On Game Interpretations of Intuitionstic Logic

Andrej Muchnik
Division of Cybernetics at Computing Center of Russian Academy of Sciences

Moscow, February 2006

Int - intuitionistic propositional logic.

A calculus of sequences $A \Rightarrow B$, where A and B are finite sets of propositional formulas.

A classical theorem.

$\vdash A \Rightarrow B$ iff $(\bigwedge A \rightarrow \bigwedge B) \in \operatorname{Int}$.
($\bigwedge A$ is the conjunction of all formulas from $A, \bigwedge \emptyset$ is the true formula \boldsymbol{T}.)

Any inference of sequence $A \Rightarrow B$ can be presented as a tree with sequences in its nodes and a $A \Rightarrow B$ in its root.

Example

Because of 'sub-formula' property
The height (tree) is limited by a polynomial (size of the 'root sequence').

A 'polynomial' Game

Player I: demonstrate the provability of $A \Rightarrow B$. shows $C_{1} \Rightarrow D_{1}, C_{2} \Rightarrow D_{2}$, pretending: they are provable in one step $A \Rightarrow B$, is deducible $A \subseteq C_{i}$, $B \subseteq D_{i}, i=1,2$.

The Player II tries to refute the provability of the sequence $A \Rightarrow B$.

He indicates one of the sequences $C_{1} \Rightarrow D_{1}, C_{2} \Rightarrow D_{2}$, pretending that it is not provable.

In case that the Player I rejects to make a move he wins iff formula $A \Rightarrow B$ is an axiom.

Evidently, we can check in polynomial time is a move correct and is a final position a winning one.

Proposition. The formula φ belongs to Int iff the Player I has a winning strategy in the described game for $\emptyset \Rightarrow\{\varphi\}$.
I. Mezhirov: a new game semantics for Int. [International conference «Computer Science Applications of Modal Logic», Moscow, September 2005]

All the positions - sequences, not pairs.
A new, more intuitive game semantics for Int having the same good property.

Game of «mutual respect»

Initial position $-\emptyset \Rightarrow\{\varphi\}$.

- The First Player's move $-\emptyset \Rightarrow B_{1}, \quad \varphi \in B_{1}$ (pretending that $B_{1}-$ is the maximal set for which $\vdash \emptyset \Rightarrow B_{1}$).
- The II Player's move - $A_{1} \Rightarrow B_{1}$
(pretending that, A_{1} - is a maximal set for which $\nvdash A_{1} \Rightarrow B_{1}$.)
- The First Player's move $-A_{n-1} \Rightarrow B_{n}, \quad B_{n-1} \subsetneq B_{n}$ (pretending that, B_{n} - is the maximal set for which $\vdash A_{n-1} \Rightarrow B_{n}$).
- The Second Player's move $-A_{n} \Rightarrow B_{n}, \quad A_{n-1} \subsetneq A_{n}$. (pretending that, A_{n} - is a maximal set for which $\not A_{n} \Rightarrow B_{n}$).

Rejection to move of one of the players means the end of the Game.

Lemma. The set of sequences $A \Rightarrow B$, with a maximal set B can be separated in polynomial time from the set of not provable sequences $C \Rightarrow D$, where C is maximal. \square

All known algorithms that separate sets of deducible and non deducible sequences use polynomial zone, but exponential time.

Theorem. A propositional formula φ belongs to Int iff the First Player has a winning strategy in the Game of mutual respect for $\emptyset \Rightarrow\{\varphi\}$. \square

