in one variable x  having 
degree 10. Substitute y7 +  5y2 -  y -  4 for x in this polynomial and get 
a polynomial in y . W hat can be said about its degree?
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36 Division of polynomials in 
one variable; the remainder

Common fractions are either proper or improper. A proper fraction is
a fraction where the numerator is smaller than the denominator, such 

3 1
as -  or — . An improper fraction is a fraction where the numerator 

7 15
7 11 37

is not less than the denominator, such as - ,  — , or — .
5 11 7

Any improper fraction has an integer part, which is obtained when 
we divide the numerator by the denominator, plus a proper fraction. 
For example:

7 = 1 5 + 2 7 2
(quotient 1, remainder 2) 5 = 1 + 5

Another example:

37 =  5 • 7 + 2 37 c 2
(quotient 5, remainder 2) 7

_ 5 + -

Now an example where the remainder is zero:

1 r. 2 
5f7

5 r. 2 
7Ï37

11 = 1 1 1  + 0 И
(quotient 1, remainder 0) ц

_1 r. 0 
11111

Now we shall learn to do similar transformations for fractions whose 
numerators and denominators are polynomials in one variable. Such a 
fraction is considered proper if the degree of its numerator is less than 
the degree of its denominator. For example, the fractions

lOx 1
X2 X3 -  1

are proper, while the fractions

X4 X + 1  X3 X3 + 1

x - 2 ’ x + 2 ’ 5x’ x + 1

are improper.
Any improper fraction can be converted into the sum of a polyno­

mial and a proper fraction. Several examples:
X + 3 _  (x + 1) + 2 
x + 1  x + 1

1 +
2

x + 1
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(b )

(c)

X

x +  2

X

2x + 1

(x + 2 ) - 2  _  _  2
x +  2 “  x  +  2 '

X +  (1/2) _  1/2 1 _  1/2
2x +  1 2x +  1 ~  2 2x +  Г

(When we say th a t a  polynomial must not contain division it does 
not mean th a t all its coefficients must be integers; they may be any 

numbers, including fractions. So, for example, -  is a perfectly legal 

polynomial of degree 0.)
X2 _  (x2 -  4) +  4 (x +  2)(x -  2) +  4 4

(d) 7 ^ 2  = x  —2   7 = 2 ------ < i+ 2 ) +  ? 3 2 -

X4 (x4 -  16) +  16 _  (x2 +  4)(x +  2)(x -  2) +  16 _  
e x  — 2 _  x  -  2 “  x  — 2

=  (x2 +  4)(x +  2) +  ~ ^ ~ 2  •

There is a  standard way of converting an improper fraction (where 
the numerator and the denominator are polynomials) into a sum of 
a polynomial and a  proper fraction. It is similar to  the division of 
numbers. Let us illustrate it by examples.

X4
E x am p le . Converting the improper fraction -----   :

X  — 2

x3 +  2x2 +  4x +  8 <— the quotient
x  — 2|x*

x4 -  2x3
2 Ï5
2x3 -  4x2 

4x*
4x2 — 8x 

8x
8x - 1 6

16 <— the remainder

The same procedure can be written in another, less readable, way:

x -  2
x4 -  2x3 2x3

x -  2 x  -  2
3 2x3 o=  x 3 + -----   =  x 3 +

x -  2
2x3 -  4x2 4x2

+

= x3 +  2x2 +  4x
x -  2

= x3 +  2x2 +
4x2 -  8x

x -  2 
8x

x -  2

3 2 8x — 16 16
= x 3 +  2x^ +  4x + -------— + --------

x -  2 x  -  2

x -  2 x  -  2 

=  x 3 +  2x2 +  4x +  8 +
16

x -  2'
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36 Division of polynomials in one variable; the remainder

So we get
x4 = (x3 + 2x2 + 4x + 8)(x -  2) + 16.

E xam ple. Now let us convert the fraction
x3 + 2x 

X2 -  x + 1

x +  1
x2 — x + l |x 3 +  2x

x3 -  x2 4- x 
x^ +  x 
x2 -  x +  1 

2x — 1

The same conversion written in another way: 

x3 + 2x x3 -  x2 + x x2 +x
= x +

x2 + x
X2 - X + l  X2 -  X +  1 Г Х2 - Х  +  1 X2 -  X +  1

x2 -  x + 1 2x -  1 . ,. 2x -  1= X + —s--------   + —5--------   = (x + 1) + —s------—г-
X2 - X  +  l  X2 - X + l  X2 — X +  1

So we get
x3 + 2x = (x + l)(x2 — x + 1) + (2x -  1).

E xam ple. The last example of fraction conversion:

(l/2)x2 + (3/4)x + (9/8)
2X -3IÎ3

x3 -  (3/2)x2
(3/2)x2
(3/2)x2 -  (9/4)x 

(9/4)x
(9/4)x -  27/8 

27/8

The same conversion:

x3 x3 -  (3/2)x2 (3/2)x2
2x -  3 2x -  3 + 2x -  3

= l r 2  (3/2)x2 -  (9/4)x , (9/4)x
2 2x -  3 2x -  3
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36 Division of polynomials in one variable; the remainder

(9/4)z -  (27/8) 27/8
2x — 3 2z — 3

9 \ 27/8
8 / +  2 * - 3 '

So we get

Now it is time for the exact definition of polynomial division.
Definition. Assume that we have two polynomials (in one vari­

able), called the dividend and the divisor. To perform a division means 
to find two other polynomials, called the quotient and the remainder, 
such that

where the degree of the remainder is less than the degree of the divisor 
(or the remainder is zero).

P rob lem  140. What can you say about the degrees of the re­
mainder and the quotient if a polynomial of degree 7 is divided by a 
polynomial of degree 3?

Answer. The degree of the quotient is 4; the degree of the remain­
der may be 0, 1, 2, or 3 or undefined (the remainder may be absent or, 
rather, equal to zero).

P rob lem  141. Prove that the quotient and the remainder with 
the desired properties do exist and are unique.

Solution. In the examples above we have seen a method of finding 
the quotient and the remainder with the desired properties, so they 
do exist. Their uniqueness can be proved as follows. Assume that we 
divide P  by S  and have two possible quotients Qi and Q2 and two 
corresponding remainders Ri and R^. So we have

and both Ri and R2 have degree less than the degree of 5 . Then

(dividend) = (quotient) • (divisor) + (remainder)

P  — Q i5  +  Ri 
P — Q2S  + R2

QiS + Ri =  Q2S + R2

65



36 Division of polynomials in one variable; the remainder

and, therefore,

R i ~ R i  = QiS -  QiS  =  (Qt -  Q2)S.

Here Ri -  R2 is a difference of two polynomials of degree smaller than 
the degree of S , so their difference has degree smaller than the degree 
of S and cannot be a multiple of S unless it is equal to 0. Therefore, 
Qi -  Q2 = 0, that is, Qi =Q 2, hence, Äi = R2.

P ro b lem  142. What happens if the degree of the dividend is 
smaller than the degree of the divisor?

A nsw er. In this case the fraction is already proper, so the quotient 
is equal to 0 and the remainder is equal to the dividend.

Polynomial division is similar to ordinary division:

x2 + x +  2 
X + llx 3 +  2x2 + 3x +  4

X3 +  X2

X2 + 3x
X2 +  X

2x + 4 
2x + 2 

2

1234 = 112-11 +  2 X3 + 2x2 + 3x +  4 =  (x2 + X + 2)(x + 1) +  2

In this example we have a perfect analogy; to see it, substitute 10 for 
x in the polynomial division. In other cases such as

x2 +  3x +  6 
x -  l |x 3 +  2x2 + 3x +  4 

x3 - x 2 
3 ?  +  3x 
3x2 -  3x

6x +  4 
6x -  6 

10

x3 + 2x2 +  3x + 4 =  (x2 +  3x +  6)(x -  1) +  10

the analogy is incomplete; if we substitute 10 for x , we get the equality 
1234 = 136-9 + 10, which is true but does not mean that dividing 124

112 
1111234 

U 
13 
П  
24 
22 

2
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36 Division of polynomials in one variable; the remainder

by 9 we get quotient 136 and remainder 10 (in fact, 137 is the quotient 
and 1 is the remainder).

P ro b le m  143.

(a) Divide x3 -  1 by x -  1 ;

(b) Divide x4 -  1 by x -  1 ;

(c) Divide x 10 -  1 by x -  1 ;

(d) Divide x3 + 1  by x  + 1  ;

(e) Divide x4 +  1 by x + 1 .

Problems (a )-(c )  are special cases of the formula

X - }  = xn~l +  xn~2 +  • • • +  x2 +  x +  1 
x - 1

which can be easily checked by division (as described) or ju s t by multi*
plication of x  - 1  and xn" 1 +  xn-2 H-----h x2 +  x  + 1 . This formula can
also be considered as a way to  compute the sum of consecutive powers 
of a number x :

,  2 n - i  xn - 11 +  x  +  x2 H-----+  x  1 = --------—
x - 1

(it is valid for all x except 1). See below about the sum of a  geometric 
progression.

P ro b le m  144. The powers of 2,

1 ,2 , 4, 8, 16, 32, 6 4 , . . .

have the following property: The sum of all members of this sequence 
up to any term  is 1 less than the next term; for example

1 + 2  =  3 = 4 - 1

1 + 2 + 4  =  7 = 8 - 1

1 + 2  +  4 +  8 =  15 =  1 6 - 1

and so on. Explain why.

S o lu tio n . Look a t the equation

. 2 n—1 11 +  X  +  X 2 +  • • • +  xn 1 =  ------ --
X  -  1
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37 The remainder when dividing by x — a

when x  =  2. We get

1 +  2 +  22 +  • • • +  2n‘ * =  =  2n -  1.
mt "  X

A n o th e r so lution. To compute the sum 1 +  2 +  4 +  8 +  16, let us 
add and subtract 1:

1 +  2 +  4 +  8 +  16 =

= (l +  l +  2 +  4 +  8 +  1 6 ) - l  =

= (2 +  2 +  4 +  8 + 1 6 ) - 1  =

= (4 +  4 +  8 +  16) -  1 =

= (8 +  8 +  1 6 ) -1  =

= (16 + 16) -  1 =
= 32 -  1.

37 The remainder when dividing by x — a
There is a method that allows us to find the remainder of an arbitrary 
polynomial divided by x -  a without actually performing the division.

Assume that we want to find the remainder when x4 is divided by 
x -  2. We can be sure that the remainder is a number (its degree must 
be less than the degree of x -  2). To find this number, look at the 
equality

x4 =  (quotient)(x -  2) +  (remainder) 

and substitute x = 2. We get

24 = ( .. .) •  0 +  (remainder);

so the remainder is equal to 24 =  16.
In general, if P  is an arbitrary polynomial that we want to divide 

by x -  a (where a is some number), we write

P(x) = (quotient) (x -  a) +  (remainder)

and substitute a for x . Therefore,

68



37 The remainder when dividing by x — a

To find the remainder when P  is divided by x - e ,  substitute 
a for x in P.

This rule is called the remainder theorem, or Bezout’s theorem. It 
allows us to find the remainder without the actual division. However, 
if you want to know the quotient, you need to perform the division.

Here is a consequence of Bezout’s theorem:

To find whether a polynomial P is divisible by x -  a (with­
out remainder), test whether it becomes zero after substi­
tution of a for x.

If a polynomial P  becomes zero when some number a is substi­
tuted for x , then this number a is called a root of the polynomial P . 
Therefore we may say

P  is divisible by x -  a <=t> a is a root of P .

P rob lem  145. (a) For which n is the polynomial xn — 1 divisible 
by x - 1  ? (b) For which n is the polynomial xn +1 divisible by x + 1 ?

After we find a root of a polynomial we may factor it; x -  a is 
one of the factors. Then we may try to apply the same method to the 
quotient.

P rob lem  146. Factor these polynomials:
(a) x4 +  5 x - 6 ;
(b) x4 +  3x2 +  5x +  1 ;
(c) x3 -  3x -  2.

P rob lem  147. The numbers 1 and 2 are roots of a polynomial P . 
Prove that P  is divisible by (x — l)(x — 2).

Solution. P  is divisible by x—1 because 1 is a root of P . Therefore 
P  =  (x -  1) • Q for some polynomial Q. Substituting 2 for x in this 
equality we find that 2 is a root of Q, so Q is divisible by x -  2, that 
is, Q =  (x -  2) • R  for some polynomial R. So P  = (x -  l)(x  -  2)R.

R em ark. A typical wrong solution goes as follows: P  is divisible 
by x -  1 (because 1 is a root) and by x -  2 (because 2 is a root),
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37 The remainder when dividing by x — a

therefore P  is divisible by (x — l)(x  -  2). The error: “therefore” is not 
justified. For example, 12 is divisible by 6 and by 4, but we may not 
say “therefore, 12 is divisible by 6 • 4 =  24” .

A similar argument shows tha t

If différent numbers a i , Û2,. . . ,  On are roots of a polynomial 
P ,  then P  is divisible by (x -  a i)(x  -  а г ) • • • (x -  an) .

P ro b le m  148. W hat is the maximal possible number of roots for 
a polynomial having degree 5?

S o lu tion . The answer is 5. For example, the polynomial

(x — l)(x  -  2)(x — 3)(x — 4)(x — 5)

has 5 roots. More than 5 roots is impossible; if a  polynomial P  had 6 
roots 01,02,03,04,05,0$, then it would be divisible by

(x — o j)(x  — 02) • • • (x -  a$),

th a t is,
P  =  ( x  -  O i ) ( x  -  o2) • • • (x -  o$)Q

for some Q . T hat is impossible because the degree of the right-hand 
side is a t least 6.

In general, a polynomial of degree n  may have a t most n  different 
roots.

R e m a rk . We used here the expression “different roots” because 
the words "the number of roots” may be used in a different sense. For 
example, what is the number of roots of the polynomial x2 -  2x +  1 ? 
The polynomial is equal to (x -  l ) 2 , so x =  1 is a root and all x Ф 1 
are not roots. So we may say tha t it has exactly one root. On the other 
hand, the general formula for a polynomial with two roots a and b is

c(x -  a)(x -  6)

and our polynomial

x2 -  2x +  1 =  (x -  l ) 2 =  (x -  l)(x  -  1)

is a special case of this formula when а =  6 =  1 (and c =  1); so 
mathematicians often say th a t this polynomial has “two equal roots” .
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37 The remainder when dividing by x — a

We shall not use this terminology in this book but you may see it, 
for example, in the statem ent of the so-called “fundamental theorem 
of algebra” claiming that “any polynomial of degree n  has exactly n  
complex roots”

P ro b le m  149. How should you check whether a given polynomial 
P  is divisible by x2 — 1 ?

A nsw er. Check whether 1 and —1 are roots of P.

P ro b le m  150. For which n  is the polynomial xn -  1 divisible by 
x2 — 1 ?

Now let us return to the identity

(x -  a)(x -  6) (x -  o)(x -  c) (x -  fe)(x -  c) _  _ Q
(c — e)(c -  6) (6 -  a)(6 -  c) ( a - 6 ) ( a - c )

which we discussed on page 59 (we have moved 1 to the left-hand side 
of the equation). Assume th a t a ,6 ,c  are different numbers. Consider 
the left-hand side as a polynomial with one variable x . The degree 
of this polynomial does not exceed 2. Therefore it may have a t most 
two roots (if it is not equal to  zero). But a , 6, and c sure its roots! 
Therefore, it is equal to zero.

A careful reader would say th a t we made a big mistake: we confuse 
the equality of rational expressions for all numerical values of a, ft, c, x 
strictly speaking, not even for all, because, for example, the left-hand 

side is undefined when a — b) with the possibility of transforming 
the left-hand side to zero according to algebraic rules. W hat can be 
said about this? Bad news: this really is a  problem. Good news: 
this problem is not fatal (but to justify this transition you need some 
theory).

