On Game Interpretations of Intuitionstic Logic

Andrej Muchnik

Division of Cybernetics at Computing Center of Russian Academy of Sciences

Moscow, February 2006

Int — intuitionistic propositional logic.

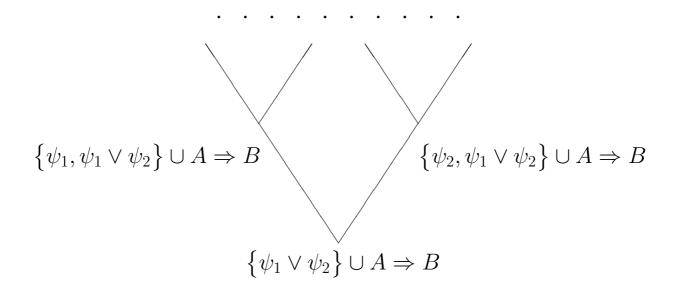
A calculus of sequences $A \Rightarrow B$, where A and B are finite sets of propositional formulas.

A classical theorem. $\vdash A \Rightarrow B \ iff (\bigwedge A \to \bigwedge B) \in \text{Int.}$

 $(\bigwedge A \text{ is the conjunction of all formulas from } A, \bigwedge \emptyset \text{ is the true formula } T.)$

Any inference of sequence $A \Rightarrow B$ can be presented as a tree with sequences in its nodes and a $A \Rightarrow B$ in its root.

Example



Because of 'sub-formula' property the height of the inference tree is limited by a polynomial of the size of the 'root sequence'. So, a sequence is provable iff there is a winning strategy of the First Player in the following 'polynomial ' game.

The Player I tries to demonstrate the provability of the sequence $A \Rightarrow B$. He shows two new sequences $C_1 \Rightarrow D_1, C_2 \Rightarrow D_2$, pretending that they are provable and from which *in one step* the sequence $A \Rightarrow B$, is deducible and $A \subseteq C_i, B \subseteq D_i, i = 1, 2$.

The Player II tries to refute the provability of the sequence $A \Rightarrow B$.

He indicates one of the sequences $C_1 \Rightarrow D_1, C_2 \Rightarrow D_2$, pretending that it is not provable.

In case that the Player I rejects to make a move he wins iff formula $A \Rightarrow B$ is an axiom.

Evidently, we can check in polynomial time is a move correct and is a final position a winning one.

Proposition. The formula φ belongs to Int iff The Player I has a winning strategy in the described game for $\emptyset \Rightarrow \varphi$.

In September of 2005 at the International conference «Computer Science Applications of Modal Logic» in Moscow I. Mezhirov proposed a new game semantics for Int. In some aspect it is simpler that one we described, because all the positions of his game are sequences, not pairs of sequences.

We propose a new, more intuitive game semantics for Int having the same good property;

Game of «mutual respect»

Initial position $-\emptyset \Rightarrow \{\varphi\}.$

- The First Player's move $-\emptyset \Rightarrow B_1, \quad \varphi \in B_1$ (pretending that B_1 - is the maximal set for which $\vdash \emptyset \Rightarrow B_1$).
- The II Player's move $-A_1 \Rightarrow B_1$ (pretending that, A_1 – is a maximal set for which $\nvDash A_1 \Rightarrow B_1$.)

- The First Player's move $-A_{n-1} \Rightarrow B_n$, $B_{n-1} \subsetneq B_n$ (pretending that, B_n — is the maximal set for which $\vdash A_{n-1} \Rightarrow B_n$).
- The Second Player's move $-A_n \Rightarrow B_n$, $A_{n-1} \subsetneq A_n$. (pretending that, A_n – is a maximal set for which $\nvdash A_n \Rightarrow B_n$).

Rejection to move of one of the players means the end of the Game.

Lemma. The set of sequences $A \Rightarrow B$, with a maximal set B can be separated in polynomial time from the set of not provable sequences $C \Rightarrow D$, where C is maximal. \Box

All known algorithms that separate sets of deducible and non deducible sequences use polynomial zone, but exponential time.

Theorem. A propositional formula φ belongs to Int iff the First Player has a winning strategy in the Game of mutual respect for $\emptyset \Rightarrow \{\varphi\}$. \Box

I would like to thank the organizers for the opportunity to present my talk at this conference and congratulate Sergey Ivanovich with his 75th birthday.