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Abstract

In this paper we construct a structure R that is a “4nite version” of the semi-lattice of Turing
degrees. Its elements are strings (technically, sequences of strings) and x6y means that K(x|y)=
(conditional Kolmogorov complexity of x relative to y) is small. We construct two elements
in R that do not have greatest lower bound. We give a series of examples that show how
natural algebraic constructions give two elements that have lower bound 0 (minimal element)
but signi4cant mutual information. (A 4rst example of that kind was constructed by G:acs–K;orner
(Problems Control Inform. Theory 2 (1973) 149) using a completely di>erent technique.) We
de4ne a notion of “complexity pro4le” of the pair of elements of R and give (exact) upper and
lower bounds for it in a particular case. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let � and � be two in4nite binary sequences. We say that � is Turing reducible
to � if there exists a Turing machine M that produces � on its output tape when
� is provided on input tape. Turing reducibility is reCexive and transitive, so we
get a pre-order on the set of all in4nite binary sequences (this pre-order is usually
denoted by 6T ). The equivalence classes ((x∼y)⇔ (x6Ty)∧(y6T x)) form an upper
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semi-lattice whose elements are called Turing degrees. This semi-lattice is well studied
in recursion theory (see, e.g., [7])
Now let us replace in4nite sequences � and � by 4nite binary strings x and y. Of

course, for any x and y there exists a Turing machine M that produces x from y. So
to get a non-trivial relation we have to put some restrictions on M . It is natural to
require that M is simple (its program is short compared to x and y). Here the notion
of Kolmogorov complexity comes into play. By de4nition, the conditional Kolmogorov
complexity K(x|y) is the length of the shortest program that produces x having y as
an input. Now we can de4ne the relation x6cy as K(x|y)6c (here x and y are binary
strings, c is a number).
If c is a constant, this relation does not have good properties (for example, it is

not transitive). This relation also depends on a speci4c programming language used in
the de4nition of Kolmogorov complexity. To overcome these diNculties, we use the
standard trick and consider the asymptotic behavior of the complexity for sequences
of strings.
Let x= x1; x2; : : : be a sequence of binary strings. We call it regular if length of xi

is polynomially bounded, i.e., if |xi|6cik for some c; k and for all i. Let R denote the
set of all regular sequences. We say that regular sequence x is simple conditional to a
regular sequence y if

K(xi|yi) = O(log i)
and write x6y. The 6-relation is a pre-order de4ned on R. The relation (x6y) ∧
(y6x) is an equivalence relation. Equivalence classes form a partially ordered set
which (for the same reasons as in the case of Turing degrees) is an upper semi-lattice
(any two elements have a least upper bound).
We prove (Section 2) that this set is not a lower semi-lattice: there are two elements

that do not have greatest lower bound. Note that the set of Turing degrees is not a
lower semi-lattice either (see, e.g., [7]), but our proof goes in a completely di>erent
way.
The semi-lattice R is useful for analyzing the notion of common information. This

notion was introduced by G:acs and K;orner [1] in the context of Shannon information
theory. They also described a similar notion in the algorithmic theory but do not
give a precise de4nition. We give such a de4nition in terms of the semi-lattice R
(Section 3).
The main result of [1] is an example of two objects whose “common information”

is far less than their “mutual information”; G:acs and K;orner provide such an example
in context of Shannon information theory and mention that it could be reformulated for
algorithmic information theory. This example was analyzed in [2] where an alternative
proof for a special case of G:acs–K;orner example was provided.
A completely di>erent example of two strings whose common information is much

less than their mutual information was given in [4]; for details see [5].
In this paper we develop a third approach to construct such pairs of strings. It is

based on the geometry of 4nite 4elds. Several examples of this type are given in
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Section 4. Our examples (as well as G:acs–K;orner’s) are constructive in the following
sense. In the recursion theory, we call a proof of a theorem of the form ∀n∃a P(n; a)
constructive if there exists an algorithm that given n computes an object an such that
P(n; an). In our context this makes no sense, as in this case the complexity of an is
bounded by log n and we are interested in properties P(n; a) implying that complexity
of a is linear in n. We 4nd reasonable the following meaning of constructivity here:
there is a probabilistic algorithm that given n with high probability outputs such an
object a that P(n; a). More speci4cally, the probability should tend to 1 as n tends to
in4nity. All our examples except one from Theorem 7(c) are constructive in this sense.
The amount of common information does not determine completely how much the

strings x and y have in common. What reCects this better is the “complexity pro4le
of x and y”, de4ned as the set of triples (u; v; w) such that K(z)6u; K(x|z)6v, and
K(y|z)6w for some string z. We use the method of [5] to 4nd exact upper and
lower bounds for complexity pro4le (Section 6). (Technically we have to speak not
about strings x and y but about sequences of strings x0; x1; : : : and y0; y1; : : : such that
complexity of xi and yi is proportional to i; see Section 6 for details.)

2. The upper semi-lattice R

Let us recall the de4nition of conditional Kolmogorov complexity. Let U be a com-
putable (partial) function of two arguments; arguments and values are binary strings.
(Informally, U is an interpreter of some programming language, the 4rst argument
is a program and the second one is program’s input.) Let us de4ne KU (x|y) as
min{|p| :U (p; y)= x}; here |p| stands for the length of p. There exists an optimal U ,
that is, a U such that KU6KV + O(1) for any other computable function V . We 4x
some optimal U and call KU (x|y) the conditional complexity of x when y is known.
The unconditional Kolmogorov complexity can be de4ned as K(x|�) where � is the

empty string. It turns out (see, e.g., [3]) that conditional complexity can be expressed
in terms of unconditional complexity. Indeed, let us 4x some computable bijection
p; q 	→ 〈p; q〉 between pairs of strings and strings. Then

K(〈p; q〉) = K(p) + K(q|p) + O(log(|p|+ |q|)):
A sequence x= x1; x2; : : : of binary strings is called regular if there exist constants

c and k such that |xi|6cik for all i. The set of all regular sequences is denoted by R.
We de4ne a pre-order on R saying that x= x1; x2; : : : precedes y=y1; y2; : : : if there
exists a constant c such that K(xi|yi)6c log i for all i. (Let us agree that log x means
log2(x + 2) so log x is positive for all x¿0 and we do not need to consider the case
i=1 separately.)
The O-term guarantees that the de4nition does not change if we replace the optimal

function U used in the de4nition of Kolmogorov complexity by another optimal
function. Moreover, since we use O(log i) (and not O(1)), the de4nition remains the
same if we replace conditional Kolmogorov complexity de4ned as above by pre4x
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complexity (see [3] for the de4nition). Indeed, these complexities di>er only by O(log n)
for strings of length n. Since elements of R are regular, this di>erence is absorbed by
O(log i)-term.
Two elements x and y are equivalent if x6y and y6x. The equivalence classes

form a partially ordered set. We denote this set by R.

Proposition 1. The set R is an upper semi-lattice: any two elements have a least
upper bound.

Proof. By de4nition, z ∈ R is a least upper bound of x; y ∈ R if
• z is an upper bound for x and y, i.e., x6z and y6z;
• z6u for any other upper bound u of x and y.
Let x= x1; x2; : : : and y=y1; y2; : : : be any two elements of R. Consider the sequence

z= z1; z2; : : : where zi= 〈xi; yi〉. (Recall that p; q 	→ 〈p; q〉 denotes a computable bijec-
tion between pairs of strings and strings.) It is easy to see that z is regular and is the
least upper bound for x and y.

Theorem 2. The ordered set R is not a lower semi-lattice: there exist two elements
x and y that do not have a greatest lower bound.

