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Abstract 

We present a complexity-theoretic proof of the result of P.Ggcs and J.KGrner on the existence 
of a pair of words whose common information can not be materialized. Our method is easier 
than G&s and Kijrner’s method and gives a possibility to get some generalization of the result. 
Besides, we show that there are many enough pairs of words with this property. @ 199X - 
Elsevier Science B.V. All rights reserved 

K~~NYHY&: Kolmogorov entropy; Algorithmic information theory; Common information of two 
words 

1. Introduction 

The results of the present paper were announced in [3]. 

In paper [2] Kolmogorov gave the definition of the entropy K(x) of finite object x 

and the definition of the quantity of information Z(x : y) about y contained in x. In [4] 

it was proved that the quantity of information is commutative to within an additive 

term of O(logK(x) + logK(y)) (all logarithms in our paper have base two). In that 

paper it was also proved that 

IZ(x : Y> - (K(x) + K(y) - KC-% Y>>l = O(logK(x) + log K(y)). 

Because of commutativity of Z(x : y) we will call Z(x : y), Z(y : x) and K(x) + 

K(y) - K(x, y) the quantity of common information of x, y. 

My father, A.A. Muchnik, raised the following question: is there a word = such 

that K(z) = Z(z : x) = Z(z : y) = Z(x : y)? That is, can we materialize the com- 

mon information? As Z(x : y) is commutative only to within an additive term of 

O(logK(x) + log K(y)) the exact formulation of this question is the following. 

The problem of A.A. Muchnik. Is the following assertion true? 
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For some constant c for all binary words x, y there is a binary word z such that 

K(z)6Z(x : y) + c(logK(x) + logK(y)) + c, 

Z(z : x) 31(x : y) - c(logK(x) + logK(y)) - c, (1) 

I(z : y)>I(x : y) - c(logK(x) + logK(y)) -c. 

In paper [I] Gacs and Korner gave a negative solution to this problem. They used 

probabilistic methods. In the present paper we present a complexity-theoretic solution 

to the problem of A.A. Muchnik, which is easier than Gacs and Korner’s solution. 

We are interested also in the following generalization of the question. Let us fix the 

parameters m, n, a, b, i E N such that a <m, b <n, i <m, i <II. 
What is the minimal d such that for every words x, y which have, respectively, the 

entropies m, n and the quantity of common information i there is a word z such that 

K(z) <d, Z(z : x) 2 a, Z(z : y) 3 b? We can easily prove that 

d<a+b+2(logm+logn)+const. 

It turns out that this upper bound is tight (to within an additive logarithmic term) if 

m3a + i, nab + i (Theorem 2). 

We are also interested in the following question: for how many x, y there is no 

z such that the assertion (1) is true? We give the following answer. Let us fix some 

value of c in ( 1). Then for all sufficiently large n for all x if K(x) 3 n then there is y 

such that K(y) is equal to K(x) to within an additive logarithmic term and such that 

there is no z satisfying (1) (Theorem 3). 

2. Basic definitions 

Let us denote by E the set of all binary words. Let us denote the length of a word x 

by I(x). Let us call any partial computable function f: E - E the specifying method. 

We call the word p a description of x (with respect to f) if f(p) = x. 

The complexity Kf (x) of word x with respect to the specifying method f is defined 

as 

Kf(x) = min{O) I S(P) = xl 

and Kf(x) = cz if there is no p such that f(p) = x. We say that specifying method 

f is no worse than a specifying method g if there is some c E N such that for all 

XEZ K,-(x) <K,(x) + c. The well known theorem of Solomonoff-Kolmogorov states 

that there is an optimal specifying method, that is a method which is no worse than 

all other ones. Let us fix some optimal specifying method and denote it by fo. Let us 

denote K(x) = Kf,,(x). We call K(x) the entropy of x. Obviously, for some constant 

c all x satisfy the inequality K(x)< Z(x) + c. Therefore, K(x) < 00 for all x. 
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In the above inequality, c denotes a constant in the following sense: c doesn’t depend 

on x but c depends on the choice of SO. In our paper there are also absolute constants. 

We will give absolute constants explicitly. 

Let g: 6 x 3 - Z be partial computable function. The complexity K4 of X, with 

respect to 9, conditional to y is defined by 

K&G) = min{G) I dp, y) = ~1. 