P ro b le m  151. The remainder of a polynomial P  (in one variable 
:  ) when divided by x2 — 1 is a  polynomial of degree at most 1, tha t 
-s. it has the form ax + b for some numbers a sind 6. How can you 
in d  a and b if you know the values of P  when x =  —1 and x =  1?

H in t. Look a t the equality

P  =  (x2 -  l)(quotient) +  (ox +  6)
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38 Values of polynomials, and interpolation

and substitute 1 and -1  for x.

P rob lem  152. The polynomial P  gives a remainder of 5x -  7 
when divided by x2 -  1. Find the remainder when P  is divided by
X  -  1 .

P rob lem  153. The polynomial P  = x3 + x2 -  lOx + 1 has three 
different roots (the authors guarantee it) denoted by xi,X 2,i3- Write 
a polynomial with integer coefficients having roots

(a) xi + l ,x 2 + 1.X3 + 1; (b) 2х1,2х2,2хз; (c) — , — , — •
Xi X2 2:3

P rob lem  154. Assume that x3 + ax2 + x + 6 (where a and b are 
some numbers) is divisible by x2 -  3x + 2. Find a and b.

38 Values of polynomials, and interpolation
Assume that a polynomial P  includes only one letter (variable) x . To 
stress this we denote this polynomial by P(x) (“P  of x ”). Substitute 
some number, say 6, for x in P  and perform all computations. We 
get a number. This number is called the value of the polynomial P  for 
x =  6 and is denoted by P(6) (“P  of 6”).

For example, if P(x) =  x2 -  x -  4 then P(0) =  О2 -  0 — 4 = -4 .  
Other values are P ( l)  =  - 4 ,  P(2) = - 2 ,  P(3) =  2, P(4) =  8, 
P(5) =  16, P(6) =  26, etc.

P ro b lem  155. Calculate a table of values P (0 ) ,. . . ,  P(6) for the 
polynomial P(x) =  x3 -  2.

P ro b lem  156. Let us write the values P(0), P (l) , P (2 ) ,. . .  for 
P(x) =  x2 -  x -  4:

- 4 , - 4 , - 2 ,  2, 8, 16, 2 6 ,. . .

Under any two adjacent numbers write their difference:

- 4  - 4  -2  2 8 16 26 . . .
0 2 4 6 8 10 . . .

and repeat the same operation with this sequence of “first differences”:

- 4  - 4  - 2  2 8 16 26 . . .
0 2 4 6 8 10 . . .

2 2 2 2 2 . . .

72



38 Values of polynomials, and interpolation

Now all numbers are 2 s. Prove th a t it is not a coincidence and th a t all 
subsequent numbers (called “second differences”) are also 2s.

P ro b le m  157. Prove tha t for any polynomial of degree 2 all second 
differences sure equal.

P ro b le m  158. W hat csm be said about polynomials having degree
3?

P ro b le m  159. (L. Euler) Compute the vsdues P (x) = x2 + x +  41 
for X =  1, 2, 3, . . . ,  10. Check th a t all these values are prime numbers 
(having no divisors except 1 and themselves). Might it be tha t sill of 
P ( l) ,  P(2), P(3), . . .  sure prime numbers for this polynomial P ?

Now we address the following topic: W hat can be said about a 
polynomial if we have some information about its vsdues?

By a polynomial of degree not exceeding n  we mesm suiy polynomial 
of degree n , n  -  1, . . .  ,2 , 1 ,0 ,  or the zero polynomial (whose degree 
is undefined).

For example, the general form of a polynomial of degree not exceed­
ing 1 is ax + b. When а ф 0 it has degree 1. When a =  0,6 Ф 0 it has 
degree 0. When a =  b =  0 we get the zero polynomisd whose degree is 
undefined.

In a similar way the general form of a polynomial of degree not 
exceeding 2 is ax2 +  bx +  c, etc.

P ro b le m  160. You know th a t P (x) is a  polynomial of degree not 
exceeding 1, th a t P ( l)  =  7, and th a t P(2) =  5. Find P(x).

S olu tion . By definition, P (x) =  ax + 6, where a smd b are some 
numbers. Let us substitute x  =  1 smd x = 2. We get:

P ( l)  =  a + b = 7
P(2) =  2 a + b =  5

Comparing this equations we see th a t after adding one more a (in the 
second one), 7 becomes 5, so a = —2. Therefore 6 =  9. Answer: 
P(x) =  -2 x  +  9.

The same method csm be applied to find a polynomial of degree not 
exceeding 1 if we know its values for smy two different values of x .
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If you know th a t the graph of a function y = ax+b is a  straight line 
you can easily explain this fact geometrically; for any two points there 
is exactly one straight line going through these points. (Two given 
values for two values of x correspond to two points in the plane.)

P ro b le m  161. A polynomial P (x ) of degree not exceeding 1 sa t­
isfies the conditions P ( l )  =  0, P (2) =  0. Prove th a t P (x ) =  0 for 
any x .

Now we consider polynomials of degree not exceeding 2. How many 
values do we need to reconstruct such a polynomial? We shall see tha t 
two is not enough.

P ro b le m  162. A polynomial P (x) of degree not exceeding 2 sa t­
isfies the conditions P ( l)  =  0, P(2) =  0. Can we conclude th a t 
P (x ) =  0?

S o lu tion . No; look a t the polynomial P (x) =  (x -  l)(x  -  2) =  
x2 — 3x +  2.

We already know th a t any polynomial P (x) such th a t P ( l)  =  
P(2) =  0 has the form P (x) =  (x -  l)(x  — 2)Q(x) where Q(x) is 
some polynomial. If we also know th a t P (x) has degree not exceeding 
2, then Q(x) must be a  number (otherwise the degree of P  will be too 
big).

P ro b le m  163. A polynomial P (x ) of degree not exceeding 2 sa t­
isfies the conditions P ( l)  =  0, P(2) =  0, P(3) =  4. Find P (x ).

S o lu tion . As we have seen, P (x) =  a(x -  l)(x  -  2) where a is 
some constant. To find a , substitute x =  3:

P(3) =  o(3 -  1)(3 -  2) =  2a =  4;

therefore a =  2. Answer: P (x) =  2(x -  l)(x  -  2) =  2x2 -  6x +  4.

A n o th e r  so lu tio n . Any polynomial of degree not exceeding 2 has 
the form ox2 +  bx + c. Substituting x =  1, x =  2 and x =  3, we get

P ( l)  =  a + f e  +  c =  0
P(2) =  4a +  26 +  c =  0
P(3) =  9a +  36 +  c =  4.

Therefore,
P(2) -  P ( l)  =  3 a +  6 =  0 
P(3) — P(2) =  5 a +  6 =  4 .
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Additional 2a make 4 from 0, therefore a =  2. Now we can find 6 = -6  
and then c =  4. Answer: 2x2 -  6 i  + 4.

P rob lem  164. Prove that a polynomial of degree not exceeding 2 
is defined uniquely by three of its values.

This means that if P(x) and Q(x) are polynomials of degree not 
exceeding 2 and P(x i) =  Q(xi), Р(хг) =  Q(xi), P (x3) =  Q(x3) for 
three different numbers i i , 1 2 , and 1 3 , then the polynomials P(x) 
and Q(x) are equal.

Solution. Consider a polynomial R(x) = P(x) -  Q(x). Its degree 
does not exceed 2. On the other hand, we know that

R(xi) =  R(x2 ) = R(x 3 ) =  0;

in other words, X j, X2 , and X3 are roots of the polynomial R(x).  But 
a polynomial of degree not exceeding 2, as we know, cannot have more 
than 2 roots, unless it is equal to zero. Therefore R(x)  is equal to zero 
and P(x)  = Q{x).

P rob lem  165. Assume that

16e + 46 + c =  0 

49a + 7b + c = 0 

100a + 106 + c =  0.

Prove that a =  6 = c = 0.

P rob lem  166. Prove that a polynomial of degree not exceeding n 
is defined uniquely by its n + 1 values. (We have already solved this 
problem for n  =  2.)

P rob lem  167. Find a polynomial P(x) of degree not exceeding 2 
such that

(a) P ( l)  = 0, P(2) = 0, P(3) = 4;

(b) P ( l)  =  0, P(2) =  2, P(3) = 0;

(c) P ( l)  =  6, P(2) =  0, P(3) =  0;

(d) P ( l)  =  6, P(2) = 2, P(3) = 4.
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S olu tion . Problem (a) was already solved, and the answer was 
2(x -  l)(x  -  2). Problems (b) and (c) may be solved by the same 
method; the answers are -2 (x  -  l)(x  -  3) for (b) and 3(x -  2)(x -  3) 
for (c). Now we are able to solve (d) by just adding the three polyno­
mials from (a), (b), and (c). We get the following answer:

2(x -  l)(x  -  2) -  2(x -  l)(x  -  3) +  3(x -  2)(x -  3) =

=  2x2 -  6x +  4 -  2x2 +  8x -  6 +  3x2 -  15x +  18 =

=  3x2 -  13x +  16.

A n o th e r  so lu tio n  fo r (d). Let us find any polynomial Q of degree 
not exceeding 2 such th a t Q (l) =  6 and Q(2) =  2. For example, the 
polynomial Q(x) = 10 -  4x (having degree 1 ) will work. I t has two 
desired values Q (l) and Q(2), but unfortunately the value Q(3) is not 
what we want: Q(3) = - 2  (and we want 4). The remedy: consider a 
polynomial

P(x) =  Q(x) +  o(x -  l)(x  -  2).

Any a would not damage the values P ( l)  =  Q (l) =  6, P(2) =  Q(2) =
2. And a suitable a  will make P(3) correct:

P(3) =  Q(3) +  2a.

To get P (3) =  4 we use a =  3. So the answer is

P (x) =  10 -  4x +  3(x -  l)(x  -  2) =

=  10 -  4x +  3x2 -  9x +  6 =  3x2 -  13x +  16.

P ro b le m  168. Find a polynomial P (x) of degree not exceeding 3 
such th a t P ( - l )  =  2, P(0) =  1, P ( l)  =  2, P(2) =  7.

P ro b le m  169. Assume tha t X\ , . . . ,  хю are different numbers, and 
Уь • • • i Ум ы е arbitrary numbers. Prove th a t there is one and only 
one polynomial P (x) of degree not exceeding 9 such th a t P (x i)  =  y i , 
P (x  2) =  У2, • • •, P(xio) =  У10 •

P ro b le m  170. W ithout any computations prove th a t there exist 
numbers a ,  b, and c such tha t

100a +106 + c = 18.37 

36a +  66 +  c =  0.05

4a +  2b +  c = - 3
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(You don’t  need to find these a, b, and c; it is enough to prove tha t 
they exist.)

P ro b le m  171. The highest coefficient of P(x) is 1, and we know 
th a t P ( l)  =  0, P (2) =  0, P(3) =  0 , . . P(9)  =  0, P(10) =  0. W hat 
is the minimal possible degree of P (x )?  Find P ( l l )  for this case.

A nsw er. The minimal degree is 10 and P ( l l )  is 3628800 in this 
case.

39 Arithmetic progressions

In the sequence of numbers

3, 5, 7, 9, 11, . . .

each term is greater than the preceding one by two units. In the se­
quence

10, 9, 8, 7, 6, . . .

each term is one unit smaller than the preceding one. Such sequences 
are called arithmetic progressions. (Here “e” is stressed: arithmEtic, 
not arithmetic!)

D efin ition . An arithmetic progression is a sequence of numbers 
where each term is a sum of the preceding one and a fixed number. This 
fixed number is called the common difference, or simply difference, of 
the arithmetic progression.

P ro b le m  172. W hat are the differences in the examples above? 
A nsw er. 2 and - 1 .

P ro b le m  173. Find the third term of an arithmetic progression

5, - 2 , . . .

A nsw er. - 9 .

P ro b le m  174. Find the 1000th term of an arithmetic progression

2, 3, 4, 5, 6, . . .

S o lu tion . If the progression were

1, 2, 3, 4, 5 , . . .

77



39 Arithmetic progressions

the first term would be 1, the second term would be 2, . . . ,  the 1000th 
term would be 1000. In our progression, each term is one unit bigger. 
So the answer is 1001.

P ro b lem  175. Find the 1000th term of the progression

2, 4, 6, 8, . . .

P ro b lem  176. Find the 1000th term of the progression

1, 3, 5, 7 , . . .

P ro b lem  177. The first term of a progression is a , its différence 
is d. Find the 1000th term of the progression. Find its n th  term.

Solution.
1st term a

2nd term a + d
3rd term a + 2d
4th term a + 3 d
5th term a + 4d

1000th term a + 999d

nth  term a + (n -  1 )d
P ro b lem  178. An arithmetic progression with difference d is 

rewritten in the reverse order, from right to left. Do we get an arith­
metic progression? If so, what is its difference?

P ro b lem  179. In an arithmetic progression whose difference is d 
every second term is deleted. Do we get an arithmetic progression? If 
so, what is its difference?

P ro b lem  180. The same question if every third term is deleted.

P ro b lem  181. The first term of an arithmetic progression is 5, the 
third term is 8. Find the second term.

A nsw er. 6.5.

P ro b lem  182. The first term of an arithmetic progression is a , 
the third term is b. Find the second term.

A nsw er, (a + b)/2.
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40 The sum of an arithmetic progression

P ro b le m  183. The first term of an arithmetic progression is a , 
the 4th term is 6. Find the second and the third terms.

P ro b lem  184. Consider the progression

1, 3, 5, 7, . . . .  993, 995, 997, 999.

How many terms does it have?

H in t. The n th  term is equal to 2n - 1. (Another way is to compare 
it with the progression 2, 4, 6, . . . ,  1000.)

40 The sum of an arithmetic progression

P ro b lem  185. Compute the sum

1 +  3 +  5 +  7 +• • •  +  999.

So lu tion . First of all we have to find out how many terms are in 
this sum (see the problem above). The n th  term of this progresson is 
equal to 1 +  (n -  1) • 2 =  2n -  2 +  1 =  2n -  1. It is equal to 999 when 
n = 500. So this progression contains 500 terms. Let us combine them 
into 250 pairs:

(1 +  999) +  (3 +  997) +  • • • + (499 +  501).

The sum of each pair is equal to 1000. Thus, the answer is 250,000.

P ro b le m  186. The first term of a progression containing n  terms 
is a , its last (n th ) term is b. Find the sum of its terms.

So lu tion . Grouping terms into pairs (as in the preceding problem) 
we get n /2  pairs, and the sum of each pair is a +  6. Thus, the answer 
. n(o +  b)
,S 2

P ro b lem  187. There is an error in the solution of the preceding 
problem (however, the answer is valid). Find and correct this error.

S o lu tion . All is O.K. if n  is even. But when n is odd, the middle 
term remains unpaired. To avoid the distinction between odd and even 
numbers of terms, we apply the following trick. Assume tha t the sum 
in question is

5  =  3 +  5 +  7 +  9 +  11.
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40 The sum of an arithmetic progression

Rewrite it in the reverse order:

S =  11 +  9 +  7 +  5 +  3.

Now we add these two equalities:

2S =  3 + 5  +  7 + 9  + 1 1  +
+  11 + 9  + 7  + 5  +  3

and find out that in each column we have two numbers whose sum 
is 14:

3 +  11 =  5 +  9 =  7 +  7 =  9 +  5 =  11 +  3 =  14.

So 25 =  5 • 14 =  70, S  =  =  35.
In the general case we have n  columns with the same sum equal to 

the sum of the first and the last terms, tha t is, a +  b. Therefore,

n(o +  6)
S  2

This argument can be illustrated by a picture. The sum 3 +  5 +  7 +  
9 + 1 1  can be drawn as

Two such pieces form a rectangle 5 x 14:

P ro b le m  188. Prove that the sum of n  first odd numbers is a 
perfect square (1 =  12, 1 +  3 =  22, 1 +  3 +  5 =  32 etc.)