Proof. To prove the theorem we have to construct two sequences x and y that have
no greatest lower bound. Assume some n is 4xed; let us explain how nth terms of x
and y are constructed. Consider 2n binary strings of length n denoted by

b01; b
0
2; : : : ; b

0
n; b

1
1; b

1
2; : : : ; b

1
n;

and one more string of length n denoted by

� = �1 : : : �n

(�i are individual bits). We want all these strings to be random and independent in the
following sense: its concatenation is a string of length 2n2 +n which is incompressible
(its Kolmogorov complexity is equal to its length up to O(1) additive term). Such
strings do exist, see [3]. Now consider two strings

x = b01b
0
2 : : : b

0
nb
1
1b
1
2 : : : b

1
n

and

y = b�11 b
�2
2 : : : b

�n
n :

Strings x and y are nth terms of the sequences x and y.
Let us mention that the pair 〈x; y〉 contains the same information as the concatenation

string of length 2n2 + n mentioned above, so the complexity of the pair 〈x; y〉 is
2n2 + n+O(1). (As x is random, b0i �= b1i for all i.)
In the sequel we use the following terminology. Strings bei (for e=0; 1 and i=

1; : : : ; n) are called blocks. We have 2n blocks; each block has length n. All the blocks
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b�ii that are included in y are called selected blocks; all other blocks b
1−�i
i are called

omitted blocks. Our construction starts with n pairs of blocks and a string � that says
which block is selected in each pair. The string x is a concatenation of all 2n blocks;
the string y is a concatenation of n selected blocks.
Now the proof goes as follows. Each selected block is simple relative to both x and

y since it is a substring of both x and y and position information could be encoded by
O(log n) bits. (When we say that a string u is simple relative to a string v we mean
that K(u|v)=O(log n).)
Suppose that the greatest lower bound of x and y exists. Let us denote it by z. Then

any selected block is simple relative to z. On the other hand, any omitted block could
not be simple relative to z. Indeed, assume that some omitted block b is simple relative
to z. Then b is simple relative to y since z is simple relative to y by assumption. Then
to restore x from y it is enough to specify the string � and n−1 omitted blocks di>erent
from b, i.e., n2 bits, and the complexity of pair 〈x; y〉 is at most 2n2 + O(log n) (n2
bits in y and n2 bits to specify x when y in known). This contradiction shows that no
omitted block is simple relative to z.
Now let us show that y is simple relative to x. Indeed, to 4nd y when x is known we

need only to distinguish between omitted and selected blocks in each pair of blocks. We
may assume that z is known since it is simple relative to x. Then we may enumerate
all the objects that have small complexity relative to z until we 4nd n blocks (we
have the list of all blocks since we know x). These n blocks will be (as shown
above) exactly the selected blocks, and we are done. So y is simple relative to x. But
this is impossible, because in this case the pair 〈x; y〉 will have complexity at most
2n2 + O(log n) (instead of 2n2 + n).
In the argument above we were quite vague about O-notation, so let us repeat the

same argument more formally. The construction described above is performed for each
n; to indicate the dependence on n let us write x(n) instead of x, b0i (n) instead of b

0
i ,

etc. Assume that z= z(0); z(1); : : : is a greatest lower bound of x and y. The 4rst step
in the proof is the following lemma.

Lemma 1. There exists some constant c such that

K(b|z(n))6c log n

for any n and for any block b that was selected at nth step of the construction.
(There were n selected blocks at nth step; each of them has length n:)

Indeed, consider all the blocks b that were selected at nth step; let b(n) be one of
them for which the complexity K(b|z(n)) is maximal. The sequence b= b(1); b(2); : : :
belongs to R. It is easy to see that b6x and that b6y, because b(n) is a substring of
both x(n) and y(n). Therefore, b6z, since z is the greatest lower bound of x and y.
By de4nition,

K(b(n)|z(n))6c log n
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for some constant c; the same inequality is valid for all other selected blocks b since
b(n) has maximal complexity (relative to z(n)) among them. Lemma 1 is proved.

Lemma 2. There exists some constant c such that

K(b|y(n))¿n− c log n

for any n and for any block b that was omitted at nth step of the construction.

Proof. As we have said, the string x(n) can be reconstructed from the string y(n), the
string �(n), some omitted block b, its number and the concatenation of all other omitted
blocks. Here all the information except b has bit size n2+n+(n2−n) + O(log n)= 2n2
+O(log n), and this information includes y(n). Therefore, the complexity of 〈x(n);
y(n)〉 does not exceed K(b|y(n)) + 2n2 + O(log n). On the other hand, the complex-
ity of 〈x(n); y(n)〉 is 2n2 + n + O(1). Comparing the two inequalities, we see that
K(b|y(n))¿n− O(log n). Lemma 2 is proved.

Lemma 3. There exists some constant c such that

K(b|z(n))¿n− c log n

for any n and for any block b that was omitted at nth step of the construction.

Indeed, recall that K(z(n)|y(n))=O(log n) by our assumption; note also that K(b|
y(n))6K(b|z(n)) + K(z(n)|y(n)) + O(log n). Hence, n − O(log n)6K(b|y(n))6K(b|
z(n)) + K(z(n)|y(n)) + O(log n)=K(b|z(n)) + O(log n). Lemma 3 is proved.

Lemma 4. K(�(n)|x(n)) = O(log n):

Proof. Lemma 1 implies that for big n the value K(b|z(n)) is less than n=2 for any
selected block b; Lemma 3 implies that for big n the value K(b|z(n)) is bigger than
n=2 for any omitted block b. Therefore, knowing x(n) and z(n) we can reconstruct the
list of selected blocks just enumerating the strings s such that K(s|z(n))¡n=2 until n
blocks from x(n) appear. Since K(z(n)|x(n))=O(log n) by assumption, we need only
O(log n) additional bits to reconstruct �(n) from x(n). Lemma 4 is proved.

We conclude that K(〈x(n); �(n)〉) is 2n2 +O(log n) but it should be 2n2 + n+O(1).
The contradiction shows that x and y do not have the greatest lower bound.
Let us mention some other properties of the semi-lattice R.
1. The operations “in4mum” and “supremum” do not satisfy the distributive law

even when they are de4ned. Indeed, consider sequences x and y where xn and yn are
random independent strings of length n. Let zn= xn⊕yn (bitwise addition modulo 2).
Then

sup(inf (x; y); z) �= inf (sup(x; z); sup(y; z));
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since inf (x; y)=� (where � is the least element of the semi-lattice), so the left-hand
side is equal to z while the right-hand side is equal to sup(x; y).
Moreover,

inf (sup(x; y); z) �= sup(inf (x; z); inf (y; z));
since left-hand side is equal to z and right-hand side is equal to �.
2. For any two elements x and y in R there exists a sequence z such that sup(y; z)=

sup(y; x) and inf (y; z)=�. Indeed, given x; y and K(x|y) we can enumerate the set
of all programs p such that p(y)= x and length of p is equal to K(x|y). Let z be the
4rst program in this enumeration.
This z could be considered as a “di>erence” between x and y. Di>erence is not

de4ned uniquely; for instance, if xn and yn are random independent strings of length
n, both xn and xn ⊕ yn are di>erences of xn and yn.
The semi-lattice R is only one of the possible re4nements of the intuitive no-

tion “x is simple relative to y”. Here is another possibility. Let us 4x a function
log n6f(n)= o(n); assume that x and y are sequences of strings such that |xn|=O(n);
|yn|=O(n). De4ne x6fy as K(xn|yn)=O(f(n)). One can show that this de4nition
gives a semi-lattice with similar properties (no greatest lower bound; however, the
proof is more diNcult and is omitted).

3. Common and mutual information

The semi-lattice R is a useful tool to analyze the amount of common information
shared by two strings.
Let x and y be two strings. By mutual information in x and y we mean the value

I(x : y)=K(x) + K(y)− K(〈x; y〉). (Sometimes I(x : y) is de4ned as K(y)− K(y|x),
but these quantities di>er only by O(log n) for strings of length at most n, see [3].)

Theorem 3. Let x= x1; x2; : : : and y=y1; y2; : : : be elements of R.
(a) If z= z1; z2; : : : is a lower bound of x and y then

K(zn)6I(xn : yn) + O(log n): (1)

(b) If z= z1; z2; : : : is a lower bound of x and y and

K(zn) = I(xn : yn) + O(log n) (2)

then z is the greatest lower bound of x and y in R.