Among all partial computable functions g: 3 x B --+ E there is an optimal one, that 

is a function g such that for all h there is a constant c E N for which KJx(y)<Kh(xIy)+ 

c for all x,y E E. Let us fix some optimal g and denote it by go. We define K(x1.v) = 

K,,(xly). Let us call the difference 

[(x : Y) = K(Y) - K(ylx) 

the quantity of information about y contained in x. 

Let us define some convenient coding of pairs of binary words. Let x be a word, 

x = b,bz . . . b,, bi E (0, 1); denote by X the word 61 blbzbz.. . b,b,Ol (for example, 

010 = 00110001). Obviously given Xy we can find both x and y. Let us denote K(Yy) 

by K(x, y). The well known theorem ([4]) states that there is c E N such that for 

every x, y E E 

IK(X,_V) - (K(x) +~(ylx))ld5(logK(x) + logK(y)) + c. 

This yields 

11(x : y) - (K(x) +K(Y) - K(x,y))l dWogK(x) + logK(y)) + c, 

Jl(x : v) - l(y : x)1 < lO(logK(x) + logK(y)) + Cl. 

Let us denote for the sake of convenience (K(x) + K(y) - K(x, y)) by ?(x : y). We 

will write a =c b instead of Ia - bl < c. 

3. The results 

Let a,b E N; x,y E Z. Let C&(x, y) = min{K(z) 1 1(z : ~)>a, I(z : y) 3 b}. The 

following simple theorem yields upper and lower bounds for C&x, y). By m,n, i we 

denote respectively K(x),K(y),F(x : y). 

Theorem 1. There is a constant c E N such that if m >a + c, n 2 b + c then 

max{a, b, a + b - i} - 4O(log m + log n) - c 

< C&X, y) 9 a + b + 2(log m + log n) + c. 

Proof. We will denote in this proof as well as in others proofs by cl, cl,. . . constants 

depending only on the choice of fo, go. The value of c will be clear from the proof. 
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Let us prove first the lower bound of &,I,(x, y). We have to prove three inequalities: 

a - 4O(logK(x) + log K(y)) - c ,< Ca,b(X, y), 

b - 4O(logK(x) + logK(Y)) - cd C&x, Y), 

a + b - j(x : y) - 40(logK(x) + logK(y)) - c < C&x, y). 

The first two inequalities follow from the well known inequality K(x)<K(x(z) + 

K(z) + 2 log K(x) + cl, i.e. K(z) 3 Z(z : x) - 2 logK(x) - cl. 

Let us prove the third inequality. This inequality follows from the inequality 

K(z) >l(z : x) + I(z : y) - I(x : y) - 40(logK(x) + log&y)) - c2. 

Let us prove this inequality. Note that we can take as z the pair (x,y). Therefore 

K(z) <K(x) + K(y) + 2 log K(x) + cl. Since the function log is concave, this implies 

that logK(z) <2(logK(x) + logK(y)) + cl. In the next proof we will omit additive 

logarithmic terms. 

I(z : x) + I(z : y) - I(x : y) = K(x) + K(z) - K(x,z) + K(y) + K(z) 

-K(y,z) - K(x) - K(Y) + K(x, Y) 

= 2K(z) + K(x, y) - K(x,z) - K(y,z). 

As K(x,z) = K(xIz) + K(z) we get 

K(z) + K(x, Y) - K(x,z) - K(Y,Z) = w, y) - m+) - mz1 

d K(x, y) - K(xljz) - K(jz) 

= K(x, y) - K(x, Fz) < 0. 

Thus to within an additive logarithmic term 

Z(Z : x) + I(z : Y) - I(x : y) <K(z). 

Now let us prove the upper bound of C&. Clearly, we can take as z the concatenation 

of a first bits of the shortest description of x, b first bits of the shortest description of -- 
y and Z(a) (I(a) stands for U, where u is binary representation of I(a)). 

The theorem is proved. 

It is easy to prove that the lower bound in Theorem 1 is tight (to within an ad- 

ditive logarithmic term). Indeed, let m>a, n 3 b, m>i, n >i. Let us define words x, 

Y such that K(x) = m, K(y) = n, 7(x : y) = i, C&x, y) = max{a, b,a + b - i} (fac- 

tors of logarithmic length in words and logarithmic terms in numbers are omitted in 

the following reasoning). Let a> b. Let us take random mutually independent words 

p, q, Y with lengths respectively i, m - i, n - i, i.e. K(pj@) = i, K(qjjr) = m - i, 

K(rl jq) = n - i. Let x = pq, y = pr. We consider two cases. 