H in t. You may use the preceding problem or the following picture:
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41 Geometric progressions

41 Geometric progressions
In the sequence of numbers

3, 6, 12, 24, . . .

each term is two times bigger than the preceding one. In the sequence

2 2 2
6 ,2 . j .  5 . Я > . . .

each term is three times smaller than the preceding one. Such sequences 
are called geometric progressions.

D efin ition . A geometric progression is a sequence of numbers 
where each term is a product of the preceding one and a fixed num­
ber. This fixed number is called the common ratio (or ratio) of the 
geometric progression.

P ro b le m  189. Find the common ratios of the progressions shown 
above.

A nsw er. 2, 1/3.

P ro b le m  190. Find the third term of the geometric progression

2 , 3 , . . .

A nsw er. 9 /2 .

P ro b le m  191. Find the 1000th term of the geometric progression
3 ,6 ,1 2 ,...

Solu tion .

1st term 3 = 3-2°
2nd term 6 =  3 • 21
3rd term 12 = 3 • 22

1000th term = 3 . 2999

P ro b le m  192. Find the 1000th term of a geometric progression whose 

first term is a and whose common ratio is q.
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41 Geometric progressions

Solu tion .
1st term =  a = a-q°

2nd term =  a - q = a - ql
3rd term = a ■ q2
4th term =  a • q3

n th  term =  a •qn~l

P ro b le m  193. The first term of a geometric progression is 1, the 
third term is 4. Find the second term. Is your answer the only possible 
one?

A nsw er. There are two possibilities: 2 and - 2 .

P ro b le m  194. A bacterium dividing one a minute fills a vessel in 
30 minutes. How much time is necessary for two bacteria to fill the 
same vessel?

Let us look at the sequence

1, 0, 0, 0, . . .

Is it a geometric progression or not? According to our definition it is -  
each term is equal to the preceding one multiplied by zero (and there 
is no requirement for the common ratio to be nonzero). Though this 
sequence looks strange, we do consider it as a  geometric progression. 
(But in some cases we would require the common ratio of a progression 
to be nonzero.)

P ro b le m  195. A geometric progression whose common ratio is 
q Ф 0 is rewritten in the reverse order, from right to left. Do we get a 
geometric progression? If so, what is its common ratio?

A nsw er. 1 jq.

P ro b le m  196. In a geometric progression whose common ratio is 
q every second term is deleted. Do we get a  geometric progression? If 
so, what is its common ratio?

P ro b le m  197. The saune question if every third term is deleted.

P ro b le m  198. The first term of a geometric progression is a and 
the third term is b. Find the second term.
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42 The sum of a geometric progression

S o lu tion . Assume that x is the second term. Then the common 
ratio is equal to x/a  and at the same time to b/x. Therefore, x/a  = 
b/x; multiplying this equality by гиг, we get x2 =  ab. Therefore, if 
ob < 0 the problem has no solutions (such a progression does not exist); 
if об =  0 then x = 0; if об > 0 there are two possibilities: x =  y/ab 
and x =  -y/ab  (see below about square roots).

R em ark . Our solution is not applicable when x =  0 or a =  0. 
But our formula turns out to  be more clever than we may expect. For 
example, if о =  1, b =  0 then our formula gives the correct answer 
x = y/1 • 0 =  0.

P ro b le m  199. The first term of a geometric progression is 1, and 
its fourth term is a > 0. Find the second and the third terms of this 
progression.

H in t. See below about cube roots.

A nsw er, ffli, t f F .

42 The sum of a geometric progression

P ro b le m  200. Compute the sum 1 + 2 + 4 + 8 H -------h 512 + 1024

(each term is twice the preceding one).

So lu tion . Let us add 1 to this sum:

1 + 1 + 2 + 4 + 8 + - - +  1024 =

= 2 + 2 + 4 + 8 4 -------1- 1024 =

=  4 +  4 +  8 H-------К 1024 =

=  8 +  8 +  • • • +  1024 =

= 16 + ••• + 1024 =

= 256 +  256 + 512 + 1024 =

= 512 + 512 + 1024 =

= 1024 +  1024 =

=  2048
So the answer is 2048 -  1 =  2047.
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42 The sum of a geometric progression

A n o th e r so lu tion . Let us denote this sum by 5 . Then 

5  =  1 + 2 +  4 +  84------ К 512 +  1024

and
2S =  2 +  4 + 8 +  16+ - +  1024 +  2048.

The latter sum (compared with the first one) contains an extra term 
2048 but does not contain the term 1. So the difference is

25 -  5  = 2048 -  1.

Therefore, 5  =  2048 -  1 =  2047.

P ro b lem  201. Compute the sums 1 +  т , 1 +  ^
«  «

. i l l  , i i  i
1 + 2 + 4 +  8 ' ■ ■ 1 + 2 + 4 +  +  ÏÔ24-

P ro b lem  202. The first term of a geometric progression is a and 
its common ratio is q. Find the sum of the first n terms of this pro­
gression.

Solu tion . The sum in question is equal to

a + aq + aq2 + -----bag"“ 1 =  a ( l +q + q2 4------ hqn *).

Recalling the factorization

q ’ ' - l  =  ( q - l ) ( q * - ' + q » - *  +  . . . + q  +  l )

we find out tha t
1 +  Ç +  ••• +  çn_1 

so the sum in question is equal to

<?n - l  
9 - 1  ’

qn -  1
° — Г- 9 - 1

A n o th e r so lu tion . Let us denote the sum in question by 5 : 

5  =  a +  oq4------1-aqn~2 +aqn~l .

qS = aq + aq2 + • •• +  oqn-1 +  aqn. 

84

Multiply it by q:



43 Different problems about progressions

A new term aqn appeared and term a disappeared, so

q S - S  
(Я ~ 1)5 

S

aqn -  a

a(.Qn ~ 1)

aЯп ~ 1
я- i  '

P ro b lem  203. The solution of the preceding problem has a gap; 
find it.

Solution. When 9 =  1 the answer given above is absurd; the 
quotient

l n - l  
1 -  1

is undefined. In this case ail terms of the progression are equal and the 
sum is equal to na. So one could say that in a sense

(This is a joke, of course -  but it is also the computation of the deriva­
tive of the function f(x) = xn from the calculus textbooks!)

43 Different problems about progressions
P ro b lem  204. Is it possible tha t numbers 1/2, 1/3, and 1/5 are 

(not necessarily adjacent) terms of the same arithmetic progression?
H int. Yes. Try 1/30 as a difference.

P ro b lem  205. Is it possible that the numbers 2, 3, and 5 are (not 
necessarily adjacent) terms of a geometric progression?

Solution. No, it is impossible. Assume that the common ratio of 
this progression is equal to q . Then

3 = 2 qn, 5 =  3 qm

for some m  and n . So we get
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Therefore,
3m _  5n 
2"» ~  3"

and 3m+n =  2m • 5n . The left-hand side is an odd number, and th« 
right-hand side is an even number if m Ф 0. Hence, m must be equa: 
to 0. But this is also impossible because in this case we would get

5 = 3qm =  3 1  =  3.

So we get a contradiction showing that the requirements 3 =  2qn and 
5 =  3qm are inconsistent. Hence 2, 3, and 5 could not be terms of the 
same progression.

P ro b lem  206. In this argument we assumed that the numbers 
2, 3, and 5 occur in the progression in this order (because we assume 
implicitly tha t m and n  are positive integers). W hat should we do in 
other cases?

P ro b lem  207. Is it possible that two first terms of an arithmetic 
progression are integers, but all succeeding terms are not?

Solu tion . This is impossible; if two adjacent terms are integers, 
then the difference of the progression is an integer, and all the other 
terms are also integers.

P ro b le m  208. Is it possible th a t the first 10 terms of a geometric 
progression are integers, but all succeeding terms are not?

S olu tion . Yes, it is possible:

512, 256, 128, 64, 32, 16, 8, 4, 2, 1, i ,  j ,  . . .
^ Tt

P ro b le m  209. Is it possible tha t the second term of an arithmetic 
progression is less than its first term and also less than its third term?

S olu tion . No, in this case the difference of the progression would 
be positive and negative at the same time.

P ro b lem  210. The same question for a geometric progression.

Solu tion . Yes, for example, in the progression 1, - 1 ,1 .

P ro b lem  211. Is it possible th a t an infinite arithmetic progression 
contains exactly one integer term?
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44 The well-tempered clavier

H in t. Consider the progression with first term  0 and difference y/2 
and use the fact th a t \/2  is an irrational number (see below).

P ro b le m  212. Is it possible th a t an infinite arithmetic progression 
contains exactly two integer terms?

A nsw er. No.

P ro b le m  213. In the sequence

1, 3, 7, 15, 31, . . .

each term  is equal to  2 x (the preceding term) +  1. Find the 100 th  
term of this sequence.

A nsw er. 2100 -  1.

P ro b le m  214. In a  geometric progression each term  is equal to  
tne sum of two preceding terms. W hat can be said about the common 
latio of this progression?

H in t. See below about quadratic equations.

\n s w e r .  There are two possible common ratios:

1 +  у/Ъ  1 — у /Ъ
— -—  and — -— .

2 2

P ro b le m  215. The Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, . . .

defined as follows: The first two terms are equal to 1, and each 
rubsequent term is equal to the sum of the two preceding terms. Find 
cumbers A  and В  such tha t (for all n ), the n th  term of the Fibonacci 
sequence is equal to

44 The well-tempered clavier

A musical sound (a tone) consists of air oscillations (produced by string 
osculations if we have a string instrument such as a violin or a piano).
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44 The well-tempered clavier

The number of oscillations per second is called the frequency of oscil­
lations. For example, the note A (la) of the fourth octave of a piano 
has a frequency of 440 oscillations per second (according to the modern 
standard; the frequency was lower in the past). The higher the tone is. 
the greater is its frequency.

When we hear two tones together, they form an interval (as musi­
cians say). This interval may be consonant (harmonious, nice to hear 
or dissonant (not so nice) -  or something in between. It turns out that 
this depends on the ratio of frequencies of the two tones forming the 
interval. The rule is as follows: A consonant interval appears when 
the frequency ratio is equal (or very close) to the ratio of two small 
integers.

For example, an octave interval appears when the ratio is equal to 
2 =  2 /1 . The notes forming an octave interval have the same name. 
For example, all notes with frequencies 440 , 880, 1760, and so on -  as 
well as notes with frequencies 220, 110, and so on -  share the name 
A (la), but belong to “different octaves” , as musicians say. The octave 
interval opens the “Campanella” (the final part of the second violin 
concerto by Paganini; both tones are F-sharp).

A fifth is an interval whose frequencies ratio is equal to 3/2 (or very 
close to 3/2; see below). The adjacent strings on a violin form such an 
interval (G-D, D-A, or A-E). The final part of the Brahms concerto 
for violin and cello (A minor) starts with a fifth (A-E) played by the 
cello.

The interval with frequency ratio 4/3 is called a fourth, the interval 
with ratio 5/4 is called a major third, and the interval with ratio 6/5 
is called a minor third.

P ro b le m  216. In a three-tone melody the first two tones form a 
fifth (the second tone is lower), and the next two tones form a fourth 
(the last tone is lower). W hat is the interval between the first and the 
third tones?

3 4 2
Solu tion . -  X -  =  - ,  so we get an octave.

\J X

P ro b le m  217. A minor sixth complements a major third to form
an octave; a major sixth complements a minor third to form an octave. 
W hat are the frequency ratios for minor and major sixths?
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44 The well-tempered clavier

The same melody can be played in different keys; transposing it, 
we change the key. from  the mathematical point of view transposition 
means th a t all frequencies are multiplied by a fixed number. So the 
frequency ratios remain unchanged, and consonant intervals remain 
consonant. You can observe this when you try  your ЗЗ3 record using a 
45 rpm player. (The side effect is that music becomes not only higher 
in tone but also faster.)

P ro b le m  218. How are the frequencies changed in this case?

Now we shall explain the connection between the well-tempered 
clavier and geometric progressions. It turns out tha t the following 
statement is true:

I f  the clavier (piano, harpsichord) is well tempered, that 
is, any melody can be transposed to start from any given 
tone, then the frequencies of the tones form a geometric 
progression.

P ro b le m  219. Prove this statement.

S o lu tion . Consider the chromatic scale, tha t is, the sequence of 
tones starting from a certain tone and going in increasing order (with­
out gaps). Let’s transpose it; we still get a chromatic scale. (If this 
new melody did not use some specific tone, then adding this tone would 
give us a  melody tha t could not be transposed back.) If the initial tone 
of the transposed chromatic scale and the original scale are neighbors, 
then each tone is mapped to its neighbor tone after the transposition. 
In other words, we get the frequency of a neighbor tone when multi­
plying the frequency of the original tone by some constant. This is the 
definition of a geometric progression.

mow let us denote the frequency of tone A by a , and the common 
ratio of the tone progression by q. Then the chromatic scale starting 
with A has frequencies

a, aq, aq2, aqz, . . .

This scale must include the A tone of the next octave, whose frequency 
л  2a. So 2a =  a x qn , when n  is the number of tones per octave in 
the chromatic scale. If you have access to a piano (or to  a synthesizer,
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44 The well-tempered clavier

if you cannot afford a piano or prefer “pop music”), you can easily find 
that n =  12 (do not forget to count black keys). Therefore q12 = 2 
and q =  x\/2 (see the section below about roots).

Now we can understand the inherent difficulty in tuning a piano: 
the fifth (and other intervals, too) are not really true intervals. Indeed, 
between the tones A and E there are 7 steps:

A AU = Bb В C C# = Db D
a aq aq2 aq3 aq4 aq5

D# = Eb E 
aq6 aq7

3
and to get a true fifth we need q7 =  - .  But the requirements q12 =  2

3
and Q1 — 2  are ^consistent; if both are fulfilled then

2, = ю , =(«,),г= (!)12
which is false. Using a pocket calculator we may find that when q12 =  2 
we get q7 =  1.498307. . . ,  which is close but not equal to  1.5. For other 
intervals the differences are even bigger:

Interval should be is about

1.000000
1.059463
1.122462

minor third 1.2 1.189207
major third 1.25 1.259921

fourth 1.333... 1.334839
1.414213

fifth 1.5 1.498307
minor sixth 1.6 1.587401
major sixth 1.666... 1.681792

1.781797
1.887748

octave 2.0 2.000000

In this table, the right column is a geometric progression accurate to 
6 digits corresponding to  a well-tempered clavier; the middle column 
shows the “true” intervals, which are ratios of small integers.

P ro b lem  220. We assumed as a given fact that an octave contains 
12 tones and found that in this case the well-tempered clavier cannot
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45 The sum of an infinite geometric progression

provide true fifths. W hat happens if we allow another number of tones 
in an octave? Is it possible to get true fifths or not?

Let us return to the history of music. In ancient times (before the 
eighteenth century), people tuned claviers (harpsichords at that time) 
trying to  make at least some intervals harmonic (that is, corresponding 
to ratios of small integers). So the melodies sound nice in one key but 
become horrible when transposed into another key. Therefore some 
keys were avoided. A man named Andreas Werkmeister decided to  go 
the other way and to make all intervals (that is, frequency ratios) the 
same. In this case, as we have seen, all intervals (except the octaves) 
are not exact but are close to the exact ones for all keys. It turns 
out that this is an acceptable solution. The great Bach honored this 
invention by writing his Well-Tempered Clavier. It contains two parts. 
Each part contains 24 preludes and fugues -  one for each minor and 
major key.

P ro b lem  221. Find a recording of Bach’s Well-Tempered Clavier 
and enjoy it.

45 The sum of an infinite 
geometric progression

One of the famous “Paradoxes of Zeno” (Zeno was an ancient Greek 
philosopher) can be explained as follows. Assume that Achilles, who 
runs ten times faster than the turtle, starts to run after it. (The turtle 
runs away at the same time.) When Achilles comes to the place where 
the turtle was, it is not there but has moved on a distance equal to one 
tenth of the initial distance (between Achilles and the turtle). Achilles 
runs to that point -  but at that time the turtle is again not there but 
has moved on a distance of one hundredth the initial distance, etc. This 
process has infinitely many stages; therefore Achilles will never meet 
the turtle. O.K?

