On Game Interpretations of Intuitionstic Logic

Andrej Muchnik

Division of Cybernetics at Computing Center of Russian Academy of Sciences

Moscow, February 2006

Int – intuitionistic propositional logic.

A calculus of sequences $A \Rightarrow B$, where A and B are finite sets of propositional formulas.

A classical theorem. $\vdash A \Rightarrow B \ iff (\bigwedge A \to \bigwedge B) \in \text{Int.}$

 $(\bigwedge A \text{ is the conjunction of all formulas from } A, \bigwedge \emptyset \text{ is the true formula } T.)$

Any inference of sequence $A \Rightarrow B$ can be presented as a tree with sequences in its nodes and a $A \Rightarrow B$ in its root.

Example

Because of 'sub-formula' property

The height (tree) is limited by a polynomial (size of the 'root sequence').

A 'polynomial' Game

Player I: demonstrate the provability of $A \Rightarrow B$. shows $C_1 \Rightarrow D_1$, $C_2 \Rightarrow D_2$, pretending: they are provable *in one step* $A \Rightarrow B$, is deducible $A \subseteq C_i$, $B \subseteq D_i$, i = 1, 2.

The Player II tries to refute the provability of the sequence $A \Rightarrow B$.

He indicates one of the sequences $C_1 \Rightarrow D_1, C_2 \Rightarrow D_2$, pretending that it is not provable.

In case that the Player I rejects to make a move he wins iff formula $A \Rightarrow B$ is an axiom.

Evidently, we can check in polynomial time is a move correct and is a final position a winning one.

Proposition. The formula φ belongs to Int iff the Player I has a winning strategy in the described game for $\emptyset \Rightarrow \{\varphi\}$.

I. Mezhirov: a new game semantics for Int. [International conference «Computer Science Applications of Modal Logic», Moscow, September 2005]

All the positions — sequences, not pairs.

A new, more intuitive game semantics for Int having the same good property.

Game of «mutual respect»

Initial position $-\emptyset \Rightarrow \{\varphi\}.$

- The First Player's move $-\emptyset \Rightarrow B_1, \quad \varphi \in B_1$ (pretending that B_1 - is the maximal set for which $\vdash \emptyset \Rightarrow B_1$).
- The II Player's move $-A_1 \Rightarrow B_1$ (pretending that, A_1 – is a maximal set for which $\nvDash A_1 \Rightarrow B_1$.)

- The First Player's move $-A_{n-1} \Rightarrow B_n$, $B_{n-1} \subsetneq B_n$ (pretending that, B_n — is the maximal set for which $\vdash A_{n-1} \Rightarrow B_n$).
- The Second Player's move $-A_n \Rightarrow B_n$, $A_{n-1} \subsetneq A_n$. (pretending that, A_n – is a maximal set for which $\nvdash A_n \Rightarrow B_n$).

Rejection to move of one of the players means the end of the Game.

Lemma. The set of sequences $A \Rightarrow B$, with a maximal set B can be separated in polynomial time from the set of not provable sequences $C \Rightarrow D$, where C is maximal. \Box

All known algorithms that separate sets of deducible and non deducible sequences use polynomial zone, but exponential time.

Theorem. A propositional formula φ belongs to Int iff the First Player has a winning strategy in the Game of mutual respect for $\emptyset \Rightarrow \{\varphi\}$. \Box