(1) a3a + b - i, i.e. iab. 

Let z be the beginning of x of length a. Then I( z : x) = a. If i > a then z is beginning of 

y consequently l(z : y) = a 3 b. If a 3 i then z begins with p therefore Z(z : y) = i > b. 
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(2) a+b-i>a, i.e. b>i. 

Let z be equal to pqlrl, where 91, rl are respectively the beginnings of q, r of lengths 

a - i, b - i. Then K(z) = i + a - i + b - i = a + b - i, Z(z : x) = i + a - i = a, 

I(z : y) = i + b - i = 6. 

The following theorem shows that the upper bound in Theorem 1 is tight if m > a + i, 

n>,b+i. 

Theorem 2. There is u constant c E N such that thr fbllobving holdx For rrer~ m, 

n, u, b, i such that m3i, nbi, m>a, n3 b there ure x, y such that K(X) ==(, m. 

I =(. n, f(x : y) - il6 5(log m + log n) + c, C&(X, JJ) > max{a, b, min{a + n - i, b + 

m--i,a+b}}-5(logm+logn)-c. 

Proof. Let m, n, a, b, i satisfy the inequalities m 3 i, n > i, m > a, n 3 b. Let us denote 

k=min{a+b,a+n-i,b+m-i}. 

It is easy to see that C&x, y) 3 a - 5(log m + log n) - c and 

Cu,(x, y) 3 b - 5(log m + logn) - c. So we have to prove that C&x, y) 3 k - c’ for 

appropriate c. 

We will define two words x and y satisfying the conditions of the theorem. The 

words x, y must be such that there is no z such that K(z) < k - c, Z(z : ~)>a, I(: 

v)>,b. The last two inequalities means that K(xlz) <K(x) - a, K(ylz) <K(y) - b. 

Let ~‘1 stand for the constant such that K(u) < I(U) + ci for all u E E. Let us define 

MI = {(x,y)EBxz”/zE5 K(z)<k - c,K(xlz)<m + cl -- a, 

K(ylz) bn + CI - b}, 

MI = {(x, y) ( l(y) = n, K(x) < m - 2}, 

M3 = {(x,Y) I l(x) = m, K(Y) < n ~ 2}, 

Mb = {(x, v) / K(x, y) < m + n - i -- 2). 

We claim that for sufficiently large c E N the inequality (Ml I_ M2 u M3 u M4 1 < 

2 “+’ holds. TO prove this claim we will estimate IM1 1, IM2 /, /M3 /, 1~4 /. Remember 

the following well known inequalities ({x E 2 / K(x) < /}I < 2” ‘, My E Z /{x t 5 1 

K(.xly)<l}l < 2 ‘+’ These inequalities yield 

WI/ d c I{(X>Y) I a+) 
-.K(z)<k-c 

<m + CI -a, K(y(z)dn + CI - b}l 
_. 

<2k-c+I .-p”l-a+l 
\ 

. p--b+1 _ 2m+n+(k--rr~h)t2~,+3-~ 

<2n’+n+2rlf3-C (as k <a + b), 

I& ; 2m-2 . 2” = 2mfn-2, 1M3I < 2”’ 2”-2 = 2mCJ1-2, 

IM4/ < 2mtn-f-2 <2”+“-2 

Therefore, if c 32~1 + 5 then IM1 U M2 U Mj U Md/ < 2”+“. Hence there is a pair 

of words x, y such that I(x) = m, I(y) = n and (x, y) @ Ml U M2 U M3 U M4. Let us 



324 An.A. Muchniki Theoretical Computer Science 207 (1998) 319-328 

take the first pair (x, y) with these properties. We claim that if c is large enough then 

(x, y) satisfies all requirements. 

The conditions IK(x) - ml <c, IK(y) - IZ[ <c are satisfied because (x, y) $ M2 U A43 

therefore 

m-2dK(x)<I(x)+c, =m+ci, n-2dK(y)<Z(y)+c, =n+c1. 

As (x,y) 4 Mt there is no z such that K(z)<k-c and K(xlz)<m+ci -a, K(yJz)<n+ 

cl - b. We know that K(x) <m + cl, K(y) < n + cl. Therefore there is no z such that 

K(z)dk - c and K(x(z)dK(x) - a, K(y(z)dK(y) - b. 