We included this story in this section because the distances covered 
by Achilles form a geometric progression

1 1  J _  J _
’ 10’ 100’ 1000’

whose common ratio is equal to 1/10 (we assume that a t the beginning 
the distance between Achilles and the turtle was equal to 1 ). So the
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45 The sum of an infinite geometric progression

total distance covered by Achilles is equal to the “sum of the infinite 
series” i l l

+  10 +  100 +  1000 +  ‘ ‘ '
The pedantic view is tha t this infinite series has no sum (unless it 

is defined by a special definition) because when adding the numbers of 
an infinite series we never stop. And, of course, this is true. However, 
we shall not discuss this definition. Instead, we shall compute this 
undefined sum in different ways.

T h e  firs t m e th o d  is to  denote this sum by S  :

Then
5  1 +  10 +  100 +  1000 +

I W - l O  + l + i  + ï k  + . - . - l O  + S,

so
95 = 10 , S =  J .

T h e  second  m e th o d  is to add terms one by one:

1 + _1_
10

, + p

1 +  ïô  +  îô ô  
1 1

+  100 +  1000

1.1

1.11

1.111

After we add all terms, we get a periodic fraction 1.111... equal 
to l |  (because 1/9 =  0 .111 ...).

T h e  th ird  m e th o d  is to  apply the formula for the sum of the 
geometric progression:

1 +  q + q2 +  q3 +  • • • +  9n-1 =  •

In our case q =  1/10 and n is infinitely big (so to speak). Then qn is 
infinitely small (the bigger n  is, the smaller (1/10)" is). Discarding it, 
we get the formula for the sum of an infinite geometric progression:

l + q + q2 + q3 + - -  = Y ^
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45 The sum of an infinite geometric progression

(we have changed the signs of the numerator and the denominator).

Recalling that q =  1/10, we get the answer —  =  — .
u.y У

T h e  fo u rth  m e th o d . Let us return to Achilles and the turtle. 
Our common sense says that Achilles will meet the turtle after some 
distance 5 . During the race the turtle’s speed is ten times less than 
tha t of Archilles, so the turtle covers the distance 5/10. The initial 
distance (as we assume) was 1, so we get the equation

Therefore, (9/10)5 =  1 and 5  =  10/9.

Imagine now that Achilles is running ten times more slowly than 
the turtle. When he comes to the place where the turtle was, it is a t the 
distance ten times further than the initial one. When Achilles comes to 
tha t place, the turtle is far away -  at the distance tha t is one hundred 
times further than the initial one, etc. So we come to the sum

1 +  10 +  100 +  • • •

Of course, Achilles will never meet the turtle. But nevertheless we can 
substitute 10 for q in the formula

l + g  + 92 + <73 + - -  = .
1 - q

and get an (absurd) answer

1 + 10 + 100 + 1000 +  ••• =  — L _  _  - I .
1 - 1 0  9

P ro b lem  222. Is it possible to give a reasonable interpretation 
of the (absurd) statement “Achilles will meet the turtle after running 
-1 /9  meters”?

H in t. Yes, it is.
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46 Equations

When we write, for instance, the equality

(e + 6)  ̂ =  + 2ab + 6 ,̂

it has the following meaning: For any numbers a and 6, the left-hand 
side and the right-hand side are equal. Such equalities are called iden­
tities. An identity may be proved (if we are lucky enough to transform 
the left-hand side to be equal to the right-hand side using algebraic 
rules). An identity may be refuted (if we managed to find values of 
variables such that the left-hand side is not equal to the right-hand 
side).

An equation also consists of a left-hand side and right-hand side 
connected by the equality sign, but the goal is different: it must be 
solved. To solve an equation means to find values of the variable(s) for 
which the left-hand side is equal to the right-hand side.

For example, the equation

5x + 3 =  2x +  7

may be solved as follows: Subtract 2x + 3 from both sides; you get the 
equivalent equation

3x =  4

(the equivalence means that if one of the equations is true for some x 
then the other one is also true for this x). Now dividing both sides by 
3 we get

4
X ~ 3 '

So we say: “the equation 5x +  3 =  2x + 7 has the unique solution 
x =  4 /3 ” .

R em ark . The equation

X "b 1
has no solutions. (Proof: i f ----- - =  1 then x +  1 =  x + 2, which is

x 2
impossible.) However, mathematicians do not say that this equation is 
unsolvable. On the contrary, they say that the equation is solved after 
they proved that it has no solutions. So “to solve an equation” means 
to find all solutions or to prove that there are no solutions.
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48 Quadratic equations

47 A short glossary
unknowns letters used in an equation

to solve to  find all values of unknowns such that the
an equation left-hand side is equal to  the right-hand side; 

to find all solutions

a solution 
of an 
equation

a set of values for the unknown for which the 
left-hand side is equal to the right-hand side 
(sometimes solutions are called roots when 
speaking about an equation with only one 
unknown)

equivalent equations having the same solutions; equa- 
equations tions that are true or false simultaneously, 

for the same values of the unknowns

48 Quadratic equations
By a quadratic equation, we mean an equation of the form

ox2 +  bx + c = 0,

where a, b, c are some fixed numbers and x is an unknown.

P ro b lem  223. Solve the quadratic equation x2 -  3x +  2 =  0.

Solution. Factor the left-hand side: x2 -  3x +  2 =  (x -  l)(x  -  2). 
Therefore, the equation may be rewritten as (x -  l)(x  -  2) = 0 .  This 
equality is true in two cases: either x -  1 =  0 (so x  =  l ) o r x - 2  =  0 
(so x =  2). Thus, this equation has two roots, x =  1 and x =  2.

P ro b lem  224. Solve the equations:

( a ) x 2 - 4  =  0; ( b ) x 2 +  2 =  0;
(c) x2 -  2x +  1 =  0; (d) x2 -  2x +  1 =  9;
(e) x2 -  2x -  8 — 0; (f) x2 -  2x -  3 =  0;

(g) x2 -  5x +  6 =  0; (h) x2 -  x -  2 =  0.
If in the equation

ox2 + bx + c =  0
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49 The case p =  0. Square roots

the coefficient a is equal to zero then the equation takes the form

bx + c =  0

and has the unique solution

c
x = ~b-

P ro b le m  225. Strictly speaking, the last sentence is wrong; when 
6 =  0 the quotient c/b in undefined. How are we to correct this error?

If in the equation
ax2 +  bx +  c =  0

the coefficient a is nonzero then we may divide by a and get an equiv­
alent equation

i b  c
X *  + - X  + -  =  0. a a

So if we are able to solve a reduced quadratic equation (where x 2 has a 
coefficient 1) we can solve any quadratic equation. Usually the reduced 
quadratic equation is written as

x2 +  px +  q =  0.

49 The case p  =  0. Square roots
Let us s ta rt with the equation x2 +  q = 0. Three cases are possible:

(a) q — 0. The equation x2 =  0 has a  unique solution x =  0.

(b) q >  0. The equation has no solutions because the nonnegative 
number x2 added to a positive number q cannot be equal to 0.

(c) q < 0. The equation may be rewritten as x2 = —q and we have 
to look for numbers whose square is a (positive) number —q.

Fact. For any positive number c there is a positive number whose 
square is c. It is called the square root of c; its notation is -Je.

We met with \/2 in factoring x2 -  2 =  (x -  \/2)(x +  \/2) • Now we 
use y/c for a similar purpose.
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49 The case p — 0. Square roots

H ow  to  solve th e  e q u a tio n  x2 =  c:

X2 -  c =  0 ; 

х2 - ( л /с ) 2 =  0;

(x -  \/c)(x +  y/c) =  0 ;

the last equation has two solutions, x =  %/c and x =  -y /c  (and no 
other solutions).

The reader may ask now, why are we considering this? When x = 
у/ c then x2 =  c by definition (and when x =  -y/c , too). Yes, this is 
true. But we have proved also that there is no other solution (because 
if x Ф ±y/c then both factors are nonzero).

Now let us return to the fact claimed above, the existence of a square 
root. Assume that we start with x =  0 and then x increases gradually. 
Its square x2 also increases (greater values of x correspond to greater 
values of x2). At the beginning, x2 =  0 and x2 is less than c. When 
x is very big, x2 is even bigger and therefore x2 > c for x big enough. 
So x2 was smaller than c and becomes greater than c. Therefore, it 
must cross this boundary sometime -  for some x the value of x2 must 
be equal to c.

In the last sentence the word “therefore” stands for several chapters 
of a good calculus textbook, where the existence of such an x is proved, 
based on considerations of continuity.

These days, when square roots can be found on almost any calcu­
lator, it is almost impossible to imagine the shock caused by square 
roots for ancient Greeks. They found that the square root of 2 cannot 
be written as a quotient of two integers -  and they did not know any
other numbers, so it was a crash of their foundations.

/-  m
P ro b le m  226. Prove tha t v 2  ф — for any integer m and n.

n
In other words, y/ï. is irrational (rational numbers are fractions with 
integers as numerator and denominator).

S o lu tion . Assume that y/2 =  — . Three cases are possible:
n

(a) both m  and n  are odd;

(b) m  is even and n  is odd;
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49 The case p =  0. Square roots

(c) m  is odd and n  is even.

(The fourth case “m  and n  are even” may be ignored, because we 
could divide m  and n  by 2 several times until a t least one of them 
would be odd and we would get one of the cases (a)-(c).)

Let us show tha t cases (a)-(c) are all impossible. Recall th a t any 
even number can be represented as 2к for some integer n  and any odd 
number can be represented as 2k +  1 for some integer k. So let us go
through all three cases.

_  2k +  1
(a) Assume th a t v 2  =  ^  ; then

/2 fc + _ l\2 
V 21 +  1 /

(2k + 1)2 n
(21 +  l ) 2 “  ’

(2k +  l ) 2 =  2 • (21 +  l ) 2,

41k2 +  4k +  1 =  2 • (21 +  l ) 2.

Contradiction: (even number) +  1 =  (even number).
_ 2k

(b) Assume tha t v2  =  —— -  ; then

U r n ) * - *
(21k)2 =  2 • (21 +  l ) 2,

4lfc2 =  2 • (4f2 +  4i +  1),

21k2 =  4/2 +  41 +  1.

Contradiction: (even number) =  (even number) +  1.

(c) Asssume tha t y/2 = ——— ; then

(2k +  l)2 =  2 • (21)2,

41k2 +  41k + 1  =  2 • (21)2.

Contradiction: (even number) +  1 =  (even number).

So all three cases are impossible.
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50 Rules for square roots

P ro b le m  227. Prove th a t y/Z is irrational.

H in t. Any integer has one of the forms Zk, Zk +  1, Zk +  2.

When we claim th a t we have solved the equation x2 -  2 =  0 and the 
answer is “x =  y/2 or x =  —v/2” , we are in fact cheating. To tell the 
tru th , we have not solved this equation but confessed our inability to 
solve it; y/2 means nothing except “the positive solution of the equation 
x2 -  2 =  0 ” .

50 Rules for square roots

P ro b le m  228. Prove th a t (for a,b > 0)

y/ab =  yfa • y/b.

S o lu tio n . To show th a t yfa • y/b is the square root of ab we 
must (according to  the definition of square roots) prove th a t it is a  
nonnegative number whose square is ab:

( у/ a  • y/b) * =  ( y/aj * • ( f b j  = a - b.

P ro b le m  229. Prove th a t for a >  0, b > 0

/ a _  y/ä
ь -  7 b '

The following question is a traditional trap  used by examiners to 
catch innocent pupils.

P ro b le m  230. Is the equality V a2 =  a true for all a?

S o lu tio n . No. When a is negative, Vo2 is equal to —a. The 
correct statem ent is Vo2 =  |a | where

P ro b le m  231. Prove th a t

(a)

(b )

2 + y/Z 
1

=  2 -  y/Z \ 

y/5 + y/7
y/7-у /Ъ

if a  >  0 
if a < 0

P ro b le m  232. Which is bigger: \A001 -  \/1000, or 1/10? 

P ro b le m  233. Simplify the expression y/Z +  2%/2
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51 The equation x2 +  px +  q — 0

Solution. 3+2V 2 =  l + 2 + 2y/2 =  1 +  (-v/2)2+2V 5 =  (1 +  л/2)2.
50 we get the answer, 1 +  л/2.

P ro b lem  234. Dan simplified an expression as follows:

\ j z -2 y /2  = y /\ + 2 -2 y /2  =

= y /l + (л/2)2 -  2 V 2  =  ^ ( Г -  л/2)2 =  1 -  y/2.

Do you approve of his simplification?
Solu tion . The correct answer is л/2 - 1  because 1 -  л/2 <  0.

51 The equation x 3 -f px +  q =  0 

P ro b lem  235. Solve the equation

x2 +  2x -  6 =  0 .

Solution. The equation x2 +  2x — 6 =  0 may be rewritten as 
follows:

(x2 +  2x +  1) -  7 =  0;
(x +  l)2 -  7 =  0;

(x +  1)2 =  7; 

x +  1 =  л/7 or x +  1 =  -л /7; 

x =  -1  +  yjl or x =  - 1  -  л/7.

The same method can be applied to other equations.

P ro b lem  236. Solve the equation

x2 +  2x — 8 =  0.

P ro b lem  237. Solve the equation

x2 +  3x + 1  =  0.

Solu tion . Transform the left-hand side:

х’ + 3 * + 1 = х ч Ц * + ( ! ) ’ - ( | ) ’ + 1 =

■ И ) Ч +1 - И ) Ч
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51 The equation x2 +  px +  q =  0

Now the equation can be written as follows: 

/  3 \2  5
{X + 2) — 4 ’
3 /5  

1 +  2 =  V 4
or 3 /5  

I + 2 = " V 4 ’
3 /5 

I  =  - 2  +  V 4
or

3 /5 
X ~ ~2 ~ у 4'

R em ark . The answer to the preceding problem is usually written

P ro b lem  238. Solve the equation x2 -  2x + 2 =  0.
Solution, x2 -  2x +  2 =  (x2 -  2x +  1) +  1 =  (x -  l ) 2 +  1. The 

equation (x -  l ) 2 +  1 =  0 has no roots because its left-hand side is 
never less than 1 (a square is always nonnegative).

The method shown above is called “completing the square” . In the 
general case it looks as follows:

x2 +  px \  q

H l - © * ) - © ’ * «

Now three cases are possible:

•  If ——  g > 0 then two solutions exist:
4

1 + г _ ± . / г П 7
2 V 4 4

Thus,

-  q =  0 then there is one solution:

x — - P
2'

0

0

P_
4 Я
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52 Vieta's theorem

•  If —  q < 0 then there are no solutions.
4

Often all three cases are included in a single formula:

* „ = - § ± ^

and people say tha t when —— q =  0 the solutions x\ and Xi coincide
4 2

(because the square root of 0 is 0) and when ——  q <  0 this formula
4

gives no solutions, because the square root of a negative number is un­
defined. (To tell you the whole truth, in the latter case mathematicians 
agree that the square root of a negative number exists but is imaginary 
and there are two so-called complex roots. But this is another topic.)

We see that the sign of D =  — — q plays a crucial role (it determines
4

how many solutions the equation has).

52 Vieta’s theorem
T heorem . If a  quadratic equation x2 +  px +  q has two (different) 

roots a  and ß  then

a + ß  =  - p  

a ß  =  q.

C oro llary . If a  quadratic equation x2 +  px +  q has two different 
roots a  and ß  then

x2 +  px +  q =  (x -  or)(x -  ß ) .

This is another form of the same assertion because

(x -  a )(x  -  ß) =  x2 -  (a  +  ß)x +  aß

and two polynomials are equal if they have equal coefficients. 