Proof. (a) Since z6x,

K(〈xn; zn〉) = K(xn) + K(zn|xn) + O(log n) = K(xn) + O(log n):

So

K(xn) = K(〈xn; zn〉) + O(log n) = K(zn) + K(xn|zn) + O(log n): (3)
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Similarly

K(yn) = K(〈yn; zn〉) + O(log n) = K(zn) + K(yn|zn) + O(log n): (4)

On the other hand,

K(〈xn; yn〉)6K(zn) + K(xn|zn) + K(yn|zn) + O(log n): (5)

since we can reconstruct the pair 〈xn; yn〉 from zn and programs that transform zn into
xn and yn. Combining the last three inequalities [(3)+ (4)− (5)], we get the statement
(a).
Let us prove the part (b) now. Assume that z is a lower bound for x and y and

inequality (1) turns into equality (2). Let z′ be any other lower bound for x and y.
Consider the sequence z′′ de4ned as z′′n = 〈zn; z′n〉. It is the least upper bound of z and
z′ (Proposition 1). Therefore z′′6x and z′′6y. Applying (a) to z′′ we see that

K(z′′n ) = K(〈zn; z′n〉)6I(xn : yn) + O(log n)
By assumption, I(xn :yn)=K(zn) +O(log n), so K(〈zn; z′n〉)6K(zn) +O(log n). On the
other hand, K(〈zn; z′n〉)=K(zn)+K(z′n|zn)+O(log n), therefore K(z′n|zn)6O(log n) and
z′6z in R.

Remark. If two sequences x= x1; x2; : : : and y=y1; y2; : : : have the greatest lower
bound z= z1; z2; : : : ; one may call K(zn) “the amount of common information in strings
xn and yn”.

4. Examples where common information is less than mutual information

Informally speaking, strings x and y have u-bit common information z if K(z)= u,
K(z|x)≈ 0, and K(z|y)≈ 0. We know (Theorem 3(a)) that the amount of common
information in two strings is not larger than the mutual information of these strings.
A natural related question is the following one: can common information be far less
than mutual information?
This question was positively answered by G:acs and K;orner [1]. They found out that

there are pairs of strings x and y such that I(x :y) is big but nevertheless any string
z that is simple relative to both x and y (both K(z|x) and K(z|y) are small) is simple
(has small K(z)).
Their construction uses ideas from Shannon information theory. Another construction

was suggested in [4] (see [5] for details). Here we present a third way to construct
examples of that kind.
Consider a 4nite 4eld Fn of cardinality q= qn close to 2n. (Any 4eld of size 2n+O(1)

will work, so we may use the 4eld of cardinality 2n or the 4eld Z=qZ where q is
a prime number between 2n and 2n+1.) Consider three-dimensional vector space over
Fn. Any non-zero vector (f1; f2; f3) generates a line (by “line” we mean a line going
through 0, i.e., one-dimensional subspace). Two lines generated by (f1; f2; f3) and
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(g1; g2; g3) are called orthogonal if f1g1 + f2g2 + f3g3 = 0. Now consider two random
orthogonal lines x and y (i.e. pair of two orthogonal lines (x; y) which has the greatest
possible complexity). We claim that I(x :y) is signi4cant but there is no string z which
is simple relative to both x and y unless z is simple.
More precisely, consider the set

O = {(x; y): x and y are orthogonal lines}:
This set contains q3 +o(q3) elements (there are q2+q+1 lines and each line is orthog-
onal to q+1 lines). Therefore, O contains a pair (x; y) whose complexity is log(q3(1+
o(1)))= 3n+O(1). (We assume that elements of Fn are encoded by binary strings of
length n+O(1), so we can speak about complexities.) Note that K(x)62n+O(log n)
since there are about 22n lines; moreover, K(y|x)6n+O(log n) since y is one of 2n+O(1)
lines orthogonal to A. Recalling the inequality K(〈x; y〉)6K(x) + K(y|x) + O(log n),
we conclude that K(x)= 2n+O(log n) and K(y|x)= n+O(log n). For similar reasons
K(y)= 2n+O(log n) and K(x|y)= n+O(log n). Therefore, I(x :y)= n+O(log n).

Remark. We would like to caution against free usage of geometrical intuition in our
context. For instance, though we use the term “orthogonal”, we have no scalar product
in linear spaces over 4nite 4elds and a nonzero vector may be orthogonal to itself.

Theorem 4. Let 〈xn; yn〉 be a random pair of orthogonal lines in the three-dimensional
space over Fn. For any sequence of strings zn

K(zn)62K(zn|xn) + 2K(zn|yn) + O(log n)
assuming that zn has polynomial (in n) length. [The constant in O(log n)-notation
does not depend on n:]

This theorem implies that sequences x= x1; x2; : : : and y=y1; y2; : : : have �=�;�; : : :
as their greatest lower bound. (Here � denotes the empty string.) Indeed, if K(zn|xn)
=O(log n) and K(zn|yn)=O(log n) for some sequence z= z1; z2; : : : ; then K(zn)=
O(log n) according to Theorem 4.

Proof. Proof of Theorem 4 is based on a simple combinatorial observation.

Lemma 5. Consider a bipartite graph with k vertices 1; : : : ; k on the left and l vertices
1; : : : ; l on the right. Assume that for any two di=erent nodes u; v on the left there
are at most r nodes on the right connected with both u; v. Then the following bound
for the number of edges |E| is valid:
• k6√

l=r⇒|E|62l;
• k¿√

l=r⇒|E|62k√lr:

Indeed, for each element v on the left consider the set Nv of its neighbors on the
right; let nv be the cardinality of Nv. The intersection Nv ∩Nw (for v �=w) contains at
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most r element. Assume that k6
√
l=r. Consider the union of all Nv; it has at least

n1 + n2 + · · ·+ nk −
∑
i¡j
|Ni ∩ Nj|

elements. On the other hand, it has at most l elements. The number of pairs 〈i; j〉 is
less than k26l=r. Therefore

n1 + n2 + · · ·+ nk − (l=r)r6l⇒ |E| = n1 + n2 + · · ·+ nk62l:
The 4rst statement is proved. It implies that for k =

√
l=r (we assume here that the

number
√
l=r is integer; the proof can be easily modi4ed to handle the general case)

the average number of neighbors for vertices on the left is at most 2
√
lr. We use this

observation to prove the second part of the lemma.
Let k¿

√
l=r. Consider

√
l=r vertices on the left having maximum neighborhoods

and delete all other vertices on the left; this makes the average number of neighbors
bigger. But we know that it does not exceed 2

√
lr. The same is true for the initial

graph. Therefore |E|6k · 2√lr. Lemma 5 is proved.
This lemma will be applied to a bipartite graph whose vertices (both on the left and

on the right) are lines; edges connect pairs of orthogonal lines. It is easy to see that
we can let r=1 (if both x; y are orthogonal to both z; u and x �=y then z= u).
Now we are ready to prove Theorem 4. As we know, K(x)=K(y)= 2n and K(〈x; y〉)

= 3n (from now on we omit O(log n)-terms for brevity). Let K(z|x)=p1 and K(z|y)=
p2. We want to get an upper bound for m=K(z). First, let us compute K(x|z) and
K(y|z):

K(x|z) = K(〈x; z〉)− K(z) = K(x) + K(z|x)− K(z) = 2n+ p1 − m:
Similarly, K(y|z)= 2n+p2−m. Consider the set P of all lines whose complexity rel-
ative to z does not exceed K(x|z); this set contains line x and has cardinality 22n+p1−m
(up to a polynomial in n factor). Similarly we get a set Q that contains lines whose
complexity relative to z does not exceed K(y|z); this set has cardinality 22n+p2−m.
Consider a bipartite graph whose edges connect orthogonal lines from P and Q. This
graph satis4es the lemma for r=1, so the number of edges |E| does not exceed

22n+p2−m if (2n+ p1 − m)6(2n+ p2 − m)=2;

22n+p1−m ·
√
22n+p2−m if (2n+ p1 − m)¿(2n+ p2 − m)=2:

On the other hand, the pair 〈x; y〉 represents one of the edges of that graph. If z is
known, we can enumerate P, Q and E, so the pair 〈x; y〉 may be described by its
number in E. Hence 3n=K(〈x; y〉)6K(z)+ log |E|. Therefore, the two bounds for |E|
imply

3n6m+ (2n+ p2 − m)⇒ n6p2

(the 4rst one) and

3n6m+ (2n+ p1 − m) + 1
2 (2n+ p2 − m)⇒ m62p1 + p2



A. Chernov et al. / Theoretical Computer Science 271 (2002) 69–95 79

(the second one). We have to prove that m62p1 + 2p2 (recall that logarithmic terms
are omitted). In the second case it is evident; in the 4rst case one should note that
K(z)6K(z|x) + K(x)6p1 + 2n6p1 + 2p262p1 + 2p2.

