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Abstract 3
Let 1 be a universal lower enumerable semi-measure (defined by L. Levin). Any computable upper boundaforbe 4
effectively separated from zero with a constahtgis similar to a theorem of G. Marandzhyan). 5
Computable positive lower bounds far can be nontrivial and allow one to construct natural examples of hypersimple sets
(introduced by E. Post). 7
(© 2005 Published by Elsevier B.V. 8
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1. Introduction 10
During the first yeaof university education, students learn classic examples of convergent series 1
ar?] _ i 1_ 1 arzn = ! e 12
m2’ m(logm)2’ mlogm(log logm)2’
and divergent series 13
bo = E 1= 71 2 — —1 14
mm’ ™ mlogm’ ™ mlogmloglogm’ """

It appears natural to draw a “borderline” between convergent and divergent positive series. This is hard to do it we
stay within the limits of classic calculus. 16
Let us consider a class of convergent positive series that are superior limits of computable sequences of serie:
Then in this class there is a largest up to multiplicative constant seffhe stated accuracy is not surprising becauses
the property of convergence does not change on multiplying by a positive number). Sefienately overlords
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seriesa}ﬂ, but it has a disadvantage: it is not computable. Using a method of G. Marandzhyan we can prove that
any computable upper bound faris trivial: we can effectively sepamfrom zero witha constant allits terms.
However, computable positive lower bounds fercan be nontrivial and allow us to construct interesting examples of
hypersimple sets (the concept of the hypersimple set was introduced by E. Post in the famou$kofide44 with
thepurpose of construction af-incomplete undecidable enumerable sets).

2. Convergence of series

Let us denote by IdY x theith iteration of a binary logarithm. Classic examples of convergent seriﬁate#,

1 _ 1 2 _ 1 ae ; ; : ;
3 = miogm?2’ om = miogmiog® 2 and so on. Here each series is essentially larger than the previous one; that is,
1 2 1

mlogm’ "M~ miogmlog? m
and so on. Here each series is essentially smaller than the previous one;\vthelm#,l/b}n — 0 asm — o0). Series
a,i11 andbim are very close; their ratio is decreasing, but very slowly. Thus there is a question: does the largest convergel
or smallest divergent positive series exist? The answer is negative. However, we are interested in computable positi
series.

Hereinafter we consider only positive series. So witHoas of generality it can be assumed that terms of series
have values of the form™? only. Indeed, we can change each positive nunalteranumber of the form 2" which
is the nearest from below tm Thena is decreasing not more than twice, andengerce or divergence of the series
holds.

We can essentially decrease any conale divergent series and at thense time we can keep it divergent.

Vi (ajif1/al, — oo asm — o0). Classic examples of divergent serieslffe= -, b}, =

Proposition 1. For any computable divergent serieg, there exists a computable divergent serfs suchthat
Bm/am — 0.

Proof. Construct a monotonic sequengm; } suchthat
m <m<mjy;. O

mj1—1

m=m, 9m > 2, m1 = 1. Assumefy, = amz—i for

We can essentially inease any computabkffectivelyconvergent series and at the same time we can keep it
effectively convergent.

Proposition 2. For any computable effectively convergent sesigsthere exists a computabkffectvely convergent
seriesfm suchthat B /am — oc.

Proof. Construct a monotonic sequengeg; } suchthatzomozmi om < 272, Assumesy, = am?2 formi <m < mj 41
andBm =amform<m;. O

Surpisingly there is a convergent series such that it is impossible to increase it essentially and keep it convergent

Theorem 1. There exists a computable convergent sesigssuch hat there is no computable convergent segs
suchthat 8y/am — oo.

The proof is given below.
Proposition 3. There does not exist a largest up to multiplicative constant computable convergent series.

Proof. Supposean, is a conputable convergent series. Construct a sequémgg suchthatam, < 2-2 . Assume
Bm = am;2' andBm = anm for otherm. O

A remarkable discovery was made that, contrary to what was previously thought, in a natural extension of the clas
of computable series there exists a largest up to multiplicative constant convergent series. This extension is the cla
of computably approximable from bml seies. (At each moment of time the lower approximation for the series is
equal to zero on some cofinite set. Note that we do not suppose that the approximartitoris.)