It remains to prove the difficult assertion 

/7(x : y) - iI <5(logm + log n) + c. 

The upper bound of j(x : y) is easy: K(x) drn + cl, K(y) <n + cl, K(x, y) am + 

n - i - 2 (as (x, y) @ A44) therefore 

I(x:y)dm+q+n+cl-(mfn-i-2)=i+2cl+2di+c. 

Now let us estimate 7(x : y) from below. We have to estimate K(x, y) by the 

quantity about m + n - i. The main idea is the following: every finite set M can be 

specified by its cardinality IMl and by an algorithm A which generates all elements of 

M (and only them). Indeed, given A we can generate the elements of M until we get 

IMl different elements. 

SO let US estimate K(x, y). To specify (x, y) it is sufficient to specify m, n and Ml, 

M2, M3, M4. To specify Ml it is sufficient to specify the set rl = {(p, U) ) l(p) <k -c, 

fo(p) = u} and the set r2 = {(p, z,u) ) go(p,z) = u, l(p)< max(m - a,n - b) + cl, 

K(z) <k-c}. TO specify Mz, M3, M4 it is sufficient to specify m - 2, n - 2, m + n - 2 

and the set r3 = {(p, u) I fo(p) = u, Z(p)dm+n-i-2}(becausem+n_i>m,n). 

To specify ri, r2, r3 it is sufficient to specify r = rl u r2 u r3 and m, n, a, b, i, c, 

cl. Moreover, to specify rl, r2, rs it is sufficient to specify Irl and m, n, a, b, i, c, cl 

because given m, n, a, b, i, c, cl we can generate the elements of r. Therefore there 

is a specifying method which on the input rii&%%t Irl outputs (x, y). Consequently, 

K(x,y)d2(logm+logn+loga+logb+logi)+210gc+210gcl +log(TJ+c2 

65(logm+logn)+410gc+l0gIrl +c2. 

Let us estimate /rj. The number of words of length < 1 is less than 2’+‘. Therefore 

Ir,l < 2!+-c+l . ~max(m--a,+b)+cl+l _ ynax(k+m-a,k+n-b)-c+c,+2 - 

G ytn-i-cicl t2 

(the last inequality holds because k < a + n - i, k <b + m - i), 

jr31 < 2 mtn-i-l 
2 Irl(<2- , 

k c+l .gatn-i-c+1 Gyn+n-i-c+l 

Therefore if c > cl + 1 then (ril, Ir21, Ir31 < 2m+n-it1 consequently Irl < 2mtn-if3. 
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Hence 

K(x,y) < 5(logm+logn)+4logc+m+n-i+3+c~, 

J(x:y) > m-2+n-2-5(logm$-logn)-4logc-m-n+i-3-c~ 

= i - 5(logm + logn) - 4logc - 7 - ~2. 

Let us take c E N such that c > 4 log c + 7 + ~2. Then we have proved the desired 

lower bound of f(~ : y). The theorem is proved. 

Let us deduce from Theorem 2 negative solution of A.A.Muchnik’s problem. Let us 

fix some constant c in assertion (1). We will call a pair (x, y) bad if there is no z 

satisfying (1). We claim that there is bad (x, y) with arbitrary large K(x), K(y) and 

arbitrary ratios f(x : y)/K(y), j(x : y)/K(x) belonging to the interval (0,l). 

Corollary. Let y, a,P E R satisfy inequalities 0 da, ,!3 f 1 and 0 < )’ < x,/I. Then 
j& some c ,for all suficiently large j E N there is a bad pair (xj, y,) such that 

K(xf) =C a .j, K(.Yj) =C B .j, f(xj : Yj) =IOlogj+c ;' .j. 

Proof. Let us take e > 0. Define b = a = (y - e)j, m = uj, n = flj, i = llj. Obviously 

we can choose e so small that for all j 

(y + a)j d min{a + b,a + n - i, b + m - i} 

=min{y-efy-E,Y-c+fi-y,Y-C+X-j0.j. 

By Theorem 2 there is a pair (xi, yj) such that 

K(xj) =c gj,K(yj) =C PjJGj : Yj) =IOlogjk J,j, 

C(y-c)j,(y-c)j(Xj,_Yj)3(y + a)j - 1Ologj - C. 

Evidently for sufficiently large j the pair (xj, yj) is bad. 