Remark. The same example may be reformulated in several ways. Replacing line y
by the orthogonal plane y⊥, we may say that 〈x; y〉 is a random pair 〈line x; plane
y going through x〉. We may then switch from projective plane to aNne plane and say
that 〈x; y〉 is a random pair 〈point x on the aNne plane; line y that goes through x〉.
Indeed, 4x any aNne plane P not going through zero. Then x may be identi4ed with
the common point of P and x and plane y with the common line of y and P. (We
lose lines that are parallel to P, but those lines are not random.) The third way (used
in [5]) to reformulate the example is to say that x=(a; b) and y=(c; ac + b) where
(a; b; c) is a random triple of elements of F . Indeed, x=(a; b) identi4es the aNne line
{(u; v) | v= au + b} (again we lose aNne lines that are parallel to the line u=0, but
all those lines are not random) and y=(c; ac + b) is a point on that line.
Using Lemma 5 we can prove that several other examples of pairs have no common

information. Here are two of them:

Theorem 5. (a) Let 〈xn; yn〉 be a random pair of orthogonal lines in four-dimensional
space over Fn. For any sequence of strings zn

K(zn)62K(zn|xn) + 2K(zn|yn) + O(log n)

assuming that zn has polynomial (in n) length.
(b) The same is true if 〈xn; yn〉 is a random pair of intersecting a>ne lines (one-

dimensional a>ne subspaces) in three-dimensional a>ne space over Fn.

Proof. (a) The proof goes along the same lines as the proof of the previous theorem,
so we just outline the main points.
• K(x)=K(y)= 3n and K(〈x; y〉)= 5n (we omit O(log n)-terms). Thus, in this case
K(x|z)=K(x) + K(z|x)− K(z)= 3n+ p− m and K(y|z)= 3n+ q− m.

• We consider the same bipartite graph (but now a line means a line in a four-
dimensional space). This time the conditions of Lemma 5 are ful4lled for r=2n,
because the number of lines in four-dimensional space orthogonal to two di>erent
given lines is 2n.

• Thus the number of edges |E| does not exceed

23n+q−m if (3n+ p− m)6(2n+ q− m)=2;

23n+p−m ·
√
24n+q−m if (3n+ p− m)¿(2n+ q− m)=2:

• On the other hand, 5n=K(〈x; y〉)6K(z)+log |E|. Therefore, the two bounds for |E|
imply

5n6m+ (3n+ q− m)⇒ 2n6q
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(the 4rst one) and

5n6m+ (3n+ p− m) + 1
2 (4n+ q− m)⇒ m62p+ q

(the second one).
• In the 4rst case one should note that K(z)6K(z|x)+K(x)6p+3n6p+3

2q62p+2q.
(b) This time we connect by edges aNne lines that have a common point, thus the

conditions of the lemma are true for r=22n (there are this many aNne lines intersecting
two given di>erent aNne lines). The rest is as follows:
• K(x)=K(y)= 4n and K(〈x; y〉)= 7n (omitting O(log n)-terms),
• K(x|z)= 4n+ p− m; K(y|z)= 4n+ q− m,
• the number of edges |E| does not exceed 24n+q−m if (4n+ p−m)6(2n+ q−m)=2
and 24n+p−m ·

√
26n+q−m if (4n+ p− m)¿(2n+ q− m)=2,

• hence 7n6m+ (4n+ q−m)⇒ 3n6q in the 4rst case and 7n6m+ (4n+p−m) +
1
2 (6n + q − m)⇒m62p + q in the second case. In the 4rst case one should note
that K(z)6K(z|x) + K(x)6p+ 4n6p+ 4

3q62p+ 2q.

Let us note that in these examples some zn still have more information about xn and
yn than one could expect. For example, if in (b) we consider the intersection point
pn of xn and yn, then K(pn)= 3n, K(xn|pn)= 2n, K(yn|pn)= 2n (omitting O(log n)-
terms). There are some x′n and y

′
n with the same complexities (K(x

′
n)= 4n; K(y

′
n)= 4n,

K(〈x′n; y′n〉)= 7n) for which there is no pn with similar properties. (Remark: Instead
of intersection point we could consider two-dimensional aNne subspace that contains
both lines.)
For (a) one also can 4nd pn that contain more information about xn and yn than

one could expect. The way to construct such pn was pointed by Finkelberg and
Bezrukawnikov. Let W be the two-dimensional subspace (a plane) containing the vec-
tors (1; 0; 0; 0) and (0; 1; 0; 0) (the choice of W is not important: any plane W with
K(W )=O(log n) would work). Let w be any line in W orthogonal to y (obviously it
exists). Take as P the plane having the lines x and w (as x is random, x �∈W ). Let
us note that P has 1-dimensional intersection with W and the number of planes with
this property is about 23n, therefore K(P)63n+O(log n). The number of lines in P is
about 2n, thus K(x|P)6n+ O(log n). The line y is orthogonal to both x; w, therefore
this line is orthogonal to P. The number of lines orthogonal to P is about 2n, therefore
K(y|P)6n+O(log n).
This e>ect (some p contains more information about x and y than one could expect)

is analyzed in Section 6.

5. More examples: a new method

The examples of Theorems 4 and 5(a) are speci4c cases of the following example.
Let m; k be integer constants and let xn and yn be random orthogonal k-dimensional
subspaces of an m-dimensional linear space over Fn. (Recall that Fn denotes a 4eld
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having about 2n elements.) If m¡2k then there are no orthogonal k-dimensional sub-
spaces. If m=2k then xn determines yn uniquely. Hence their greatest lower bound is
equal to xn. So we will assume that m¿2k. It was proven in [6] that for any such
m; k the greatest lower bound of x; y is the sequence �=�;�; : : : : Note that the most
interesting case is when m is close to 2k because then the mutual information of xn; yn
is close to complexities of both xn; yn. Indeed, it is easy to verify that

K(xn) = (mk − k2)n+O(log n);

K(yn) = (mk − k2)n+O(log n);

I(xn : yn) = k2n+O(log n):

So, the fraction I(xn :yn)=K(xn) is close to 1 as k=m is close to 1=2 (recall that k; m are
4xed thus the constants in O-notation may depend on k; m). In this section, we give a
new proof of the result of [6] using clearer combinatorial arguments.

Theorem 6 (Romashchenko [6]). Let 2k¡m and xn and yn be random orthogonal
k-dimensional subspaces of an m-dimensional linear space over Fn (where Fn is a
?eld having about 2n elements). Then there are positive c1; c2 such that the following
holds. For any sequence of strings zn such that K(zn|xn); K(zn|yn)¡c1n; we have
K(zn)6c2(K(zn|xn) + K(zn|yn)) + O(log n). (The constant in O-notation may depend
on m but not on n:)

Proof. Recall the proof of Theorem 4. Using a combinatorial property of the graph
whose nodes are 1-dimensional subspaces of the 3-dimensional space over Fn and
edges connect orthogonal subspaces, we proved that any its subgraph has few edges.
(A subgraph of a graph (V; E) is a graph of the form (U; E ∩ (U ×U )) where U ⊆V .)
That property stated that any two nodes have at most one common neighbor. Now this
property does not hold and we shall de4ne another one. Graphs satisfying that property
will be called t; �-oblivious. (Now we shall consider ordinary undirected graphs, not
bipartite ones.) Then we will prove an appropriate analog of Lemma 5 for t; �-oblivious
graphs.
Assume that starting from a node v∈V we make t moves of a random walk in the

4nite graph (V; E); on every step we move to a random neighbor of the current node.
Let v(t) stand for the end node of the walk. The graph is called t; �-oblivious if for
any v∈V and for any U ⊆V ,

Prob[v(t) ∈ U ]6 |U ||V | + �:

Lemma 6. Let (V; E) be the graph whose nodes are k-dimensional subspaces of the
m-dimensional space over Fn and edges connect orthogonal subspaces. Then (V; E)
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is t; �-oblivious; where t=2�k=(m − 2k)�; and �=C2−n (where C is a positive real
depending on m but not on n).

