We consider the following game between Mathematician and Adversary. A natural $n \geq 2$ is a parameter of the game. A game position is $n+1$ positive real numbers L, L_{1}, \ldots, L_{n}. Denote by $L(t), L_{1}(t), \ldots, L_{n}(t)$ their values after step t.

Before the game (at step 0) all these numbers are equal to zero.
At step t, Mathematician announces real numbers $p_{1}, \ldots, p_{n} \in[0,1]$ such that $\sum_{i} p_{i}=1$. Then Adversary announces numbers $l_{1}, \ldots, l_{n} \in[0,1]$ (not necessarily summing up to 1). And then the position is updated:

$$
\begin{aligned}
L_{i}(t) & =L_{i}(t-1)+l_{i}, \quad i=1, \ldots, n \\
L(t) & =L(t-1)+p_{1} l_{1}+\cdots+p_{n} l_{n}
\end{aligned}
$$

The value $L(t)-\min _{i} L_{i}(t)$ is the loss of Mathematician (who tries to make it smaller) and the gain of Adversary.

Theorem 1. For $n=2$, for any T, Adversary has a polynomially computable strategy such that at each step either $l_{1}=1, l_{2}=0$ or $l_{1}=0, l_{2}=1$, and this strategy guarantees that

$$
L(T)-\min _{i} L_{i}(T) \geq c \sqrt{T}
$$

where c is a constant.
This strategy can be considered as a strategy against Learner in the absolute loss game or randomized simple prediction game (cf. [1]).

Proof. Let $\alpha<1$ be a positive constant that will be specified later.
For each $i=1,2$, the strategy stores the number $g_{i}(t)=\sqrt{T}-L(t)+L_{i}(t)$.
At step $t<T$ the strategy does the following. If $g_{i}(t)<\sqrt{\alpha T}$ for one of i, then the strategy takes $l_{i}=0$. Otherwise, the strategy computes $g_{1}(t+1) g_{2}(t+1)$ for both possible moves of Adversary (the move ($p, 1-p$) of Mathematician is known at the moment), and chooses the move that minimizes this product. In other words, the move of Adversary is $l_{1}=0, l_{2}=1$ if $p\left(g_{1}(t)+g_{2}(t)\right)-g_{2}(t)<0$, and $l_{1}=1, l_{2}=0$ otherwise.

If $g_{i}(t)<\sqrt{\alpha T}$, the strategy's move guarantees that $g_{i}(t+1) \leq g_{i}(t)$, thus $g_{i}(T)<\sqrt{\alpha T}$ and $L(t)-L_{i}(t)>(1-\sqrt{\alpha}) \sqrt{T}$.

Let us prove that it will happen at some step $t \leq T$ that $g_{i}(t)<\sqrt{\alpha T}$ for one of i. It suffices to prove that $g_{1}(T) g_{2}(T)<\alpha T$.

Let us estimate the change of $g_{1}(t) g_{2}(t)$ at one step assuming that $g_{i}(t) \geq$ $\sqrt{\alpha T}$ for $i=1,2$. Let the move of Mathematician be $(p, 1-p)$. Then $g_{1}(t+$ 1) $g_{2}(t+1)$ can be $\left(g_{1}(t)-(1-p)\right)\left(g_{2}(t)+p\right)$ or $\left(g_{1}(t)+(1-p)\right)\left(g_{2}(t)-p\right)$ depending on the move of Adversary. The minimum of these two values is $g_{1}(t) g_{2}(t)-\left|p g_{1}(t)-(1-p) g_{2}(t)\right|-p(1-p)$. It is easy to see that the minimum of $p(1-p)+\left|p\left(g_{1}(t)+g_{2}(t)\right)-g_{2}(t)\right|$ over p is attained at $p=g_{2}(t) /\left(g_{1}(t)+g_{2}(t)\right)$ (we assume here that $g_{1}(t)+g_{2}(t) \geq 1$, which holds if $2 \sqrt{\alpha T} \geq 1$), thus the strategy guarantees that

$$
g_{1}(t+1) g_{2}(t+1) \leq g_{1}(t) g_{2}(t)-g_{1}(t) g_{2}(t) /\left(g_{1}(t)+g_{2}(t)\right)^{2}
$$

independent of the move of Mathematician.
Let us bound $g_{1}(t)+g_{2}(t)$ from above. We see that $g_{1}(t) g_{2}(t)$ does not increase, therefore $g_{1}(t) g_{2}(t) \leq g_{1}(0) g_{2}(0)=T$ and $g_{1}(t)+g_{2}(t) \leq g_{1}(t)+$
$T / g_{1}(t)$. Without loss of generality, assume that $g_{1}(t) \leq g_{2}(t)$, then $g_{1}(t) \leq \sqrt{T}$, and the maximal (over $g_{1}(t) \geq \sqrt{\alpha T}$) value of $g_{1}(t)+T / g_{1}(t)$ is attained at $g_{1}(t)=\sqrt{\alpha T}$. Therefore, we get $g_{1}(t)+g_{2}(t) \leq \sqrt{T}(\sqrt{\alpha}+1 / \sqrt{\alpha})$, and thus

$$
g_{1}(t+1) g_{2}(t+1) \leq g_{1}(t) g_{2}(t)\left(1-\frac{\alpha}{(1+\alpha)^{2} T}\right)
$$

We have

$$
g_{1}(T) g_{2}(T) \leq T\left(1-\frac{\alpha}{(1+\alpha)^{2} T}\right)^{T} \leq T \mathrm{e}^{-\frac{\alpha}{(1+\alpha)^{2}}}
$$

and it suffices to choose α such that

$$
\mathrm{e}^{-\frac{\alpha}{(1+\alpha)^{2}}}<\alpha
$$

It is easy to check that $\alpha=\mathrm{e}^{-0.16}$ works, and then $c=1-\sqrt{\alpha}$ is between 0.07 and 0.08. (This value of α is not optimal, but in any case $\alpha>\mathrm{e}^{-0.25}$.)

References

[1] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. Helmbold, R. Shapire, M. Warmuth. How to Use Expert Advice. JACM, 44(3):427-485, 1997.