F ir s t  proof. According to the formula for roots we have

* = - § - V S ,  0 = - ?  + V 3
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52 Vieta's theorem

where D = —t—  q. (Or vice versa:
4

a  = - |  + v/D, ß = - Z - y / D ,  

but this makes no difference.) Then

a + / ? = _ ! _ v / D _ ! + v /0 = _p

and

T hat’s what we want.

Second proof. Let us try to prove Vieta’s theorem in the form 
stated in the corollary. We know that if a polynomial P(x) has different 
roots a  and ß  then it can be factored:

P(x) = (® -  or)(® -  0)R(x)

where R(x) is some polynomial. In our case (when P has degree 2) the 
polynomial R must be a constant (otherwise the degree of the right- 
hand side would be too big), and this constant is equal to 1, because 
the x 2-coefficients in x2 + px + q and (x -  a)(x -  ß) are the same. 
Therefore

x2 + px + q = (x -  a)(x -  ß).
The theorem is proved.

P rob lem  239. Can you generalize Vieta’s theorem to the case of 
a quadratic equation having only one root? Are both proofs still valid 
for this case?

P rob lem  240. (Vieta’s theorem for a cubic equation) Assume that 
a cubic equation ®3 + px2 + qx + r = 0 has three different roots a , /3,7. 
Prove that

a  + ß + 7 = -p  
aß + ay + ß~r = q 

aßy = - r
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52 Vieta's theorem

P ro b le m  241. The equation x2 +  px + q =  0 has roots x\ and 
®2• Find x2 +  x \  (as an expression containing p and q).

S olu tion . X2 + x | = Xj +2xiX2 + X2 -2xiX2 = (Xi+X2 ) 2  — 2X1X2 
— P2 ~ 29-

P ro b le m  242. The equation x2 +  px +  q =  0 has roots x i and 
X2 • Find (xi -  X2 ) 2 (as an expression containing p and q).

S olu tion . (X1-X2)2 =  X2 -2xiX 2 +  X2 =  X2 +  2xiX2+X2~ 4XjX2 
=  ( x j  +  X2 ) 2 -  4 x jX 2  =  p2 -  4q.

A n o th e r  so lu tion , x i -  X2 is the difference between the roots; 
looking at the formula for the roots, we see tha t it is equal to 2y/D, so 
( x i  -  X2 ) 2 =  4 D  =  4 ( ^ -  - q )  =  p 2 -  A q .

P ro b le m  243. A cubic equation x3 +  px2 +  qx +  r  =  0 has three 
different roots х ^ х г .х з .  Find

(xi -  x 2 ) 2 ( x 2 -  x3)2(xi -  X 3 )2

as sm expression containing p,q,r. This polynomial in p, q, r is called 
the discriminant of the cubic equation. As in the case of a quadratic 
equation (see page 107), it is small when two roots are close to each 
other.

P ro b le m  244. The equation x2 +px + q =  0 has roots xj ,X2; the 
equation y2 +  ry +  $ =  0 has roots y i,y2- Find

(yi -  xi)(îfc -  xt)(yi -  х2)(у2 -  x2)
as a polynomial of p, q,r,$. (This polynomial is called the resultant of 
two quadratic polynomials; it is equal to zero if these two polynomials 
have a common root.)

Vieta’s theorem allows us to construct a quadratic equation with 
given roots. More precisely, we should not say “Vieta’s theorem” but 
“the converse to Vieta’s theorem” ; here it is:

T h eo rem . If a  and ß  are any numbers, p =  —(a  +  ß), q = aß, 
then the equation x2 +  px +  q = 0 has roots a  amd ß.

The proof is trivial: The equation (x -  a)(x -  ß) =  0 evidently has 
roots a  and ß. Multiplying the terms in parentheses we see th a t it is 
the equation x2 +  px +  q =  0.
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52 Vieta's theorem

P ro b le m  245. Find a quadratic equation with integer coefficients 
having 4 -  \/7  as one of the roots.

H in t. The second root is 4 +  y / l .

P ro b lem  246. The integers p, q are coefficients of the quadratic 
equation x2 +  px +  q =  0, which has two roots. Prove that

(a) the sum of squares of its roots is an integer;

(b) the sum of cubes of its roots is an integer;

(c) the sum of n th  powers of its roots is an integer (for any natural 
number n )

P ro b lem  247. (a) Prove that the square of any number of the 
form a +  b y / 2  (where a, b  are integers) also has this form (that is, is 
equal to к  + l y / 2  for some integer k , l ) .

(b) Prove the saune for (a +  b y / 2 ) n  for м у  integer n >  1.
(c) The number (a +  b y /2)” is equal to к  + l y / 2  (here a, b, к ,  I are 

integers). W hat can be said about (a — b y /2)n ?
(d) Prove that there are infinitely many integers a, b  such that 

a2 -  262 =  1.
S o lu tion  o f (d). Let us s tart from the solution 32 -  2 • 22 =  1, 

and rewrite this equality as (3 +  2\/2)(3 -  2 y / 2 )  = 1. Consider the 
n th  powers of both sides: (3 +  2%/2)n(3 -  2 y / 2 ) n  =  1. The number 
(3 +  2 y / 2 ) n  is equal to к  +  l y / 2  for some integers k ,  I . Thus (3 — 2 y / 2 ) n  

is equal to к  -  l y / 2  amd we get the equality

{ k  +  l y / 2 ) ( k  -  l y / 2 )  =  к 2 -  2 l 2 =  1 .

Therefore, к , I satisfy the equation.
For example, (3 +  2 y / 2 )2 = 9 +  8 +  12\/2 =  17 +  12>/2. So 17,12 

must satisfy the equation. Is this true? 172 — 2 • 122 =  289 -  2 • 144 =  
289 -  288 =  1. Our theory works!

P ro b lem  248. Prove that the equation x2 + px + q =  0 has two 
solutions having different signs if and only if q < 0

Solution. If the roots have opposite signs, then (recall Vieta’s 
theorem) the coefficient q , being equal to their product, is negative. 
In the opposite direction, if the product of two roots is negative, they
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53 Factoring ox2 +  bx +  с

have opposite sign. (But we must be sure tha t the roots do exist; to 
check this, we look at D =  \  -  q; if q < 0, then D >  0.)

Another explanation can be given as follows. Assume th a t q <  0. 
Then the value of the expression x2 +  px +  q is negative when x  =  0. 
When x  increases and becomes very big, x2 + p x  +  q becomes positive 
(x 2 “outweighs” px + q). So x2 +px + q must cross the zero boundary 
somewhere in between -  and the equation has a positive root. A similar 
argument shows th a t it also has a negative root.

53 Factoring ax2 +  bx +  c
P ro b le m  249. Factor 2x2 +  5x -  3.

S o lu tion . Taking the factor 2 out of the parentheses, we get

2x2 +  5x -  3 =  2^x2 +  -  I ) •

, 5  3
Solving the equation xz +  - x  -  -  =  0 we get

5 ^ /25 3 5 /49 5 7
* 1.2 -  4 ± V l 6  + 2 4 *  V 16 4 * 4

so x i =  —3, X2 =  ^  • According to  the corollary of Vieta’s theorem, 
we get

+ §* ■ f = ( I  ■ M )) (* ■ I ) = ( l + 3 )  (x ■ 5)
and

2x2 +  5x -  3 =  (x +  3)(2x -  1).

P ro b le m  250. Factor 2x2 +  2x +  ^ .

P ro b le m  251. Factor 2a2 +  5afc -  3b2 .

S o lu tion .

2a2 +  5ab -  Zb2 = b2( 2 ^  +  5 -  -  з).

Denote т  by x  and use the factorization 2x2+ 5 x —3 =  ( x + 3 ) (2 x - l ) .  0
Then you can continue the equality:

••• =  62 ( | + з ) ( 2- - 1)  = ( °  +  3 6 )(2 a -6 ) .
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54 A formula for ax2 + bx + c = 0 (where а Ф 0)

54 A formula for a x 2 + bx +  c =  0 (where a ^ O )
Dividing by a , we get

o b c 
x2 + - X  + -  = 0 a a

and we can apply the formula for the equation

X2 + px + q =  0
b c

with p = - ,  q = - .  We get a a
b , I f  b \ 2 ~c b lb2 -  4ac

- 4s  = - s ± v ~ и ? - *
6 \/62 — 4ac _  —6 ± \/62 — 4ac

2a 2a 2a
The expression D = b2-  4ac is called the discriminant of the equation 

ax2 + 6x + c = 0. If it is positive, the equation has two roots. If D = 0 
the equation has one root. If Z? < 0 the equation has no roots. 

P rob lem  252. We replaced

lb2 -  4ac _  \/62 -  4ac
V 4a2 ~  v'iä2

by _____
y/b2 — 4ac 

2a
but as we mentioned above, Via2 is equal not to 2a but to |2a |. Why 
does it not matter here?

P rob lem  253. Assume that the equation ax2 + bx + c = 0 has 
roots x\ and X2 • What are the roots of the equation cx2 + bx + a = 0? 

Solution. If ax2 + bx + c = 0 then (divide by x2)

b e  1 ^ 1
a +  -  + =  0, that is, с -Г-Л + 6 - ( - W a  = 0.

I  X ' X' \ x /

So — and — will be the roots of the equation cx2 + bx + a = 0.
Xi x2
R em ark. We assumed implicitly that X\ Ф 0, x2 ф 0. If one of 

the roots xi and x2 is equal to 0 then (according to Vieta’s theorem) 
c is equal to 0 and the equation cx2 + bx + a =  0 has at most one root.
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56 A quadratic equation becomes linear

55 One more formula concerning 
quadratic equations

The formula
—b ±  V62 — 4oc

1 ,л  ------------2a---------
is well known to millions of school pupils all over the world. B ut there 
is another formula th a t has an equal right to be studied but is less 
known. Here it is:

________ 2c
1,2 -b  ± Vb? -  4oc 

Let us prove it. If a; is a  root of the equation ax2 + bx + c = 0 then 
y =  l / x  is a  root of the equation cy2 +  by +  a =  0, therefore

and
*1,2 =

У 1,2 =

1

—b ± y/V* — 4ac
2c

2c
yi,2 —b ±  %/fr2 — 4oc 

P ro b le m  254. Check by a direct calculation th a t

—b ±  у/IP — 4oc 
2o

2c
-b  qp v/^2 -  4ac

(we used ?  and ±  having in mind tha t plus in the left-hand side 
corresponds to the minus in the right-hand side and vice versa).

56 A quadratic equation becomes linear
Look a t the quadratic equation ox3 — x  +  1 =  0. According to our 
general rule, it has two roots if and only if its discriminant D = 1 — 4a 
is positive, th a t is, when a < 1 /4 .

P ro b le m  255. Is this true?

S o lu tion . No; when a =  0 the equation is not a  quadratic one, it 
becomes — x  + 1  =  0 and has only one root x  =  1.

A pedant will describe what happens saying “our general rule is not 
applicable, because the equation is not quadratic” . And he is right. But 
how can it be? We had an equation with two roots and were changing 
the coefficient. Suddenly one root disappeared, when a became zero. 
W hat happened to  it?
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56 A quadratic equation becomes linear

l b  answer this question, let us look at the second formula for the 
roots of a quadratic equation:

11,2 1 ± v/1 -  4o'
If e is close to zero then y/1 — 4a «  1, so

2 _  2 _  
”  1 + VI -  4a W 1 + 1 ”

1 -  y/l -  4a number close to zero ’ 
that is, i2  is very big. So while a tends to zero, the root Xi tends to 1 
and i2  goes to infinity (and returns from the other side of infinity).

One can see in detail how this happens looking at the following 
picture:

This picture shows points (x,a) such that ax2 -  x + 1 =  0. In other 
words, it shows the graph of the function a = (x -  l) /x 2. To find the 
solutions of the equation ex2 -  x +1 =  0 for a given a on the picture, 
we must intersect a horizontal straight line having height a with our 
graph. Assume that this horizontal line is moving downwards. At the 
beginning (when a > 0.25) it has no intersections (and the equation 
has no solutions). When e =  0.25 there is one intersection point, which 
splits immediately into two points when a becomes less than 0.25. One 
of the points is moving left, the other is moving right. The point moving 
right goes to plus infinity when a tends to zero, then disappears (when 
o =  0) and then returns from minus infinity. Then (when a becomes 
more and more negative), both roots go to zero from opposite sides.
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57 The graph of the quadratic polynomial

P ro b le m  256. W hat happens with the roots of equations 
(a) X 2 -  X  -  a  =  0; (b) x 2 -  a x  + 1 =  0

as a  changes?

57 The graph of the quadratic polynomial

The graph of y = x2 looks as follows:

Using this graph we may draw graphs of other polynomials of degree 
2. The graph of y =  ax2 (where a is a constant) can be obtained from 
y =  i 2 by stretching (when a > 1 ) or shrinking (when 0 < a < 1 ) in 
a vertical direction:

When a  is negative the graph is turned upside down:
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57 The graph of the quadratic polynomial

The graph y =  x2 + c  can be obtained from the graph of y =  x 2 
by a vertical translation by c (up if c >  0, down if c <  0).

In the same way, y = ax2 +  c can be obtained from y  =  ax2.
I t is more difficult to  understand w hat corresponds to  a horizontal 

translation of the graph. Let us consider an example and compare the 
graphs y = j x 2 and y =  \ ( x  +  l ) 2 . Let us s ta rt with one specific 
value of x ; assume th a t x  =  - 3 .  For this x the expression \{x  +  l ) 2 
is equal to  —2)2 , th a t is, has the same value as £x2 when x  =  —2.
In generad, the value of j ( x  +  l ) 2 for any value x  coincides with the 
value of 5X2 for some other value x  (greater by 1).

I l l



57 The graph of the quadratic polynomial

In terms of our graph this means th a t any point of the graph y = 
5(1 + l )2 , when moved 1 unit to  the right, becomes a point of the 
graph y = \ x 2. Therefore, we get the graph y =  \ x 2 by translating 
the graph y =  | ( x  +  l ) 2 one unit to the right, and vice versa, we get 
the graph y = \(x  + l ) 2 by translating the graph y = 5X2 one unit to 
the left.

The general rule is as follows: a graph y =  a(x  + m )2 can be 
obtained from the graph of y — ax2 by an m -unit shift to the left 
(when m  > 0; when m  <  0 we use a right shift).

Now we can get any graphs of the form 

y = a(x +  m )2 +  n

from the graph of y =  x2 in three stages:

(a) Stretch it vertically a times and you get y =  ax2 .

(b) Move it m  units to the left and you get y =  a(x + m)2.
(c) Move it n  units up and you get y =  o(x +  m )2 +  n .

P ro b le m  257. Find the coordinates of the top point (or the bottom 
point -  it depends on the sign of a )  of a  graph у =  a(x  +  m )2 +  n .

A nsw er. Its coordinates are ( - m , n ) .

P ro b le m  258. Is the ordering of operations (a), (b), and (c) 
important? Do we get the same graph applying, for example, (c), then 
(b), and then (a) to the graph у =  x2?
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57 The graph of the quadratic polynomial

A nsw er. The ordering of operations is important. We get x2 + n 
after (c), then (x +  m)2 +  n  after (b) and finally a(x +  m )2 +  an  after
(a) . So we get an instead of n .

P ro b le m  259. There are six possible orderings of operations (a),
(b ) , and (c). Do we get six différent graphs or do some of the graphs 
coincide?

Now we are able to draw the graph of any quadratic polynomial, 
because any quadratic polynomial may be converted to  the form 
a(x +  m )2 +  n  by completing the square (as we did for the formula 
for the roots):

P ro b le m  260. How can you determine the signs of a, ft, c by look­
ing a t the graph of y =  ax2 +  bx + c?