Proof. Let a; b be two subspaces of the m-dimensional space over Fn. It is well known
that

dim a+ dim b = dim (a ∪ b) + dim (a ∩ b):

Here a∪ b stands for linear sum of a and b. Hence dim(a∩ b)¿dim a + dim b −
m. Assume that a is 4xed, dim a= k, and b is a random l-dimensional subspace.
With overwhelming probability the dimension of a∩ b is as low as possible (that is,
max{0; k + l− m}). More precisely, the following claim is true.

Claim 1. The probability of the event

dim(a ∩ b) = max{0; k + l− m}

is at least (1− C2n) for some positive C depending only on m.

(We postpone the proof of the claim to the end of the proof of the theorem.)
Let a and b be k-dimensional subspaces such that

dim(a ∩ a⊥) = r0;

dim(a ∩ b) = r1;

dim(a⊥ ∩ b) = r2;

dim(a ∩ a⊥ ∩ b) = r3;

dim((a ∪ a⊥) ∩ b) = r4;

where a⊥ stands for orthogonal complement to a. (Note that intersection of a and a⊥

may be nontrivial.) Let c be a random k-dimensional subspace from the orthogonal
complement to b.

Claim 2. For some positive C depending only on m with probability greater than
(1− C2−n) it holds

dim(a ∩ c) = max{0; r2 − (m− 2k)};

dim(a⊥ ∩ c) = r1;

dim(a ∩ a⊥ ∩ c) = max{0; r4 − (m− k − r0)};

dim((a ∪ a⊥) ∩ c) = r3 + k − r0:
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Proof. Find 4rst the dimension of intersection of a with the orthogonal complement
to b. As dim a⊥=m− dim a=m− k, we have

dim(a ∩ b⊥) = dim(a⊥ ∪ b)⊥ = m− dim(a⊥ ∪ b)

= m− (dim a⊥ + dim b− dim(a⊥ ∩ b)) = m− ((m− k) + k − r2) = r2:

As a∩ c=(a∩ b⊥)∩ c we can 4nd the most probable dimension of a∩ c by applying
Claim 1 to subspaces a∩ b⊥ and c of the linear space b⊥. Thus we obtain

dim(a ∩ c) = max{0; r2 + k − (m− k)} = max{0; r2 − (m− 2k)}
with probability at least (1 − C2−n). In a similar way we 4nd the most probable
dimension of intersection of subspaces a⊥ and c. We have

dim(a⊥ ∩ b⊥) = dim(a ∪ b)⊥ = m− dim(a ∪ b)

= m− (dim a+ dim b− dim (a ∩ b)) = m− (k + k − r1) = m− 2k + r1:
Applying Claim 1 to subspaces a⊥ ∩ b⊥ and c of linear space b⊥ we see that

dim(a⊥ ∩ c) = max{0; (m− 2k + r1) + k − (m− k)} = max{0; r1}
with probability at least (1− C2−n). In a similar way we obtain

dim(a ∩ a⊥ ∩ b⊥) = m− dim(a ∪ a⊥ ∪ b)

= m− dim(a ∪ a⊥)− dim b+ dim((a ∪ a⊥) ∩ b)

= m− (m− r0)− k + r4 = r0 − k + r4:
Thus

dim(a ∩ a⊥ ∩ c) = max{0; (r0 − k + r4) + k − (m− k)}

= max{0; k + r4 − m+ r0}
with probability at least (1− C2−n). Finally,

dim((a ∪ a⊥) ∩ b⊥) = m− dim((a ∩ a⊥) ∪ b)

= m− dim(a ∩ a⊥)− dim b+ dim(a ∩ a⊥ ∩ b)

= m− r0 − k + r3:
Thus

dim((a ∪ a⊥) ∩ c) = max{0; (m− r0 − k + r3) + k − (m− k)} = r3 + k − r0
with probability at least (1− C2−n). The claim is proven.
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Fix an arbitrary v∈V . Denote by r0 dimension of intersection v∩ v⊥. Let Si stand
for the set of all u∈V such that

dim(v ∩ u) = r1(i);

dim(v⊥ ∩ u) = r2(i);

dim(v ∩ v⊥ ∩ u) = r3(i);

dim((v ∪ v⊥) ∩ u) = r4(i);

where r1(0)= k; r2(0)= r0; r3(0)= r0; r4(0)= k, and

r1(i + 1) = max{0; r2(i)− (m− 2k)};

r2(i + 1) = r1(i);

r3(i + 1) = max{0; r4(i)− (m− k − r0)};

r4(i + 1) = r3(i) + k − r0:

The above recurrence implies that

r1(i + 2) = max{0; r1(i)− (m− 2k)};

r2(i + 2) = max{0; r2(i)− (m− 2k)};

r3(i + 2) = max{0; r3(i)− (m− 2k)};

r4(i + 2) = max{k − r0; r4(i)− (m− 2k)}:

Hence r1(t)= r2(t)= r3(t)= 0; r4(t)= k−r0 (recall that t=2�k=(m−2k)�). By Claim 1
the probability for a random x∈V to get into St is at least 1 − C2−n for some C
depending only on m.
Let v(i); i6t denote the ith node in a random walk starting from v (and v(0)= v).

Let Gi stand for the event

v(0) ∈ S0; v(1) ∈ S1; : : : ; v(i) ∈ Si:

Using Claim 2 it is easy to prove by induction that for any v∈V the probability of
Gi is at least 1− C2−n (where C depends on m only).

Claim 3. Let a; b and c be as in Claim 2. The probability of event

dim(a ∩ c) = q1;

dim(a⊥ ∩ c) = q2;
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dim(a ∩ a⊥ ∩ c) = q3;

dim((a ∪ a⊥) ∩ c) = q4;

is a function of k; r0; r1; r2; r3; r4; q1; q2; q3; q4 (but it does not depend on the choice of
a and b).

(We postpone the proof of the claim to the end of the proof of the theorem.)

Claim 4. The probability Prob[v(i)= ui|Gi] is the same for all ui ∈ Si (and hence is
equal to 1=|Si|).

Proof. The proof is by induction on i. For i=0 the statement is trivial. Let i¿0 and
ui ∈ Si. We have

Prob[v(i) = ui|Gi] = Prob[v(i) = ui|Gi−1]Prob[Gi−1]Prob[Gi]
:

The second factor does not depend on ui, so it remains to prove that neither does the
4rst factor. Let U⊥

i denote the set of all u∈V orthogonal to ui. We have

Prob[v(i) = ui|Gi−1] =
∑

ui−1∈Si−1∩U⊥
i

Prob[v(i − 1) = ui−1|Gi−1]
M

;

where M stands for the number of k-dimensional subspaces orthogonal to a 4xed k-
dimensional subspace. By induction hypothesis the numerator of the last fraction is
equal to 1=|Si−1|. Therefore we have

Prob[v(i) = ui|Gi−1] =
∑

ui−1∈Si−1∩U⊥
i

1
M |Si−1| =

|Si−1 ∩ U⊥
i |

M |Si−1| :

The factor |Si−1 ∩U⊥
i |=M is equal to the probability of the event “a random x∈V

orthogonal to ui belongs to Si−1”. By Claim 3 this probability does not depend on
ui ∈ Si. Claim 4 is now proved.