Theorem 3. There is a constant c such that the jbllowing holds. For every x E Z jtir 

every a <K(x) there is y E 3 such that 

K(Y) =4logK(x)+c K(x),f(x : Y> =6logK(x)+c $W, 

C&x, y) 3 ia - 4 log K(x) - c. 

Proof. Let us fix some x0 E Z and some a E N such that abK(xo). Denote n = 

K(xo). It is well known that for every 1 E N there is a prime number p in interval 

[Z,1$- I)...) 211. 

Take the least prime p>SrFl. As p<2[%1+‘, we have 2”+‘<~~<2”+~. 

Consider the following bipartite graph ri. We will call the vertices from the first 

part “left vertices” and the vertices from the second part “right vertices”. 

The set of left vertices is Z, x Z,, where Z, stands for the field of residues modulo 

p. The set of right vertices is an another copy of Z,, x Z,. Each left vertex (q,r) E 
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Z, x Z, is connected with p right vertices (q-t i,r fqi), i E Z,,. Let us prove that ri 

has no closed cycles consisting of four edges (we will call such a cycle “4-cycle”). 

It is sufficient to prove that if (q,v2) and (vi, 7~3) are edges and 02 # us then given 

v2, us we can find vl. 

Let vi = (q,r), v2 = (q + i,r + qi), v3 = (q + j,r + qj). Then given ~72, us we can 

find i -j and q(i -j). As Z, is field we can find q. From q and q + i we can compute 

i. From r + qi and qi we can compute Y. 

Furthermore, one can easily verify that for each right vertex v there are exactly p 
edges incident to v. 

Now we will mark left and right vertices with binary words and delete some left 

vertices. Let us mark ith right vertex with ith word of length 12 + 4 (we assume that 

some computable well ordering on words and vertices is fixed). 

We will mark left vertices with the words of entropy <n as follows. Let us begin 

to generate the words of entropy <n. The ith generated word marks the ith vertex. As 

1(x E E 1 K(x)dn}( < 2 n+l 6 IZ, x &I, 

this is possible. Then we delete all unmarked left vertices. We will denote by l-2 the 

marked graph obtained by this procedure. Note that we can not compute r2 given n 

because we do not know at which moment the last word x with K(x) <n is generated. 

Nevertheless there is a procedure which given n generates all edges of r2 with their 

markings. We will say “left vertex x” instead of “left vertex with marking x” and for 

the right vertices also. 

Our plan is as follows. We will construct subgraphs Md of the graph r2 (d E 

fV). There will exist an algorithm which given n, a, d generates all edges of Md 

and only them. Cardinality (i.e. the number of edges) of Md will be not greater 
than 2+-4logn-d+c> 

(c2 is a constant; cl, as earlier, will be the constant such that 

VU K(u) < Z(u) + cl). 
Further, Mj will be the set of those left vertices which are incident to edges only 

from Md. Then IM;I <lMd(/pd2 n - 410sn-d+c2. For Mi, like it holds for Md, there will 

be an algorithm generating on n, a, d all vertices of Mi and only them. In the same 

way as in the proof of Theorem 2, it will follow from the previous conditions that 

VxxM; K(x) <210gn+210ga+210gd+logIM;I+c3 

<4logn+2logd+n-4logn-d+c4=n+210gd-d+c4. 

Choose d so large that 2 logd - d + c4 < 0. Then x E Mi + K(x) < n, thus 

x0 $ MA. Therefore there exists yo E Z such that (x0, vo) E r2 and (XC,, vo) $! Md. 
Let us turn to defining of Md. 

Let E’ be the set of all edges (x, JJ) E r2 such that K(y) < n - 4 log n - d. Since 

each vertex is incident to no more than p edges, we obtain lE’I ,< p2n-4’ogn-d d 
2;+22n-4logn-d = 2+-41ogn-d+2 

Let E” be the set of all edges (x, JJ) E r2 such that K(x, y) < sn - 4 log n - d. This 

implies that I&?“[ < 2~n-410sn-d. 
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For any z E E we define r’ to be the subgraph of r2 consisting of all vertices (left 

and right) y such that K(yjz) <n + 4 + ~1 -- a, and of all edges between these vertices. 

The left and the right parts of Tz consist of less than 2nf5+rlPo vertices. Let us deduce 

from this an upper bound of the number of edges of P. Note that r” has no 4-cycles 

as a subgraph of ri 

Lemma. If u bipartite gruph has no 4-cycles und the number of vertices in both puts 

does not exceed m then the number qf’edges in the graph does not exceed rn3:’ + 2m. 