A nsw er. If water can be kept in this graph then a > 0, otherwise 
a < 0. The sign of b/a is determined by the x-coordinate of the vertex 
of the graph (the left half of the plane corresponds to  positive b/a). 
The sign of c can be found by looking at the intersection of the graph 
and у -axis (because ax2 +  bx + c =  c when x =  0).

R em ark . Another rule for finding the sign of 6: If the graph 
intersects the у -axis going upwards, then ft is positive; if the graph 
intersects it going downwards, then b is negative. This rule can be 
explained by means of calculus. When the function f (x)  =  ax2 + bx+c 
is increasing near x =  0, its derivative / '( x )  =  2ax + b (which is equal 
to b when x =  0) is positive.

6 иDenote —  by m  and ——  + c by n  and you get the desired result.
2a 4a
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59 Maximum and minimum values of a quadratic polynomial

58 Quadratic inequalities

P ro b le m  261. Solve the inequality x2 — 3x + 2 < 0. (To “solve

an inequality” means to find all values of the variables for which it is 
true.)

So lu tion . Factor the left-hand side:

x2 — 3x +  2 = (x -  l)(x  — 2)

+  -  +

1 2

The left-hand side is zero when x =  1 or x =  2. When x > 2, both 
factors are positive (and the product is positive). When we go through 
the point x =  2 into the interval (1 ,2), the second factor becomes 
negative (and the product is negative). When we go through the point 
x =  1, both factors become negative and the product is positive again. 
Therefore, we get an answer tha t the inequality is true for 1 <  x < 2.

You can get the same answer looking a t the graph y = x2 — 3x +  2 
(x  =  1 and x =  2 are intersection points with x-axis).

59 Maximum and minimum values of a 
quadratic polynomial

P ro b le m  262. The sum of two numbers is equal to  1. W hat is 

the maximal possible value of its product?
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59 Maximum and minimum values of a quadratic polynomial

Solu tion . Denote one of the numbers by x . Then the second 
number is 1 -  x , and their product is x • (1 -  x) =  x -  x2 . The graph 
of the quadratic polynomial - x 2 + x is turned down and its roots are 
x =  0 and x =  1. Therefore its vertex, being in the middle, has x = \  . 
Its value for x =  J (its maximal value) is 5 • (1 — 5) =  £. So we get 
the answer tha t the maximal value is £.

A n o th e r  so lu tion . Assume that one of the numbers is \  +  x . 
Then the other number is 5 -  x and their product is

( И ( И - Ь 2.
so the maximal value is obtained when x =  0 (and both numbers are 
equal to  \  ).

P ro b lem  263. Prove tha t a square has the maximum area of all 
rectangles having the same perimeter.

P ro b lem  264. Prove that a square has the minimum perimeter of 
all rectangles having the same area.

H in t. Use the result of the preceding problem.

2
P ro b le m  265. Find the minimal value of the expression x +  -  for 

positive x .
Solu tion . Let us see what numbers c > 0 may be values of the 

2
expression x +  —. In other words we want to know for which c the 
equation

2
x + -  =  c 

x
has solutions. We may multiply this equation by x and ask for which 
c the resulting equation

x2 +  2 =  cx

has nonzero solutions. But no solutions of this equation are equal to 
zero (x  =  0 is not a solution, 02 +  2 ф c • 0). Therefore, the word 
“nonzero” may be omitted.

The equation x2 +  2 =  cx may be rewritten a s x 2 - c x  +  2 =  0. It 
has solutions if and only if its discriminant
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60 Biquadratic equations

is nonnegative, tha t is, when 
fied when

> 2. The latter condition is satis- 

§ < - ^

So the equation x + -  =  c has solutions when c >  2\/2  or c < -2%/2.
C 2 r  

Therefore, the minimum value of x +  — for positive x is 2v2 .
1 2

A n o th e r  so lu tion . The numbers x and -  may be considered as

edges of a rectangle having area 2, and x +  -  is its semiperimeter.cc
It will be minimal when the rectangle is a square (see the preceding

2
problem), tha t is, when x = - , x 2 =  2, x =  \/2 . For such am x the

2 X 
value of x +  -  is 2\/2 . 

x

60 Biquadratic equations

P ro b lem  266. Solve the equation x4 -  3x2 +  2 =  0.

Solu tion . If x is a  root of this equation, then у =  x2 is a root of 
the equation y2 -  3y +  2 =  0, and vice versa. This quadratic equation 
(where у is considered an unknown) has roots

3 ± v / 9 ^ 8  3 ±  1
У1.2 -  2 ~ 2 '

hence, yi =  1, У2 =  2.
Therefore the solutions of the initial equation are all x such tha t 

x2 =  1 or x2 =  2. So it has four solutions:

x =  1, x =  -1 ,  x = v/2, x =  -v /2 .

The same method can be applied to any equation of the form

ax4 +  6x2 + c =  0

(such equations are called biquadratic)

P ro b lem  267. Construct a  biquadratic equation
(a) having no solution;

(b) having exactly one solution;
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61 Symmetric equations

(c) having exactly two solutions;

(d) having exactly three solutions;

(e) having exactly four solutions;

(f) having exactly five solutions.

H in t. One of the cases (a)-(f) is impossible.

P ro b le m  268. W hat is the possible number of solutions of the

S o lu tion . First of all, x =  0 is not a  solution of this equation. 
Therefore we lose nothing dividing by x :

Now we group term s with equal coefficients and opposite powers of x  :

equation
ax6 +  fee3 +  c =  0 ?

H in t. Remember th a t a, 6 or c may be equal to  0. 

A nsw er. 0, 1, 2, or infinitely many.

P ro b le m  269. The same question for the equation

ax8 +  bx4 +  c =  0.

61 Symmetric equations

P ro b le m  270. Solve the equation

2x4 +  7x3 +  4x2 +  7x +  2 =  0.

2x2 +  7x +  4 +  -  +  Л  =  0.

Now we use tha t x2 +  may be expressed in term s of x +  — :
X X

and
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62 How to confuse students on an exam

Therefore, if x is a  solution of the given equation, then y = x + — is a
X

solution of the equation 2(y2 — 2) + 7y +  4 =  0, or 2y2 - 4  +  7y +  4 =  0. 
or 2y2 +  7y =  0, or y(2y +  7) =  0, whose solutions are y = 0 and 
y =  - 7 /2 .  Therefore the solutions of the initial equation are all x
such tha t

1 .  1 7x  H—  =  0 or i  + -  = x x 2
Let us solve these two equations. The first one:

x + -  =  0 =>■ x2 +  1 =  0 ==> x2 =  - 1 .  No solutions.
x

1 7
The second equation: x +  — =  —-  means (we know th a t x Ф 0)x 2

7 7
tha t x2 +  1 =  ——x, or x2 +  - x  +  1 =  0; the roots are

*1,2

- 7  v/33
2 2

A nsw er. The given equation has two solutions:

- 7 -  %/33 
4 *2

- 7  +  \/33
4

62 How to confuse students on an exam

As usual, there are many ways to make evil use of knowledge. Here are 
the instructions for one of them, namely, how to invent a practically 
unsolvable equation.

1. Take a  quadratic equation -  preferably with non-integer roots, 
for example,

3x2 +  2x -  10 =  0 .

. —2±y/4 + 120 - 2  ±  i/Ï24 -1  ± y/ZÎ
whose roots are ii,2  =  ---------------    =      =     .

2. Substitute some polynomial of degree 2 instead of x , for example, 
take x =  у2 + У -  1 • You get

x2 =  (у2 +  У -  l )(y2 +  У -  1) =  У4 +  2y3 -  у2 -  2y + 1,
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62 How to confuse students on an exam

3x2 +  2x -  10 =  3y4 + 6y3 -  3y2 
+ 2y2

- 6  у + 3  
+  2y -  2 

-1 0

4*COII +  6 y3 -  У2 -  4y -  9.

3. Ask the students to solve the equation

3y4 + 6y3 -  y2 -  4y -  9 =  0.

4. Wait 10 to 15 minutes.

5. Ttell the students th a t their time is up and they failed.

6. If somebody complains tha t the problem is too difficult and could 
not be solved by standard methods, you can explain that in fact this 
equation can be easily reduced to a quadratic:

+  6 y 3 -  y2 ■-  4 у -  9

+ 3 y3 -  3y2
+ 3 y3 + 3 y2 ■-  3 у

-  У2 -  У + 1
-  10

=  3y2(y2 +  y -  1) + 3y(y2 +  y -  1) -  (у2 + У -  1) -  10 = 

=  3(y2 +  y)(y2 +  у -  1) -  (у2 +  у -  1) -  10.

If now we denote у2 +  у -  1 by x we get an equation

3(x +  l)x  -  x -  10 =  0, 

3x2 + 3x -  x — 10 =  0,

-1  ±л/зТ 
*1.2 =  ------5------

and it remains to  solve the two equations

2 , - 1  -  \/3T . J
У +  у -  1 = ------   and у + у -  1 =

T hat’s all, isn’t  it?
Another efficient method is to  choose two quadratic equations with 

non-integer roots, for example,

x2 +  x -  3 =  0 and x2 +  2x -  1 =  0
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63 Roots

and multiply them:

(x2 +  X -  3)(x2 +  2x -  1) =  X4 + 3x3 -  2x2 -  7x +  3 =  0.

The resulting equation can be given to students without a big risk of 
seeing it solved. But don’t lose the sheet of paper with the factoring; 
otherwise you will be caught by your own trap when somebody asks 
you to show the solution!

63 Roots
A square root of a is defined as a number whose square is equal to a. 
(To be exact, a  square root of a nonnegative number a is a  nonnegative 
number whose square is equal to a.) In the same way we can define 
other roots: a cube root of A > 0 is a number x > 0 such that x3 =  a , 
a fourth root of a  > 0 is a number x > 0 such that x4 — a, etc. The 
notation for the n th  root of a is \/a .

D efinition. An n th  root of a nonnegative number a is a non­
negative number x such that xn =  a . (We assume that n is a positive 
integer.)

This definition raises several questions.

Q uestion. What happens if there are many numbers x having this 
property?

A nsw er. This cannot happen. The greater a nonnegative number 
x , the greater is xn (if in a product of nonnegative factors all factors 
increase, the product increases also). So different nonnegative values 
of x have different n th  powers.

Q uestion. Is it possible that there is no x with the required prop­
erty?

A nsw er. The same question was discussed for the square root. 
Those arguments are still valid, and we have no other (more convincing) 
ones.

Q uestion. If the degree n is even, then the number -  ÿ â  also has 
its n th  power equal to a. Why do we prefer the positive x such that 
xn = a and reject the negative one?
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63 Roots

A nsw er. This is a generally accepted convention.

Q uestion . If the degree n  is odd, then for negative a we cam also 
find an i  such th a t xn = a. For example, ( - 2 )3 =  —8. So why do we 
do not say th a t the cube root of —8 is —2?

A nsw er. It is possible to  extend our definition to this case (and 
sometimes people do so), but for simplicity we will consider only non­
negative roots of nonnegative numbers. (Otherwise we should consider 
two cases -  odd and even n  -  all the time.)

P ro b le m  271. Which number is bigger: \/2  or 1.2?

P ro b le m  272. Compute v^0.999 to  three decimal digits.

P ro b le m  273. Which number is bigger: y/2 or y/%1

P ro b le m  274. Which number is bigger: or v^4?

P ro b le m  275. Which number is bigger: y/y/2 от v^2?

P ro b le m  276. W hat is y/a according to our definition?

A nsw er. \/a = a (for a >  0).

Now we shall prove some properties of roots. 

P ro b le m  277. Prove tha t (for a > 0, 6 >  0)

y/äb =  V ö •

S o lu tion . According to  the definition of y/äb we have to prove 
tha t

( ÿ î .  ^ б ) "  =  л4.

Using th a t
(xy)n =  xn • yn 

we get (let x  =  y/a, у = y/b)

P ro b le m  278. Prove tha t (for nonnegative a and b)

b ÿb
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63 Roots

H in t. You may use the equation

/ i \ n _  xn 
\ y )  yn

or the preceding problem.

P ro b le m  279. Prove that for positive a

J l  _ J _
V ä “

P ro b le m  280. Prove tha t for three nonnegative numbers a , 6,
and c

y/abc— у /й ш y/b • y/c.
Solu tion .

ÿ o 6 c =  У(оЬ)с = VÖ6- y/c=  V ä- V&' Vc-

The same statement is true for four, five, etc. numbers.
P ro b le m  281. Prove that for nonnegative a

v ^ =  (VS)m.
Solu tion .

VS"*= y/q • • • yfg = ( y/a)m.
m times m times

(We used the statement of the preceding problem.)

P ro b le m  282. There is a  flaw in the solution of the preceding 
problem; find and correct it.

Solu tion . We assumed that m  >  2; however, the statement makes 
sense for all integers m  (and positive integers n ). The cases m  =  0 
and m =  1 are trivial. Let us prove it for negative values of m . For 
example, assume that m  =  - 3 .  Then

' o“ -* =- 3 = r 4  =  7 S  =  T - ^  = ( ^ ) ' 3a 3 "  ~  ( ÿ â ) 3
P ro b le m  283. Prove tha t

mV ô =  ' y f ÿ i

for any positive integers m , n  and for any nonnegative a.
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64 Non-integer powers

Solution. According to the definition of mn th  root we have to 
prove that

( ÿ t f ï ) m n = û .

Indeed,

( V * r - ( ( V * ) T - < * > ‘ -*-
P ro b lem  284. Prove that

mV2" =  V ä

(here m , n  are positive integers, a > 0). 

P ro b lem  285. Prove that

Vanb =  a V6 

(n  is a  positive integer, a  > 0, b > 0).

64 Non-integer powers
Different properties of roots are hard to remember. The following 
mnemonic rule may be useful: All of them can be obtained from the 
known properties of powers if we agree that

y/a =  a 1/ 2, y/a =  a 1/ 3, y/a — a1̂ 4 etc.

For example, the main property of roots (in fact, the definition)

( V ä ) ” = a

now may be rewritten as

(e‘/n)n = o  

and becomes a special case of the general rule

(a»T =
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64 Non-integer powers

The property

y f ÿ i =  ms/a

now may be rewritten as

(o1/m) 1/n =  e 1/mn

and cam be obtained if we let p = 1 /m , g =  1 /n .

P ro b le m  286. Do the same thing for all properties of roots men­
tioned above (using appropriate properties of powers).

Mnemonic rules are always disappointing, so let us make the status 
of our rule higher and cadi it a definition of the 1 /n -th  power (we may 
do so because before, we had only integer powers).

D efin ition . For any integer n  >  1 let

al/n = \/a.

We immediately observe tha t this definition does not make us com­
pletely happy. For example, we would like to  write tha t

ab ab = a$ +$ =  a$.

(as a  special case of the rule am - an = am+n where m  =  n  =  |  ). But 
we do not know what a 2/ 3 is. To fill this gap we define a 2/ 3 as (a1/ 3)2 
and, in general, am/n as (o1/ n)m or, in other words, as ( ÿ ô ) m . So 
we come to  the following

D efin ition . For any integer m  and for any positive integer n  the 
expression am^n is defined as follows:

o *  = ( ^ 5 ) m .

The careful reader would mention tha t there is some cheating in 
this definition. Indeed,

is defined as ( ‘•ÿô )10

is defined as ( ^ ô ) 2 
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64 Non-integer powers

At the same time = § so a 10/ 15 must be equal to a2/ 3 . So the 
correctness of our definition requires that

(■ y s )10 =  ($ £ )* .

P ro b lem  287. Prove this fact.

Solution.

C W ) J5 =  ( ( i / Ü ) 5) 2 - ( ÿ î ) J .

P ro b lem  288. Prove tha t reducing common factors in the fraction 
% does not change the value of the expression (see the definition 
above).

H in t. In the preceding problem the common factor 5 was reduced 
in the fraction .

Now the properties of powers tha t we know for integer powers should 
be checked for arbitary rational powers (where the exponent is a ratio 
of any integers).