By Claim 4 for any U ⊆V we have

Prob[v(t) ∈ U |Gt] = |U ∩ St |=|St |
Therefore,

Prob[v(t) ∈ U ] = Prob[v(t) ∈ U |Gt] · Prob[Gt] + Prob[v(t)∈U; SGt]

6 |U ∩ St |=|St |+ Prob[ SGt]:
The second term is bounded by C2−n. Estimate the 4rst term:

|U ∩ St |
|St | 6

|U |
|V |(1− C2−n)6

|U |
|V | + C

′2−n:
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Lemma 7. Assume that every node in a t; �-oblivious graph (V; E) has degree d or
less. Then the number of edges in any subgraph U of V is at most �|U |; where

� =

⌊
d
( |U |
|V | + �

)1=t⌋
:

Proof. De4ne U ′⊆U as follows. Let us start with U ′= ∅ and iterate the following
step: if there is a node v∈U\U ′ that has at most � adjacent nodes in U\U ′ then
choose any such node and include it in U ′. Otherwise halt. The resulting subgraph
U ′ has at most �|U ′| edges, as on each step the number of edges that are incident to
some node in U ′ increases at most by �. Another useful property of U ′ is as follows:
any node v∈U\U ′ has at least � + 1 neighbors in the set U\U ′. Let us prove that
actually U ′ coincides with U . Suppose this is not true. Then choose a node v∈U\U ′.
We have

Prob[v(t) ∈ U\U ′]¿
(
�+ 1
d

)t

¿
|U |
|V | + �:

On the other hand,

Prob[v(t) ∈ U\U ′]6Prob[v(t) ∈ U ]6 |U ||V | + �:

These two inequalities are inconsistent, this proves that U ′=U . Thus the number of
edges in U is at most �|U |.

Lemma 8. Let t be an integer number and 0¡�¡1 a real number. Let G=(V; E)
be a t; �-oblivious graph in which any node has degree d. Let (u; v) be a random edge
in G (that is; K(u; v|G)¿ log |E|) and let z be a string. Then at least one of the
following three inequalities holds:

K(z|u; G)¿1
t

(
log

1
�
− 1

)
;

K(z|v; G)¿1
t

(
log

1
�
− 1

)
;

K(z|G)¡ (t + 1)max{K(z|u; G); K(z|v; G)}+O
(
log

(
log

1
�
+ log |V |

))

(the constant in O-notation does not depend on t; �).

Proof. Assume that the 4rst two inequalities are false. Let

k = max{K(z|u; G); K(z|v; G)}; m = K(z|G):
We have �¡2−kt−1. First estimate m very roughly:

m = K(z|G)6K(z|u; G) + 2K(u|G) + O(1)61
t
log

1
�
+ 2 log |V |+O(1):
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Thus the complexities of all u; v; z conditional to G are polynomial in log |V |; log 1� . In
what follows we omit additive O(log(log |V |+ log 1� )) terms. We have

K(u|z; G) = K(u|G) + K(z|u; G)− K(z|G)6 log |V |+ k − m:
The same bound is valid for K(v|z; G).
Let U be the set of all x∈V such that K(x|z; G)6K(u|z; G); K(v|z; G). Then |U |6

|V |2k−m (up to a factor polynomial in log |V |; log 1� ). By Lemma 7 we obtain the
following upper bound for the number EU of edges in U :

|EU |6d|U |
( |U |
|V | + �

)1=t
:

As u; v∈U and U (hence EU ) is enumerable given z; G; K(u|z; G); K(v|z; G), we have

log(|V |d=2) = log |E|6K(u; v|G)6 log |EU |+ K(z|G)

6 log d+ log |U |+ log
( |U |
|V | + �

)1=t
+ m

6 log d+ log |V |+ (k − m) + (1=t) log(2k−m + �) + m:
Therefore, we have

2−kt62k−m + �

(up to a factor polynomial in log |V |; log(1=�)). By our assumption � is less than half
of 2−kt . Hence

−kt6k − m⇒ m6(t + 1)k:

The assertion of the theorem is a direct corollary of the proven lemmas.
Thus it remains to prove Claims 1 and 3.

Proof of Claim 1. Let N stand for the number of elements in the 4eld Fn (recall that
N≈2n). Let u be an i-dimensional subspace of the m-dimensional space over Fn. The
number of vectors that do not belong to u is equal to Nm − Ni=Nm(1 + O(1=N ))
(provided i¡m). Assume that i + l6m. The number Seqmil of sequences of vectors
e1; : : : ; el such that the system

(a basis of u) ∪ {e1; : : : ; el}
is independent is equal to Nml(1+O(1=N )) (the constant in O-notation depends on l).
Let Subml stand for the number of l-dimensional subspaces of the m-dimensional

space. We have

Subml =
Seqm0l
Seql0l

=
Nml(1 + O(1=N ))
Nl2 (1 + O(1=N ))

= N (m−l)l(1 + O(1=N )):
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Let a be a k-dimensional subspace. The number of l-dimensional subspaces b such
that dim (a∩ b)= s is equal to the number of s-dimensional subspaces c of a multiplied
by the number of l-dimensional subspaces b whose intersection with a is equal to a
4xed s-dimensional subspace c:

Subks
Seqmkl−s
Seqlsl−s

:

Hence the probability that a random l-dimensional subspace b satis4es the equality
dim (a∩ b)= s is equal to

Subks Seq
mk
l−s

Seqlsl−sSub
m
l

=
N (k−s)sNm(l−s)

Nl(l−s)N (m−l)l
(1 + O(1=N ))

= N (k+l−m−s)s(1 + O(1=N )):

This probability is exponentially (in n) close to 1 when either s=0 or s= k + l− m.

Proof of Claim 3. Assume that

dim(a ∩ b) = r1; dim(a⊥ ∩ b) = r2; dim(a ∩ a⊥ ∩ b) = r3;

dim((a ∪ a⊥) ∩ b) = r4:

Then

dim(a ∩ b⊥) = r2;

dim(a⊥ ∩ b⊥) = m− 2k + r1;

dim(a ∩ a⊥ ∩ b⊥) = r0 − k + r4;

dim((a ∪ a⊥) ∩ b⊥) = m− r0 − k + r3:
Thus the claim is a particular case of the following general fact.

Let �; �; 4 be subspaces of a linear space L over a 4nite 4eld F such that �∪ �⊆ 4.
Then the probability for a random k-dimensional subspace 6 of L of satisfying the
equalities dim(6∩ �)= q1, dim(6∩ �)= q2; dim(6∩ �∩ �)= q3; dim(6∩ 4)= q4,
depends only on k; q1; q2; q3; q4; dim �; dim �; dim(�∩ �); dim 4; dim L; |F |.

(We apply this assertion to �= a∩ b⊥, �= a⊥ ∩ b⊥; 4=(a∪ a⊥)∩ b⊥; L= b⊥.)

Proof. Let �′; �′; 4′ be a triple of linear subspaces such that �′ ∪ �′⊆ 4′ and dim �′=
dim �; dim �′=dim �; dim(�′ ∩ �′)= dim(�∩ �); dim 4′=dim 4. Then there is an au-
tomorphism ’ of L such that ’�= �′; ’�= �′; ’4= 4′. Indeed, construct 4ve systems
of vectors A1; A2; : : : ; A5 as follows. The 4rst system, A1 is a basis of �∩ �. The second
system, A2 completes A1 to the basis of �. The third system, A3 completes A1 to the
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basis of �. It is easy to see that A1 ∪A2 ∪A3 is a basis of �∪ �. The fourth system,
A4 completes this union to the basis of 4. The 4fth system, A5 completes the union
of the four de4ned systems to the basis of L. In a similar way construct 4ve systems
A′
1; A

′
2; : : : ; A

′
5 for �

′; �′; 4′. The assumptions on dimensions of subspaces guarantee that
Ai and A′

i have the same number of elements. The automorphism ’ is generated by
one to one correspondence between Ai and A′

i .
Thus we have

Prob[dim(6 ∩ �) = q1; dim(6 ∩ �) = q2;

dim(6 ∩ � ∩ �) = q3; dim(6 ∩ 4) = q4]