Proof. Let the left vertices of the graph be integers 1,2,. . . , m. Let us denote by k, the 

number of edges incident to the left vertex i. 

Let M, be the set of all nonordered pairs (j,q), where ,j and q are right ver- 

tices connected with i. Then IM,I = w. As the graph has no 4-cycles the sets 

MI , . . . , M, are pairwise disjoint. As llJ:r,, Mi 1 d im(m - I), we can conclude that 

Err_, ik,(k, ~ l)< $m(m - 1). Let us deduce from this inequality the inequality 

C:L, k, <m3” + 2m. 

Repeat till this is possible the following transformation with the vector (kl, , k,): 

pick k, and k, such that ki < kj - 2 then decrease ki by 1 and increase k, by 1. 

After performing this transformation CT”=, ki is not changed and cyz, kj(kj - I ) is 

not increased because the function r(r - 1) is convex. Therefore the inequality 

,,1 
Ck;(ki - l)<m(m ~ 1) 
i-l 

(2) 

remains valid. 

Finally we get a vector consisting (for some k) only of numbers k and k+ 1. Because 

(2) we have mk(k - l)<m(m - 1); k(k - l)<m ~ 1; k<fi+ 1. 

Hence x:1, k, <(k + l)m<m(fi + 2). q 

It follows from the lemma that the number of edges of the graph r’ does not exceed 
23niG+c, -a) + 2 rz+b+c,-a <2+N)+CS 

Let E”’ be the set of all edges (x,.y) E r2 for which there exists z E E such that 

K(z) < ELI - 4 logn - d and (x, y) E r’. We have 

IE”‘I< c (number of edges of P) 
ZK(Z)< ;n-4logn--d 

<2+410gn-d 
\ 2;(n-a)+‘” _ 2+4&‘n-&c< 

Let A4d = E’ U E” U 17”‘. First, the existence of algorithms 

E’, E”, E”’ given n, a, d is evident. The same statement is 
lMdl < IE’I + IE”I + IE”‘I <2+410snPd+cz. 

generating the graphs 

true for Md. Second, 

Now let us verify that the edge (xa,yo) satisfies the conditions of the theorem being 

proved. 

I. K(yo)<I(yo)+cl =n+4+c1. 

11. (~0, yo) $ E’, consequently K( ya) > n -- 4 log n - d. 
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III. 

IV. 

V. 

&II : YO) = K(xo) +K(yo) - K(xo,Yo). As (XO,YO) ti E", we have WO,YO)> 

~n-4logn-d.ThisimpliesJ(xo:yo)~n+(n+4+cl)-(~n-4logn-d)= 

; +4logn+Qj. 

The theorem is proved. 

The graph ri is specified by the number n, and the number of its edges is equal to 

p3. Therefore, the entropy of each edge does not exceed 2 log n +log p3 +c7. Thus, 

K(xo,y&;n+2logn+cs; f(xo : yo)~n+(n-4logn-d)-(;n+2logn+cs) = 

E -6logn-c9. 

ifK(z)< $a-4logn-dthen(xo,yo)$E”‘~[K(xolz)>n+4+cl-aor 

K(yojz) > n + 4 + cl - a]. Assume K(yolz) > IZ + 4 + ci - a, then Z(z : yo) = 

K(yo) - K(yoIz) < (n + 4 + cl) - (n + 4 + cl - a) = a. The argument for x0 is 

similar. From this it follows that C&x0, yo) > +a - 4 log n - d. 

Let us apply Theorem 3 to arbitrary x and to a = $K(x). Obviously, for sufficiently 

large K(x) for the pair (x, y) there is no z such that (1) holds. 

References 

[l] P. Gacs, J. Kiimer, Common information is far less than mutual information, Problems of Control and 

Information Theory 2 (1973) 149-162. 

[2] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems in Information 

Transmission 1 (1) (1965) l-7. 

[3] AnA. Muchnik, On the extraction of common information of two words, In: Pervyi Vsemimyi Kongress 

Obshestva matematicheskoi statistiki i teorii veroyatnostei imeni Bemulli. Thesises, vol. 1 M, Nauka, 

Moscow, 1986, p. 453 (ln Russian). 

[4] A.K. Zvonkin, L.A. Levin, The complexity of finite objects and the algorithmic concepts of information 

and randomness, Russ. Math. Surv. 25 (1970) 83-124. 