Now we produce the corresponding exact proposition. Fov@uance of notation we will allow terms of series to
beequal to zero. It is easy to substitute them for very small positive terms. We will write the number of terms of the
series in peentheses and not as an index.
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Theorem 2 (Levin, 1970Q. There exists a computably approximable from below seie9 such that its sum i 1 1
and for any computably approximable from below seriés) such that its sum ig 1 there exists a@nstant C such
thatVx u(x) > v(x)2~C. 3

Proof. As in the case of enumerable sets thexésts a universal computable functidh: n +— v, such that it 4
enumerates all computably approximable from below series and any other fultctigth the same property is s
m-reducibie toU. 6

Any computably approximable from below seriegan be effectively changed to a computably approximable from
below ®riesy’ suchthat) " v'(x) < 1andifd_ v(x) < 1, thenvx v'(x) = v(x). Theprogram, which approximates s
from below series’, runs the same wags the program, which approximates from belgwvhile the sum of values

of the current approximation is not more than 1; when this sum is more than 1, the prognarstfgs. 10
The required serieg can be assumed &s,2 "v;,. O u
Obviously, ®riesu (which exists as we just proved) is unique up to a multiplicative constant. Let us fix an arbitrasy

suchp. 13
Levin proved that the serigs is not computable. Let us consider the question of its computable upper and lower

bounds. 15
The seriesu does not have any nontrivial partially computable upper bounds (this is similar to Marandzhya#’s

theorem for the plane entropy). 17

Theorem 3. For any partially computable functiop there exists a@nstant C such that 18

vx € Domy) u(x) <y(X) = V¥xeDomy) y(x)=2"C. 19

Proof. Consider the followingcomputably approximable from below seriés= lim §,. Approximationé; is 20
identically equal tazero. Approximatiors,, 1 coincides with approximatioéy, everywhere except possibly for one =
argumentx, which is sought in the following way. We compugeat all arguments simultaneously and are seeking.
for x suchthaty (x) < 272", AssumeSn;1(x) = maxsn(x), 2~"} at the firstx found (if we found any). Itis clear 2
that) ", 8(x) < 1. Hence we can find (effectively from the number of) such hatvx u(x) > §(x)2~¢. Combining 2
this withv¥x € Dom(y) wu(x) < y(x) we get hat forn > ¢ thenumberx in the definition ofs, will not be found and
VX y(x) =272 0O 2

We can suppose that for there is no “well” computable lower bound; that is, the ratiquoind any computable 2
lower bound foru tends to infinity. The following theorem contrath this supposition and at the same time provess
Theorem 1 29

Theorem 4. There exists a computable seriesuchthate is a lower bound forw ande is equal tow on the infinite w0

set. 2
Proof. Construct an auxiliary computable serfeas result of the computable process of filling the next table. )
1
2
| oD =2 peh =2 ) A =2 "
poxh =27 | o) > 27!

We return to each line infinitely often and at thanse time we approximate from below the seriesWhen we s
address to theth line for the first time, we take the first undefined term of the sefiédenote its number byil) and s
assumeﬂ(xil) = 27, When ve aldress to théth line the next time, we compathe curent approximatiom(xil) 36
with 271 if this approximation is>2~, then we hdicate this fact in a lower part of the table’s cell and again take the
firstundefined term op (denote its number byiz) and zssuqu(xiz) — 271; and soon. For any number, there exists s
auniquex in the table which is gual to that number. 39
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S_ince > wu(x) < 1, the length of theth line is less than i2 Considerthe setD of numbersxij suchthat

,u(xi’) < 271, The sum of lhe series8(x) over this seis equal to Y 27" = 1. The sum of the serie8(x) over
D’s complament isless thard ", u(x) < 1. Thus the serie(x) is convergentandc Vx u(x) > B(x)27°C.

On the otler hand,u(x) < B(x) on the infinite setD. For any mmtural numbelC consider the seMc = {x :
w(X) < B(x)2=C}. ForC = 0 this set isinfinite; for C = c this set is empty. Whe@ increasesMc decreases
nonstrictly. Consider the largestsuchthat Mg is infinite. Sincew(x) > B(x)2-@+D & u(x) > B(x)279, it follows
thatu(x) > B(x)2~9 on the complement of the finite skly,1 andu(x) = (x)2-9 on the infinite seMg \ Mq1.

The required series is definedby the formulaw (x) = min{u(x), Bx)2-49). O

Theorem 5. If a computable seriesr estimatesy from below and equalg on the infinite sg then the set
{x: u(x) > a(x)}is hypersimple.

(Recall that an enumerable set win infinite complement is callelypersimpléf in any computable infinite
seguence of non-intersecting segments of natural numbers &ists a segment such that it is entirely embedded in
this set.)

Proof. SupposeT; is a momputable sequence of non-intersecting segments of natural numbers.

Construct an auxiliary computable serigsFor anym find j, suchthat erij a(x) < 272™, This ispossible
since he seriesu(x) is convergenty(X) < w(x), andhence the computable seriegx) is convergent. Assume
B(X) = a(x)2™ on the segmen(§;,,; otherwises(x) = a(x). Since

dYooB <Y 2m 2=,

xe JTjm m
m

the serieg8(x) is convergentTherdore 3cVx u(x) > B(x)2~C. By definition of 8 we have tlat on the segmeri;,
there is nax suchthata(x) = w(x). O

3. Descriptive complexity

Plane entropyof a natural number (introduced by Kolmogorov ij)[is the minimal length of its code obtained
using optimal encoding.