= Prob[dim’(6 ∩ �) = q1; dim’(6 ∩ �) = q2;

dim’(6 ∩ � ∩ �) = q3; dim’(6 ∩ 4) = q4]

= Prob[dim(’6 ∩ ’�) = q1; dim(’6 ∩ ’�) = q2;

dim(’6 ∩ ’� ∩ ’�) = q3; dim(’6 ∩ ’4) = q4]

= Prob[dim(6 ∩ �′) = q1; dim(6 ∩ �′) = q2;

dim(6 ∩ �′ ∩ �′) = q3; dim(6 ∩ 4′) = q4]:

6. More about common information

Let us reformulate our informal de4nition of common information. We say that
strings x and y have u-bit common information z if K(z)6u, K(x|z)6K(x)− u, and
K(y|z)6K(y)− u. (It is easy to see that all three inequalities in fact are equalities in
that case.)
The question whether such z exists is a special case of a more general question: we

may ask for given u; v; w whether there is a string z such that K(z)6u; K(x|z)6v, and
K(y|z)6w. The set of all triples (u; v; w) for which such a z exists could be considered
as “complexity pro4le” of the pair x; y.
Technically speaking, we should consider sequences of strings instead of individual

strings. Let x= x1; x2; : : : and y=y1; y2; : : : be two sequences such that |xn|=O(n) and
|yn|=O(n). (Only sequences satisfying these conditions will be considered in this
section.) A triple of reals (u; v; w) is called x; y-admissible, if there exists a sequence
z= z1; z2; : : : and a constant c such that

K(zn)6un+ c log n; K(xn|zn)6vn+ c log n; K(yn|zn)6wn+ c log n (6)

for all n. A triple of reals (u; v; w) is called x; y-non-admissible, if for any c and
for all suNciently large n there is no zn satisfying (6) (we consider triples of non-
negative reals only). Note that no triple can be x; y-admissible and x; y-non-admissible
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simultaneously. But it may happen that a triple falls in neither of these two categories
(below we shall give such an example).
The set of all x; y-admissible triples is denoted by M+

x;y. The larger M
+
x;y is, the

more information x and y share. The set of all x; y-non-admissible triples is denoted
by M−

x;y.
Here is a trivial example: assume that xn is a random string of length n and yn= xn.

Then

M+
x;y = {(u; v; w) | u+ v¿1; u+ w¿1}; M−

x;y = [0;∞)3 \M+
x;y:

If xn; yn are random independent strings of length n, then M+
x;y is much smaller:

M+
x;y = {(u; v; w) | u+ v¿1; u+ w¿1; u+ v+ w¿2};

M−
x;y = [0;∞)3 \M+

x;y:

If xn; yn are random strings of length n such that xn=yn for even n and xn; yn are
independent for odd n then

M+
x;y = {(u; v; w) | u+ v¿1; u+ w¿1; u+ v+ w¿2};

M−
x;y = {(u; v; w) | u+ v ¡ 1 or u+ w ¡ 1}

(so in this example M+
x;y and M

−
x;y are not complementary). As we shall see, the values

of K(xn); K(yn) and K(〈xn; yn〉) do not determine the sets M+
x;y; M

−
x;y completely.

For simplicity we restrict ourselves to one special case: we assume that

K(xn) = 2n+O(log n); K(yn) = 2n+O(log n);

K(〈xn; yn〉) = 3n+O(log n): (7)

Consider the following two sets of triples. The 4rst one, called M−
min, contains all

the triples satisfying at least one of the inequalities

u+ v+ w ¡ 3; u+ v ¡ 2; u+ w ¡ 2: (8)

The second one, called M+
min, contains all the triples outside M

−
min satisfying at least

one of the inequalities

u+ v+ w¿4; u+ v¿3; u+ w¿3: (9)

Theorem 7. (a) For any sequences x; y satisfying (7)

M+
min ⊆M+

x;y; M−
min ⊆M−

x;y:

(b) There exist sequences x; y satisfying (7) such that M+
x;y= [0;∞)3 \M−

min (hence
M−
x;y=M

−
min).
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(c) There exist sequences x; y satisfying (7) such that M−
x;y= [0;∞)3 \M+

min (hence
M+
x;y=M

+
min).

Proof. (a) Using the inequalities

K(〈xn; yn〉)6K(zn) + K(xn|zn) + K(yn|zn) + O(log n)

and K(xn)6K(zn) + K(xn|zn) + O(log n) we see that inequalities (6) and (7) imply

3n+O(log n)6 un+ vn+ wn+O(log n);

2n+O(log n)6 un+ vn+O(log n);

2n+O(log n)6 un+ wn+O(log n):

Hence if at least one of the inequalities

36u+ v+ w; 26u+ v; 26u+ w (10)

is not ful4lled the triple (u; v; w) is x; y-non-admissible. Thus, for every x; y the set
M−
x;y includes the set M

−
min.

Let us prove that M+
min ⊆Mx;y. Without loss of generality assume that |xn|=2n +

O(log n), |yn|=2n + O(log n) (otherwise replace xn and yn by minimum length pro-
grams to compute them). Let (u; v; w) be in M+

min. Then the triple (u; v; w) satis4es all
the inequalities (10) and at least one of the inequalities (9). So consider three cases.
(1) u+ v+w¿4: If v; w62 let z be the concatenation of the 4rst 2n− vn bits of x

and the 4rst 2n− wn bits of y (we omit logarithmic terms). Since u+ v + w¿4, we
have |z|=2n− vn+ 2n− wn6un. To obtain x given z we need the remaining vn bits
of x and the numbers n; �vn�; �wn�, so K(x|z)6vn. Analogously, K(y|z)6wn.
Otherwise, if say v¿2, let z consist of the 4rst un bits of y (and z=y if 2¡u). Then

K(y|z)62n− un6wn (if u62, and K(y|z)= 06wn otherwise). And K(x|z)6K(x)6
2n6vn.
(2) u + v¿3: If u62 let z consist of the 4rst un bits of y. To 4nd x given z it

suNces to know the remaining 2n−un bits of y and the minimum program to compute
x given y (having n bits). So to 4nd x given z it suNces to have 2n − un + n6vn
extra bits. And K(y|z)62n− un6wn.
Otherwise (if u¿2) let z be the concatenation of y and the 4rst un − 2n bits of

minimum length program p to compute x given y (and z=yp if un − 2n¿n). To
obtain x given z it suNces to have the remaining n− (un− 2n)6vn bits of p.
(3) u+ w¿3: Similar to the previous case.
(b) Let xn=pq, yn=pr, where p; q; r are random independent strings of length n.

We have to prove that any triple satisfying the inequalities (10) is x; y-admissible.
If u61 let z consist of the 4rst un bits of p. To 4nd x [y] given z it suNces to

have the remaining n − un bits of p and the whole string q [r]. So the total number
of bits is n− un+ n6vn [n− un+ n6wn].
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If u¿1 and v¿1 let z consist of the 4rst un bits of y. To 4nd x given z it suNces
to have q (n bits). To 4nd y given z it suNces to have the remaining 2n− un bits of
y and 2n− un6wn.
If u¿1 and w¿1 use the same argument.
If u¿1 and v; w¡1 let z be the concatenation of p, the 4rst n − vn bits of q and

the 4rst n− wn bits of r. The length of z is n+ n− vn+ n− wn6un. To 4nd x [y]
given z it suNces to have the remaining vn [wn] bits of q [r].
The proven fact agrees with our intuition that these x and y have as much common

information as possible (under restriction (7)).
(c) This is the most interesting part of the theorem; the proof uses methods from

[5].
The set [0;∞)3 \M+

min consists M
−
min and of those triples satisfying the inequalities

u+ v+ w ¡ 4; u+ v ¡ 3; u+ w ¡ 3: (11)

By item (a) we have M−
min ⊆M−

x;y. Therefore, it suNces to prove that any triple sat-
isfying (11) belongs to M−

x;y. Let (u; v; w) satisfy (11). Note that all three inequalities
are strict. Assume that for in4nitely many n there is zn for which inequalities (6) are
true. Then for in4nitely many n,

K(zn) + K(xn|zn) + K(yn|zn)¡ 4n; (12)

K(zn) + K(xn|zn)¡ 3n; (13)

K(zn) + K(yn|zn)¡ 3n: (14)

Therefore, it suNces to prove the following lemma.