P ro b lem  289. Prove that

a4 =  ap+<>

for any rational p and q.
Solu tion . For example, let p =  2/5 , q -  3/7. We have to check 

that
в * ,  в » - « * + * .

Let us find a common denominator for 2/5 and 3/7:

2 14 3 _  15
5 ~  35’ 7 ”  35'

As we know already,

=  a& , =  a ^ ,

therefore

a* • a* =  a #  • a** =  ( 3̂ ) 14 • ( 3$ G ),5 =

=  ( 3̂ o ) ,4+,5 =  a ^  = a fc+#  = a $ +*.
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64 Non-integer powers

P ro b le m  290. Prove tha t

(o6)m/n =  am/n • bm/n. 

P ro b le m  291. Prove tha t

(ap)q = aw

for any rational p  and q.
S o lu tio n . Let us s ta rt with the case of integer q and arbitrary 

rational p  =  m /n . In this case

(ap)q = (a * )*  =  ((S fc )m)9 = ( л / Н р  =  a “  =  e « .

Assume now th a t q = l / k  for some integer к and th a t p  =  m /n . Then

(a")’ =  (« 5 )*  =  V I ?  = ÿ ( ÿ ï ) m

Let us denote ÿ â  as b and continue this chain of equalities:

Finally, for an arbitrary q =  l/k  we have

(ap)q = (ap)* = = ( Ю * ) 1 =  (a *)*  =a$ = aw.

We used th a t
(ap)*  =  <»*■*

and then we used th a t
(of)' = of

These two special cases of the statem ent of the problem are considered 
already.

P ro b le m  292. Prove th a t for a > 1 the value of ap increases when 
p  increases. Prove th a t for 0 <  a <  1 the value of ap decreases when 
p  increases.

H in t. When comparing two values of p , find the common denomi­
nator. Do not forget th a t p  may be negative (and the statem ent of the 
problem remains true).
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This problem shows a possible way to extend the definition of ax 
to the irrational values of x. For example, we may try to define

2>/5

as a number that is bigger than any of the numbers 2p/q when p/q < у/2 
but smaller than any of the numbers 2p/q when p/q > y/2. Of course, 
to make this definition correct we must prove that such a number exists 
and is unique, but these topics belong to the scope of calculus.

P rob lem  293. How do you think one should define or

A nsw er. As o2 and a~2.

65 Proving inequalities
Almost all the inequalities in this section in principle could be proved 
by “brute force” if we computed the values of all the expressions. But 
we shall look for a better way.

P rob lem  294. Prove that

1 _1_ _1_ 1
2 < 101 + 102 + ' ‘ ' + 200 < '

Solution. Each of 100 terms of the sum is between —— and ——.
i  200 100

If all terms were equal to —— , the sum would be equal to -  ; if all M 200 M 2
terms were equal to , the sum would be equal to 1.

P rob lem  295. Prove that

J _____1_
199 200

< 1.

Solution. The left inequality can be proved by grouping the terms 
with parentheses as

( 1 ~ 5 )  + ( 5 ~ ï ) + " ' + ( ï 5 9 " 2 5 ô ) '

Here the first parenthesized grouping is equal to 1/2, and all the others 
are positive.
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To get the right inequality we rewrite the expression as

\ 2  3 /  V4 * /  V19* 1 » /  200

Here all parenthesized groupings are positive.

R em ark . In fact the preceding two problems coincide in a sense:

1 1 _1_ 1 1 1  J _____ 1_
101 +  102+  ' " +  200 “  2 +  3 4 +  " + 199 200'

P ro b le m  296. Prove this coincidence.

S o lu tion . Indeed,

1
101 200

/  1 1 
( I + 2 + 3 H

( ,  +  5 + 5 +  -

+ 25ö) " (1 + ï  + 5 + "‘ +

+ 25ô) ' 2 ' G  + ï  +  I  +  Î

199 200'

P ro b lem  297. Prove that (LOI)100 > 2. 

So lu tion . By definition

(l.O l)100 =  (1 +  0.01)(1 +  0.01) • • (1 +  0.01)
% v — ' ■ *

100 factors

W hat happens if we remove the parentheses? We get a sum of many 
products (each term of this sum is a product of 100 numbers -  one for 
each parenthesized expression). One of the terms is 1 (a product of all 
the ones). Among other terms there are terms being products of 99 
ones and only one 0.01. We have 100 terms of this type (because the 
0.01 term could be taken from any of the parenthesized expressions). 
The value of such a term is 0.01. There are other terms also (equal to 
0.012 , 0.013, etc.) but even if we omit them we get the sum

1 +  100 • 0.01 =  2.
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65 Proving inequalities

A n o th e r  so lu tio n  to  the  same problem goes as follows:

1.012 = 1.0201 >  1.02

1.013
__

1.012 • 1.01 >  1.02 • 1.01 =  (1 +  0.02)(1 +  0.01) =  

1 +  0.02 +  0.01 +  0.02 • 0.01 >  1.03

1.014
_

1.013 • 1.01 >  1.03 • 1.01 =  (1 +  0.03)(1 +  0.01) =  

1 +  0.03 +  0.01 +  0.03 • 0.01 >  1.04

1.01® > 1.05

1.01® > 1.06

l .O l " > 1.99

1.01100 > 2 .

P ro b le m  298. Prove th a t

S o lu tio n .

, 1 1 1 +  -  +  -
4 9

1
+  1 6 + “

1
’ + loo2

1 1_  ^ 1 _  1 1
4 “  22
1 1_  ^

1 -2
1

“  1 2 
_  1 1

9 “  32
1 1- ^

2 - 3
1

2 3 
1 1

16 “  42 < 3 - 4 3 4

1—— ^ 1 1
1002 99 • 100 “  99 ]

hence (adding all the inequalities),

, 1 1 1 
1 +  4 +  9 + Î 6  + +  1002 <

<  1 + иным*

129



66 Arithmetic and geometric means

Here the terms - -  and - ,  - -  and - ,  etc. cancel out.
2 2 3 3

P ro b lem  299. Which is bigger: lOOO2000 or 20O01000? 

P ro b lem  300. Prove that

1 1 1 1 
+  2 +  3 +  ' +  1,000,000

< 20 .

Prove that
, 1 1  1 1 + - + .  + . . .  + - > 2 0 .

for some n .

H in t. In the expression

«ними*; + . . .

each expression in parentheses is between 1/2 and 1 (compare with 
the first problem of this section).

66 Arithmetic and geometric means
The arithmetic mean (pronounced “arithmEtic” , not “arithmetic”) of

two numbers a and b is defined as °  - , tha t is, as half of their sum. 
The corresponding point on the real line is the midpoint of the segment 
with endpoints a and b.

P ro b lem  301. Prove this fact.

Solution. Without loss of generality we may assume that a < b. 
In this case point a is on the left of point b.

b -  a 
2
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66 Arithmetic and geometric means

The distance between these points is equal to 6 -  a; if we add to о 
one-half of this distance we get

Ь - e  2 a +  6 -  a  0 +  6
° +  2 “  2 "  2 '

P ro b le m  302. The arithmetic mean of two numbers 1 and a is 
equal to 7. Find a.

The geometric mean of two nonnegative numbers a and 6 is defined 
as the square root of their product, y/ab. We restrict ourselves to 
nonnegative a and 6; if a and 6 have different signs, their product is 
negative and the square root is undefined. If both numbers are negative, 
then у/ab  is defined, but it would be strange to call the positive number 
y/a6 a geometric mean of two negative numbers!

P ro b lem  303. The geometric mean of two numbers 1 and о is 
equal to 7. Find o.

P ro b lem  304. (a) Find the side of a square having the same 
perimeter as a rectangle with sides a and 6. (b) Find the side of a
square having the same area as a rectangle with sides a and 6.

P ro b lem  305. We have already heard about arithmetic and ge­
ometric progressions, and now we learn the terms “arithmetic mean” 
and “geometric mean”. Can you explain this coincidence of terms?

Solu tion . The sequence

a , (the arithmetic mean of a and 6), 6

is an arithmetic progression while the sequence
a, (the geometric mean of о and 6), 6

is a geometric progression.

One more way to define the arithmetic and geometric mean:

•  The arithmetic mean of о and 6 is a number x such that

X -  о =  6 -  x;

•  The geometric mean of a and 6 is a number x such that

?  =  Г (for o,6 > 0 ) .  a  x
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68 Problems about maximum and minimum

67 The geometric mean does not exceed 
the arithmetic mean

P ro b le m  306. Prove that for nonnegative a and b

S olu tion . To compare nonnegative numbers y/ab and 
compare their squares and prove tha t

a +  b 
2 let us

Taking into account tha t

/ а  +  Ь \2 _  (а +  6)2 
\  2 /  4

we have to prove tha t

4
or, in other words, tha t 4аЬ < (а +  6)2, or 4а6 <  а2 +  2ab +  62 , or 
0 < а2 -  2а6 +  62.

It is easy to recognize ( a —6)2 as the right-hand side of this inequal­
ity, therefore it is proved (a square is always nonnegative).

P ro b le m  307. When is the arithmetic mean of two numbers equal 
to their geometric mean?

Solu tion . As we see from the solution of the preceeding problem, 
this happens if and only if (a -  b)2 = 0, tha t is, if a =  b.

68 Problems about maximum and minimum

P ro b le m  308. (a) W hat is the maximum value of the product of

two nonnegative numbers whose sum is a fixed positive number c ? 
(b) W hat is its minimum value?

Solu tion , (a) The arithmetic mean of these numbers is c /2 , so 
their geometric mean cannot exceed c /2 , and its square (that is, the 
product of the numbers) never exceeds c2/ 4. This maximum value is 
achieved when the numbers are equal.
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68 Problems about maximum and minimum

(b) The minimum value is zero (one of the numbers is zero, the 
other one is equal to c).

P ro b le m  309. W hat are the maximum and minimum values of 
the sum of two nonnegative numbers whose product is a fixed c >  0?

S o lu tion . The geometric mean of these numbers is y/c. Therefore 
their arithmetic mean is not less than y/c and their sum (which is 
two times bigger) is not less than 2y/c. This value is achieved if the 
numbers are equal. The maximum value does not exist (the sum may 
be arbitrarily large if one of the numbers is close to zero and the other 
one is very large).

R em ark . As you may remember, we have met the two last prob­
lems earlier when speaking about maximum and minimum values of 
quadratic polynomials.

P ro b le m  310. W hat is the maximum possible area of a rectangular 
piece of land if you may enclose it with only 120 m of fence?

P ro b le m  311. W hat is the maximum possible area of a rectangular 
piece of land near the (straight) sea shore if you may enclose it with 
only 120 m of fence? (You don’t  need the fence on the shore or in the 
water.)

fence

land

sea

Solu tion . Imagine the symmetric fence in the sea:

fence

land

sea ■■■

We get a rectangle (half in the water) with perimeter equal to 240 m. 
Its area will be maximal if it is a square with side 60 m. In this case
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69 Geometric illustrations

the area is equal to 3600 m 2. The real area (on the shore) is half of 
this and equals 1800 m 2; the real fence contains of segments of length 
30, 60, and 30 meters.

P ro b le m  312. W hat is the maximum value of the product ab if a 
and b are nonnegative numbers such that a +  2b =  3?

S olu tion . It is easier to say when the product of two nonnegative 
numbers a and 2b (whose sum equals 3) is maximal. It is maximal 
when these numbers are equal, tha t is, a =  2b =  3 /2 . The product of 
a and b is half the product of a and 2b; its maximum value is

3 3 _  9 
2 ' 4  “  8 ’

69 Geometric illustrations

The inequality 

can be rewritten as
2л/оЬ < a + b

and then, after squaring, as

4ab < (a +  b)2

The last inequality can be illustrated as follows: Four rectangles 
a x  b can be put into the square with side a +  b (and some space in 
the middle of the square remains, if а ф b).

b

a

a________b

b a

a

b

How much free space remains? Compare the result 
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69 Geometric illustrations

with the algebraic proof of the inequality given above.

Another illustration is as follows. Consider the bisector of a right 
angle, and two triangles with sides a and b parallel to the sides of the 
angle:

Their areas are a2/2  and 62/2 . Together these triangles cover a rect­
angle with sides a and b; therefore

To see that this illustrates the inequality between the arithmetic and 
the geometric mean, substitute s/c. and \fd  for a and b; you get

v c - ^ < c- ± i .

R em ark . You may use almost any curve instead of the bisector 
-  and obtain many other inequalities, if you are able to compute the 
areas of triangles formed by curves.
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70 The arithmetic and geometric means of several numbers

For example, for the curve y — x2 you get (as calculus experts say) two 
“triangles” having areas a3/ 3 and \bs/b. So the inequality obtained is

a b < ^- + lbVb.
3 3

This is true for any nonnegative a and b.

70 The arithmetic and geometric means 
of several numbers

The arithmetic mean of three numbers is defined as —— —  ; the

geometric mean is defined as \/abc (we assume that a, 6, c > 0). Similar 
definitions are given for four, five, etc. numbers; the arithmetic mean 
of a i , . . . ,On is

ei + ---- 1- On
»n

the geometric mean is
• Û2••-On .

The inequality between the arithmetic and the geometric means can 
be generalized for the case of n numbers:

tyai-On <
Q| + • • • + On

n

As for the case of two numbers (see above), equality is possible only if 
all numbers are equal.

Before proving this inequality we shall derive some of its conse­
quences.

P rob lem  314. Using this inequality, prove that if o i , . . .  .o« are 
nonnegative numbers and o i + o 2H----- 1-0« < n , t h e n  Oi-o2 -On < 1.

Solution.

ÖJ + • • • + On < П Ol H------ Юл
n

< 1

=>• y e i • 02 • • • On <
Oi + • ' • + On 

П
< 1 Ol • e2 • • • o„ < 1.

In the following two problems you may also use the inequality be­
tween the arithmetic and the geometric means without proof.
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70 The arithmetic and geometric means of several numbers

P ro b le m  315. Prove that the product of n  nonnegative numbers 
with a fixed sum is a t a  maximum when all the numbers are equal.

P ro b le m  316. Prove tha t the sum of n  nonnegative numbers with 
a given product is a t a  minimum when all the numbers are equal.

There are different proofs of the inequality between the arithmetic 
mean and the geometric mean of n  numbers. Unfortunately, the most 
natural of them uses calculus (the notion of a derivative or something 
else). We shall avoid that, but our proofs will be tricky.

P ro b le m  317. Prove the inequality between arithmetic and geo­
metric means for n — 4.

S o lu tion . We have four nonnegative numbers. During the proof 
we will change them but keep their sum unchanged. (Therefore, their 
arithmetic mean will be unchanged.) Their product will change and 
we’ll keep track of how.

1. Replace a and 6 by two numbers equal to °  *  ; so we make a 
transition

, a+b a+ b
о, о, с, о * 2 > 2 > ® ■

The sum remains unchanged while the product increases (when а Ф b) 
or remains the same (if a = 6); two factors c and d do not change 
and the product of two numbers with fixed sum 0 + 6 is maximal when 
numbers are equal (see above).

2. Do the same with c and d:

a + b a + b j  0 +  6 0 +  6 c + d c + d
T ’ T '  C' d * 2 ’ ~ 2 ~ '  T ’ 2 '

The sum remains unchanged, the product increases or remains the same 
(if c =  d).

3. We have balanced the first and the second pair; now we balance 
numbers of different pairs:

a + b a + b c + d c + d 
2 ’ 2 ’ 2 ’ ~2  *

0 + 6 + c + d  0 + 6  0 + 6 + c + d  c + d
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70 The arithmetic and geometric means of several numbers

and, finally,

a + b + c + d  e + 6  a + 6 + c + d  c +  d 
4 ’ 2 ’ 4 ’ 2

a + b + c + d  a + 6 + c + d  a + b + c + d  a + 6 + c + d  
~ * 4 ’ 4 * 4 ’ 4

So ultimately we replaced numbers

by numbers

a, 6, c, d 

5, 5, 5, 5

where
5  =

a + 6 + c + d
4

is the arithmetic mean, and their product increased (or a t least did not 
decrease), so

a b c d < S S S S

or ____
Vâbcd<S.