An ending is calledorefixif any code is not an extension of another code. The condition of being prefix allows
one to transmit a sequence of encoded messages witkimg an auxiliary symbol (for example white spad&efix
entropyof a natural number (introduced by Levin if]] is the minimal length of its ade obtained using optimal
prefix encoding.

However, definitbns are possible which do not use any encoding (@gelfet us expound them.

Plane entropyis a minimal up to additive constant enumerable from above fundti&n(with values inN) such
that|{x: KS(x) < n}| < 2" for eachn.

Prefix entropyis a minimal up to additive constant enumerable from above funéién(with values inN) such
that)", 27KP™ <1,

From our definitions it obviously follows that the function§S and K P tend to infinity andvx KS(x) <
KP(x) + O(2). It is much nore difficult to provethat the differencé K P — K S) tends to infinity. We gave this
proof at the international workshop dedicated to Kolmogorov’s centenary in spring of 2003 in Heidelberg; M. Li and
P. Vitanyi formulate this fact in their monograp8] [without proof and refer to the unpublished manuscrihtof
R. Solovay.

The functionsK SandK P have rare, but unexpected falls. G. Marandzhyan proved in 14684t the function
K Sdoes not have any nontrivial partially computable lower bound (for the funitiBnthe agumentgion is similar).

Consider computable one-to-one enumeration of all binary words, such that increasing of humber implies non:
decreasing of length of the word having that number. Denot&Xythe length of a binary word with a numbet

A computable upper bound of plane entropy is for exandpte + c.

Using considerations of cardinality, we get

vnax £(X) = n& KS(x) > n.
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On the other hand, by definition & S we havedcvx KS(x) < £(x) + c. For anyC consider the seMc = 1
{x:£(x) + C < KS(x)}. ForC = 0 this set idnfinite; for C = c this set is empty. Whe@ increasesMc decreases -
nonstrictly. Consider the largedtsuchthat My is infinite. It is clear that (x) +d > K S(x) on the complement of the
finite setMg+1 and£(x) + d = K S(x) on the infinite seMy \ Mg+1. Assume the functiorf is equal toK Son the 4
finite setMqy+1 and f is equal to£(x) + d otherwise. It is obvious that is a conputable function which estimates s
K Sfrom above and is equal toK S on the infhite set. 6

Theorem 6. If an everywhere defined computable function f estimates K S from above and equals K S on the infinite
set, then the sdi: K S(x) < f(x)} is simple. 8

(Recall that an enumerable set widln infinite complement is callesimpleif there is no infinite enumerable o
subset in its complement. This concept was introduced by E. Post in BD4vith the pupose of construction of a 1
btt-incomplete undecidable enumerable set.) 1

Proof. Suppose there exists an infinite enumerableR®stchthatvx € R f(x) = KS(x). Let f’ be the resiction 12
of f to R. Thenf’ is the partially computable lower bound fdf S. This mntradicts the assertidd S(x) — oo and 13
Marandzhyan'’s theorem.[] 1

Theorems 4nd5 in the language of prefix entropy are given without proofs in the monogradjpdf[M. Li and 15
P. Vitanyi with reference to an unpublished manusciipf R. Solovay Let us famulate them. 16

Theorem 7. There exists an everywherefiieed computable function f such that f estimates K P from above and
equals K P on the infinite set. 18

Theorem 8. If an everywhere defined computable function f estimates K P from above and equals K P on the infinite
set, then the sdi : KP(x) < f(x)} is hypersimple. 20

Note that in the formulation ofheorem 6the set{x: KS(x) < f(x)} must not be hypersimple. For that let us =
change functiorK Sto the functionK S' = min{K S+ 1, ¢ + 1}. It is clear that the functioik S' is enumerable from 2
above, that|{x: KS(x) < n}| < 2" and that for this function (as for functiof S) the property of being minimal up 2
to an additive onstant holds. Fax suchthatK S(x) > £(x) (there are infinitely many ahem) it will be the case that 2
KS(x) > £(x) + 1. On the other hand, for anywe haveK S (x) < £(x) + 1. In the construction which is given 2z
beforeTheorem 6theparameted for function K S will be equal to 1. Let us divide the natural scale into segmentss
T; which consist 6the numbers of all the words of length In each of these segments there is a numtsrchthat
K S (x) = £(x) + 1, which contradicts the property of hypersimplicity. 28

4. Conclusion 20

The constructive mathematics of Andrei Markov revising the classical one is fed and fertilized by its ideas and
contexts. In its turn the constructivist consideration of classical concepts helps to answer relevant questions of the
theory of algorithms itself. This supports our belief in the future development of ideas and approaches of A. Markov.
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