Lemma 9. There are x; y satisfying (7) such that for all but ?nitely many n there is
no zn satisfying inequalities (12)–(14).

Proof. Let us 4x a natural number n. As usually we will omit the subscript n in xn,
yn, etc.
We choose the pair (x; y) from the set U consisting of pairs of strings of length

2n + 2 log n. So |U |=24nn4. First remove from U all pairs satisfying at least one of
the following requirements:
• K(x)¡2n,
• K(y)¡2n,
• K(〈x; y〉)¡3n,
• there is z satisfying inequalities (12)–(14).
Let us count the number of pairs removed from U to show that U does not become
empty. Indeed, less than 22n22nn2 pairs have been removed for the 4rst reason (and
the same amount for the second one), less than 23n for the third reason and less than
(4n)324n for the fourth reason (for any k; l; m there are at most 2k2l2m pairs x; y such
that there is z with K(z)= k, K(x|z)= l, K(y|z)=m; and the number of triples k; l; m
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satisfying the inequality k + l + m¡4n is less than (4n)3). Thus the total number of
removed pairs is less than

2× 24nn2 + 23n + (4n)324n ¡ 24nn4

(for suNciently large n).
Let (x; y) be the least pair remaining in U (with respect to any 4xed well founded

order). Then K(x)= 2n+O(log n), K(y)= 2n+O(log n), K(〈x; y〉) ≥ 3n and there is
no z satisfying inequalities (12)–(14). Thus, to prove the lemma it suNces to show
that K(〈x; y〉) ≤ 3n+O(log n).
Let Wk; l stand for the set consisting of all pairs (a; b) such that K(a)6k and

K(b|a)6l. To identify (x; y) it suNces to know n, the set {x′|K(x′)¡2n}, the set
{(x′; y′)|K(〈x′; y′〉)¡3n}, and the sets Wk; l for all k + l¡3n. The elements of these
sets can be enumerated given n. Therefore to get the lists of all these sets it suNces
to know n and the number

m = |{x′ |K(x′)¡ 2n}|+ |{(x′; y′) | K(〈x′; y′〉)¡ 3n}|+ ∑
k+l¡3n

|Wk;l|

(given n we enumerate all these sets until m elements have been enumerated; if a pair
belongs to several sets we count it separately for each set). As

m ¡ 22n + 23n +
∑

k+l¡3n
2k+l+2 ¡ 23n+1 +

∑
j¡3n

(j + 1)2j+26(3n)223n+2;

we get

K(〈x; y〉)6 logm+O(log n)63n+O(log n):

The proof of Theorem 7(c) is non-constructive, it gives no “example” of the pair
(x; y) with M−

x;y= [0;∞)3 \ M+
min. An example would be a computable sequence of

4nite non-empty sets An of low complexity (say O(log n)) such that any random pair
(xn; yn) in An satis4es Theorem 7(c). Such an example was recently constructed by
An. A. Muchnik (unpublished).
In Section 4 we presented several examples of sequences x; y whose common infor-

mation is less than mutual information. It would be interesting to 4nd the complexity
pro4le for these examples. Unfortunately, we know only few things. We present here
known facts about random orthogonal lines in three-dimensional space. In the rest of
the paper let x; y be sequences mentioned in Theorem 4. Using Lemma 5 we obtain
the following lower bound for M−

x;y.

Theorem 8. The set M−
x;y contains any triple (u; v; w) such that u+ v=2+max{w; v=2}

¡3 or u+ w=2 + max{v; w=2}¡3.

Note that there are such triples outside M−
min (for instance, the triple (1:1; 1:1; 1:1)).

Proof. Assume that u + w=2 + max{w=2; v}¡3 (the other case is entirely similar).
Assume that for some c for in4nitely many n there is zn such that (6) holds. Fix any
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such n (in the sequel we omit subscript n in xn; yn; zn). We use Lemma 5 for the same
bipartite graph as in Theorem 4: left nodes are lines having complexity at most K(x|z)
conditional to z, right nodes are lines having complexity at most K(y|z) conditional to
z, and edges connect orthogonal lines. By Lemma 5 we have

|E|62
√
l max{

√
l; k}:

Therefore (we omit logarithmic terms)

3n6K(〈x; y〉)6 log |E|+ K(z)6(1=2) log l+ log max{
√
l; k}+ K(z)

6wn=2 + max{w=2; v}n+ un:
As this is true for in4nitely many n (up to O(log n) term) we get 36u + w=2 +
max{w=2; v}, a contradiction.

A natural question is whether the inclusion M+
min ⊆M+

x;y is also strict. The answer to
this question may depend on the choice of the 4eld Fn. Note that all proven theorems
on x; y are true for any choice of Fn. However, it turns out that if the 4eld Fn has
size p2, where p is an integer then the set M+

x;y contains the triple (1:5; 1; 1) that is
outside M+

min. But we do not know whether this is true for other 4elds. Recall that
we gave similar examples for x; y from Theorem 5. To obtain such examples we used
arguments from linear algebra. Such arguments can provide only triples (u; v; w) whose
coeNcients are dimensions of certain linear spaces. But the 4rst component of the triple
(1:5; 1; 1) is not an integer so now we cannot use linear-algebraic arguments directly.
To overcome this diNculty we “double” the dimension by regarding three-dimensional
linear space over Fn as a six-dimensional linear space over the sub4eld Gn of Fn of
size p. Now 1:5 may be obtained as dimension 3 of a space over Gn.

Theorem 9. Assume that all ?elds Fn are of size p2n where pn are integers. Then
M+
x;y contains the triple (1:5; 1; 1).

Note that together with previous theorem this implies that in the case |Fn|=p2n the
triple (1:5; 1; 1) is on the border line between M−

x;y and M
+
x;y.

Proof. We shall use the following representation of the example x; y of Theorem 4:
x=(a; b), y=(c; ac + b) where (a; b; c) is a random triple of elements of Fn. The
pair x=(a; b) will be called a line and y=(c; ac+ b) a point (on that line). (See the
remark after Theorem 4.)
What do we gain assuming that |Fn|=p2n (for all n)? In this case the 4eld F =Fn

has a sub4eld of p=pn elements, denoted by G. Let �∈F be a primitive element of
F over G. Thus any element in F can be represented in the form h + s� for some
h; s∈G.
We construct a family of p3 disjoint p3-element sets of pairs 〈a line, a point on

that line〉, whose union covers the set S of all p6 such pairs. Each set will involve
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p2 di>erent points and p2 di>erent lines, each of those p2 points will belong to p of
those p2 lines, and conversely each of those p2 lines will have p of those p2 points.
To construct such family represent each pair 〈x; y〉 ∈ S in the form

x = (f + r�; h+ s�); y = (g+ t�; fg+ h+ (ft + gr + s)�+ rt�2);

where f; g; h; r; t; s∈G. Fixing r; t; s we obtain a set Srts of p3 pairs from S having
p2 lines. Unfortunately Srts has about p3 points. Let us try to reduce the number of
points in each Srts: the substitution s 	→ s − ft changes the above representation of a
pair 〈x; y〉 ∈ S to

x = (f + r�; h+ (s− ft)�); y = (g+ t�; fg+ h+ (gr + s)�+ rt�2):

Now, any line in Srts is identi4ed by pair (f; h) thus there are p2 di>erent lines in
Srts; any point in Srts is identi4ed by pair (g; fg+ h) thus there are p2 di>erent points
in Srts.
Let us 4nish the proof. We take as z the set from our family which contains the pair

〈x; y〉. As the number of sets is p3 we have K(z)63 logp+O(log n)= 1:5n+O(log n).
As each set has p2 di>erent lines and p2 di>erent points, we have K(x|z); K(y|z)62 log
p+O(log n)= n+O(log n).
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