The inequality is proved!

P ro b lem  318. Prove that the inequality between the arithmetic 
and the geometric means of four numbers (see the preceding problem) 
becomes an equality only if all numbers are equal.

H in t. Look at the solution of the preceding problem; the final 
equality is possible only if a t all stages numbers being balanced are 
equal.

P ro b lem  319. Prove the inequality between arithmetic and geo­
metric means for n =  8.

Solution. Do the same trick as in the preceding proof: balance 
numbers in four pairs, then (between pairs) in two quadruples, and 
then all eight.

P ro b lem  320. Prove the inequality between arithmetic and geo­
metric means for n =  3.
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70 The arithmetic and geometric means of several numbers

Solution. We reduce this problem to the case n =  4 by the fol­
lowing method: besides three given numbers a, 6, c consider the fourth 
number, namely, their geometric mean. So we get four numbers

a ,6,c, v'abc

and then use the inequality for n =  4 ; we get

\Jabc\/äbc <

The left-hand side expression turns out to be equal to \/abc. To verify 
this, compute the fourth powers of both (nonnegative) numbers; we get

= abc \fobc

and
(v'afcc)4 =  {Vabc)Z \/âibc = abc v'eÄc, 

which is the same. So we can rewrite the inequality we have as

< a + b + c+ Väbc 
~ 4

and then

4v/aïc < a + b + c + v'afcc,

Зу'обс < a + b + c,

Ж  < £ ± | ± f .

That is what we want.

P ro b lem  321. Using the inequality between arithmetic and geo­
metric means for n =  8, prove it for n =  7.

P rob lem  322. Prove the inequality between arithmetic and geo­
metric means for n =  6.

H int. Recall the solution of the preceding problem.

P ro b lem  323. Prove the inequality between arithmetic and geo­
metric means for all integer n  > 2.
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70 The arithmetic and geometric means of several numbers

H in t. Prove it for n  =  2, 4, 8, 16, 32, . . .  and then all integere in 
between them.

P ro b le m  324. Prove tha t the inequality between arithmetic and 
geometric means becomes an equality only if all numbers are equal.

Another proof of the inequality between arithmetic and geomet­
ric means goes as follows. First of all we mention that if all numbers 
a i , . . . ,  On are multiplied by the same constant (for example, if all num­
bers become three times bigger) then both the arithmetic and geometric 
means are multiplied by the same constant and the relation between 
them remains unchanged. Therefore, proving the inequality between 
them, we may multiply all numbers by some constant and assume with­
out lose of generality that their arithmetic mean is equal to 1. Thus, 
it is enough to prove

«1....... On>0, Oi+ - +On=n => в1---Оп<1.

Let’s try.
A. For the case of two numbers: If the sum of two numbers is equal 

to 2, then these numbers can be represented as 1 +  h and 1 — h and 
their product is (1 +  h)( 1 -  h) =  1 — h2 < 1.

B. Let us consider now the case of three numbers. Assume tha t 
the sum of three nonnegative numbers a, 6, c is 3. If not all of a,b,c 
are equal to 1 (the latter case is trivial) some of them must be greater 
than 1 and some must be smaller. Assume, for instance, th a t о <  1 
and b > 1. Then a - l < 0 ,  b -  1 >  0 and the product

(a -  1)(6 — l ) = o 6  — a  — 6 + 1

is negative, so

Because

we have 

and

ab+1 < a + b.

(о +  Ь) +  c =  3 

o b + l  +  c < ( o  +  6 ) + c  =  3 

o6 +  c <  2.
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70 The arithmetic and geometric means of several numbers

Look -  we now have two numbers ab and c, their sum is less than 2 
and we have to prove tha t their product does not exceed 1. For two 
numbers we already know this fact from part A.

The careful reader may ask why we refer to  part A  where we proved 
th a t if the sum of two numbers is equal to  2 then the product does not 
exceed 1, and now the sum of two numbers is smaller than 2, not 
equal to 2. But this is not a big problem; if the sum is smaller them 2 
we may increase one of the numbers and make the sum equal to 2; if 
the increased product does not exceed 1 then the original product also 
does not exceed 1.

C. Now assume th a t n  =  4; we have to prove tha t

a, b, c, d > 0, a + 6 + c + d = 4  = >  abed < 1.

Again we may assume without loss of generality tha t one of the num­
bers, say a , is less than 1 and the other, say 6, is greater than 1. 
Then

ab + 1 < a +  6, (a + 6) +  c + d =  4,

therefore
a b + l  +  c +  d < 4 ,  a6 +  c +  d < 3 .

And again it remains to prove tha t if a sum of three nonnegative num­
bers ab, c, and d is less them 3 then their product does not exceed 1 
-  and this is already proved.

The same argument can be applied for n  =  5,6,  etc.

The next, third proof of the inequality between the arithmetic and 
the geometric means of three numbers is probably the shortest -  but it 
looks mysterious.

We start from the identity

a 3 +  63 +  c3 -  3abc =  i ( a  +  b +  c)((a -  b)2 + (6 -  c)2 +  (a -  c)2)

which can be checked by a direct computation (perform the operations 
on the right-hand side). You see th a t if a,b,c are nonnegative then the 
right-hand side (and therefore left-hand side) is nonnegative, tha t is,

abc <
о3 +  63 +  с3 

3
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70 The arithmetic and geometric means of several numbers

It remains to substitute ÿq , tyr, for a , b, and c and you get

which concludes the third proof.

Here is one more proof of the inequality between the arithmetic 
and geometric means. Let us prove that the product of n  nonnegative 
numbers is the maximum when all the numbers are equal. As we have 
seen, it is easy to prove this fact for n  =  2. Assume th a t for some n  the 
product of n  equal numbers with a given sum S  is not the maximum, 
and tha t some other numbers 01,02, . . .  ,On -  not all of them equal 
-  provide this maximum. Assume, for example, that a i Ф 02. Then 
replacing both of a i and 02 by their arithmetic mean, we do not change 
the sum, but the product increases. So we get a  contradiction with our 
assumption tha t the product was the maximum.

P ro b lem  325. There is a gap in this argument -  find it.

Solu tion . We assumed that numbers a i , a 2, . . . ,On  providing the 
maximum value of the product (for nonnegative numbers with fixed 
sum) do exist. This fact needs to be proved. In fact it can be proved 
using calculus methods, but this goes beyond the scope of the book.

P ro b le m  326. Assume that e i , . . . ,  On are positive numbers. Prove 
tha t

P ro b le m  328. Find the minimal value of a + b if a and b are 
nonnegative numbers and ab2 =  1.

P ro b le m  329. Prove the inequality

Û2 e3 On Oi
P ro b le m  327. Prove that

for any nonnegative a , 6, and c.
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70 The arithmetic and geometric means of several numbers

P rob lem  330. Prove the inequality

Väbc <
a + 2b + 3c

m

P rob lem  331. Prove that
/ 1 \»0 / 1 \ И
(1 + iô) < ( 1 + n ) •

/ 1 \ 10
Solution. The left-hand side ^1 +  —J is a product of 10 factors

each equal to ^1 + We may consider it also as a product of 11

factors, one of them equal to 1 and ten others equal to ^1 +

Comparing this product with the product in the right-hand side where
we also have 11 factors but all of them are equal to ^1 + — )» we see

that the sum of all factors are the same in both cases (namely 12). But 
in the right-hand side all factors are equal, so the product is bigger.

P rob lem  332. Prove that

/  1 \ ”  /  1\>2 
( 1 + Tô) > ( 1 +  î ï )  '

H in t. The right-hand side may be considered as a product of 11 
factors -  one equal to

and the others equal to ( l  + - j j j .  The left-hand side is also a product 
of 11 factors (but the factors are equal). It is enough to show that 
the sum of all factors in the left-hand side is bigger than the sum of 
all factors in the right-hand side and then use the inequality between 
arithmetic and geometric means.

P rob lem  333. Write down the four numbers mentioned in the two 
preceding problems in ascending order.
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71 The quadratic mean

71 The quadratic mean
The quadratic mean of two nonnegative numbers a and 6 is defined as 
a nonnegative number whose square is the arithmetic mean of a2 and 
b2, that is, as

P ro b lem  334. This definition uses the arithmetic mean. What 
happens if the arithmetic mean is replaced by the geometric mean?

P ro b lem  335. Prove that the quadratic mean of two nonnegative 
numbers a and 6 is not less than their arithmetic mean:

la2 + b2 ^  0 +  6\ l — —  >  .
2 -  2

(For example, the quadratic mean of 0 and a is a/y/2 and their 
arithmetic mean is о /2.

Solution. Comparing the squares, we need to prove that

a2 +  6* (a +  6)2
2 4

Multiplying by 4 and using the square-of-the-sum formula, we get 

2(o2 +  b2) >  a2 +  62 +  2o6

or
o2 +  62 > 2o6, о2 +  62 — 2o6 >  0.

Here the left-hand side is a square of (a -  6) and, therefore, is always 
nonnegative.

P ro b lem  336. For which a and 6 is the arithmetic mean equal to 
the quadratic mean?

P ro b lem  337. Prove that the geometric mean does not exceed the 
quadratic mean.
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71 The quadratic mean

The geometric illustration of the inequality between the arithmetic 
mean and the quadratic mean can be given as follows.

Draw the graph y = x2 and consider two points (a, a3) and (b, b2) on 
this graph. Connect these points with a segment. The middle point 
of this segment has coordinates that are the arithmetic means of the 
coordinates of the endpoints, that is,

/ о +  6 e3 +  63\
1 2 ’ 2 /

Look a t the picture; you see that this point is higher than the graph 
point with the same x-coordinate

(¥• r-f6n
so the у-coordinate of the first point is bigger than the у -coordinate 
of the second one:

/o  +  6\*  o3 +  62
1 2 i  -  2 ’

e +  6 /о 3 +  63
2 -  V 2

This argument may be considered as a proof of the inequality between 
arithmetic and quadratic means if we believe that the graph of у = x2
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71 The quadratic mean

is “concave” (that is, the curve goes under the chord connecting any 
two points).

P ro b lem  338. Turning the graph y — x2 around (that is, ex­
changing X -  and у-axes), we get the graph of у =  y/x, which goes 
above any of its chords. W hat inequality corresponds to this fact?

A nsw er. ____
/d  +  6 v  y/â +  y/b

Now we know that for any nonnegative a and b

^  0 +  6 < / £ + £
2 “ V 2

For any of these three expressions, let us draw in the coordinate plane 
the set of all points (a, b) where this type of mean value does not 
exceed 1:
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72 The harmonic mean

< M >

If we put all of them in one picture, we see that the bigger expression 
corresponds to the smaller set (as it should).

P ro b lem  339. Prove the inequality between the arithmetic mean 
and the quadratic mean for three numbers:

P ro b lem  340. (a) The sum of two nonnegative numbers is 2. 
W hat is the minimum value of the sum of their squares?

(b) The same question for three numbers.

72 The harmonic mean

The harmonic mean of two positive numbers a and b is defined (see 
above) as the number whose inverse is the arithmetic mean of the in­
verses of a and 6, tha t is, as

P ro b lem  341. Prove that the harmonic mean does not exceed the 
geometric mean.

1
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72 The harmonic mean

Solution. The inverse of the harmonic mean is the arithmetic mean 
of 1 /a and 1/6; the inverse of the geometric mean is the geometric 
mean of 1 /a  and 1/6; so it is enough to recall the inequality between 
the arithmetic and geometric means (the inverse of the bigger number 
is smaller).

P ro b lem  342. The numbers a t , . . .  ,a„ are positive. Prove tha t

(ai +  --- +  0,, +  ••• + > n 2 .

Solu tion . The desired inequality may be rewritten as

<*i H------ Ю » >  1________
n ~ / I 1 \  /

( — + ••• +  — ) / n\a i  an/ '

that is, we have to prove that the arithmetic mean of n  numbers is 
greater than or equal to its harmonic mean. This becomes clear if we 
put the geometric mean between them:

dl + • • • + On 
П

> s/ai -On =

the last inequality follows from the inequality between the arithmetic 
and geometric mean of the numbers 1/ a i , . . . ,  l /а п .

Another solution uses the following trick. Our inequality becomes 
a consequence of the so-called Cauchy-Schwarz inequality

(Pi9i +  • • • +  p„9„)2 <  ( p ? + - + p 2) ( q ? + - + 9 2)

if we substitute Ja l  for p< and —7= for q\ .

Therefore, it remains to prove the Cauchy-Schwarz inequality. Con­
sider the following quadratic polynomial (where x  is considered to be 
a variable and p< and ф are constants):

(pi +  gix)2 +  (P2 +  92x)2 +  • • • +  (p„ + qnx)2.
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72 The harmonic mean

If we remove the parentheses and collect terms with x3, with x , and 
without x , we get the polynomial

Ax2 +  B x  +  C

where

A = q2 +  q2 4------+  »

В = 2(pi9i +Р2Ч2 + - -+Pnqn),
С  =  P 1 + P 2 +  - + P * .

This polynomial is nonnegative for all x (because it was a  sum of 
squares). Therefore its discriminant В 2 -  AAC must be negative or 
zero, tha t is, B 2 < AAC, or (B /2 )3 < AC, which is to say,

(Pi9i +  • •• + pnqn)2 <  (p? +  • • • +Pn) • (9i +  • • • + 9 n ) • 

How do you like this trick?
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OTHER BOOKS IN THE SERIES

Algebra is the third book in this series of books for high school
students. The first two, published in 1990, are Functions and
Graphs and The Method of Coordinates. Future books will include:
Pre-Geometry
Geometry
Trigonometry
Calculus

As organized and directed by 1. M. Gelfand for a Mathematical School 
by Correspondence, the books are intended to cover the basics in mathe­
matics. Functions and Graphs and The Method o f Coordinates were 
written more than 25 years ago for the Mathematical School by 
Correspondence in the former Soviet Union. Still under the guidance 
of I. M. Gelfand, the School continues to thrive at such places as 
Rutgers University, New Brunswick, NJ and Bures-sur-Yvette, France.

As Gelfand himself has stated:
"It was not our intention that all of the students who study from these 
books or even completed the School by Correspondence should choose 
mathematics as their future career. Nevertheless, no matter what they 
would later choose, the results of this mathematical training remain 
with them. För many, this is a first experience in being able to do 
something completely independently of a teacher."

Gelfand continues:
"I would like to make one comment here. Some of my American 
colleagues have been explained to me that American students are not 
really accustomed to thinking and working hard, and for this reason 
we must make the material as attractive as possible. Permit me to not 
completely agree with this opinion. From my long experience with young 
students all over the world, I know that they are curious and inquisitive 
and I believe that if they have some clear material presented in a simple 
form, they will prefer this to all artificial means of attracting their 
attention—much as one buys books for their content and not for their 
dazzling jacket designs that engage only for the moment. The most 
important thing a student can get from the study of mathematics is the 
attainment of a higher intellectual level."



-The idea behind teaching is to expect students to learn why things are true, 
rather than have them memorize ways of solving a few problems, as most of 
our books have done. [This] same philosophy lies behind the current text by 
Gelfand and Shen. There are specific ‘practical* problems but there is much 
more development of the ideas... [The authors] have shown how to write a seri­
ous yet lively book on algebra."

R. Askey, The American Mathematical Monthly

“Were Algebra to be used solely for supplementary reading, it could be wholeheart­
edly recommended to any high school student or any teacher... In fact, given the 
long tradition of mistreating algebra as a disjointed collection of techniques in the 
schools, there should be some urgency in making this book compulsory reading for 
anyone interested in learning mathematics."

H. Wu. The Mathematical intelligencer
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