
Theoretical Computer Science 271 (2002) 97–109
www.elsevier.com/locate/tcs

Conditional complexity and codes

Andrej A. Muchnik ∗

Nizhnyaya Radishchevskaya, Institute of New Technologies Education, Street #10,
Moscow 109004, Russia

Abstract

Let x and y be binary strings. We prove that there exists a program p of size about K(x|y)
that maps y to x and has small complexity when x is known (K(p|x)≈ 0). Having in mind
the parallelism between Shannon information theory and algorithmic information theory, one
can say that this result is parallel to Wolf–Slepian and K.orner–Csiszar–Marton theorems, see
(I. Csiszar and J. K.orner, Information theory, Coding Theorems for Discrete Memoryless Sys-
tems, Akad3emiai Kiad3o, Budapest, 1981).

We show also that for any three strings x; y; z of length at most n the length of the shortest
program p that maps both y and z to x (i.e., p(y) = p(z) = x) equals max(K(x|y); K(x|z) +
O(logn). c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Conditional Kolmogorov complexity; Minimal program; Hashing; Expanders

1. Introduction

Let x and y be binary strings. The conditional Kolmogorov complexity K(x|y) of x
when y is known (complexity of x relative to y) is de=ned as the length of the shortest
program that maps y to x. The exact value of K(x|y) depends on the programming
system used. However, the di>erence is rather small: di>erent natural de=nitions (orig-
inal Kolmogorov de=nition, pre=x complexity and others, see [4]) di>er at most by
O(log n) for strings of length n. We ignore additive O(log n)-terms, therefore we can
use any of these de=nitions.
One may expect that the shortest program that maps y into x contains exactly the

information that is present in x but is missing in y. However, this is an oversimpli=ca-
tion, because di>erent short programs mapping y to x may have di>erent properties, as
the following example shows: Let x and y be independent random strings of length n.
Consider two programs that map y to x. The =rst one ignores input and prints x. The
second maps t to t⊕p where ⊕ denotes bitwise addition modulo 2 and p is chosen

∗ Corresponding author. Fax: +7-0959156963.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00033 -0

98 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

in such a way that y⊕p= x (i.e., p= x⊕y). These two programs have nothing in
common (binary strings x and p have no common information).
We prove that for any x and y there exists a program p that (1) p maps y to

x, (2) p has (almost) minimal length (|p| ≈K(x|y), where |p| stands for the length
of p) and (3) p is simple relative to x (K(p|x)≈ 0). The exact statement is given
below. (In our example the =rst program has these properties but not the second one.)
This statement provides a partial answer to the question posed in [1] (Remark 3:8, for
details see [6]).
The same method can be applied for several conditions. We prove that for any three

strings of length at most n there exists a program p of length max(K(x|z); K(y|z)) +
O(log n) such that p(y)= x and p(z)= x. This problem was considered by Gorbunov
[3] who proved that it is impossible to prove similar result with O(log(K(x|y) +
K(x|z)))-precision. Let us mention also that we can obtain one of the results from [1]
(about the program that maps y to z and vice versa) as a corollary if we let x= 〈y; z〉.

2. Programs and codes

To avoid mentioning a speci=c programming system, we speak about codes instead
of programs. We say that the string p is a code for x when y is known if K(x|y; p)≈ 0
(here K(x|y; p) stands for the conditional complexity of x when pair 〈y; p〉 is known).
It is easy to see that
• if p is a code for x when y is known then the complexity of p (and therefore the

length of p) is at least K(x|y);
• for any strings x and y there is a string p such that p is a code for x when y is

known and |p| ≈K(x|y).
The exact statements are:

• K(p)¿K(x|y)− K(x|y; p)− O(log n) for any strings x; y; p of length at most n;
• for any strings x and y of length at most n there exists a string p such that |p|=
K(x|y) + O(log n) and K(x|y; p)=O(log n).

Indeed, the =rst inequality becomes obvious if we rewrite it as follows:

K(x|y)6K(x|y; p) + K(p) + O(log n)

(a program that produces p and a program that maps y; p to x can be combined into
a program that produces x from y; the overhead while combining these programs is
O(log n)).
On the other hand, if p is the shortest program that maps y to x then |p|=K(x|y) by

de=nition and K(x|y; p)=O(log n) since we get x from y and p just applying p to y.
A code p for x when y is known can be easily transformed into a program that

maps y to x and has approximately the same length as p. Indeed, since K(x|y; p) is
small, there exists a short program that maps (y; p) into x. Fix the second argument
in that program being equal to p. We get a program mapping y to x whose length is
about |p| (most part of it is occupied by a constant p).

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 99

3. Minimal codes

Let us mention that any string x is a code for x when (any) y is known. Therefore,
one can =nd at least one code for x when y is known that is simple relative to x. It
turns out that this property can be combined with minimal length requirement: there is
some code p for x when y is known that has length K(x|y) and at the same time is
simple relative to x.
Let us note that a weaker requirement “p is simple relative to x; y” can be satis=ed

easily. Try in parallel all the programs of length K(x|y) and look for a program that
maps y to x; the =rst program having this property will be the code we are looking
for, since we need only O(log n) bits (the value of K(x|y)) to produce this program
when x and y are known.

Theorem 1. Let x and y be arbitrary strings of length less than n. Then there exists
a string p of length K(x|y) such that K(p|x)=O(log n) and K(x|p; y)=O(log n).

(The constants in O(log n)-notation do not depend on n; x; y.)

4. Proof sketch

The proof uses “hashing” (similar ideas are used in [2] in polynomial-time situation).
Let X be the set of all strings of length less than n. Let m be the conditional complexity
K(x|y). Consider the set P of all strings of length m. Our hash function is of type
 :X →P. (We discuss later how to construct such a function and what properties of
this function are required.) We use the hash value p= (x) as a code for x. Assume that
the complexity of the hash function itself is small; then p= (x) has small complexity
K(p|x). To get an upper bound for K(x|y; p) we need to reconstruct x from y and
p. We generate all strings x′ of length less than n such that K(x′|y)6m (by trying in
parallel all programs of length at most m and applying them to y). Let Xy be the set
of all such x′. For each x′ ∈Xy we calculate (x′). If we are lucky and x is the only
element of Xy that has hash value p, then x can be reconstructed from y; p; n; m; and
K(x|y; p) is small (we need only a small number of bits to determine n, m and).
However, this is only a rough sketch; to make this construction work we need to

make several concessions described in the next section.

5. Modi�cations

5.1. Several hash functions

We consider several hash functions 1; : : : ; N instead of one. The number N is
bounded by a polynomial in n, therefore any hash value i(x) is simple relative to x.
Indeed, if x is known, it is enough to specify i to determine i(x) (we assume that

100 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

the family 1; : : : ; N is simple), and i is of size logN = log poly(n)=O(log n) bits.
If there is at least one function i that separates the given x from all other x′ ∈Xy
(i.e., i(x)
= i(x′) for all x′ ∈Xy such that x′
= x), this is enough. Indeed, x can be
reconstructed from y and p= i(x) if we know m; n; i (we also need to know the
family of hash functions which is assumed to be simple).

5.2. Several preimages

One more modi=cation is the following one. In fact, we do not need to have unique
x′ ∈Xy such that i(x′)=p. It is enough for us that the number of such elements x′

is bounded by a polynomial in n. Indeed, in this case we can add the ordinal number
of x (in the enumeration of all x′ ∈Xy such that i(x′)=p) to the information needed
to reconstruct x from y and p.

5.3. Not all x∈Xy are good

As we have seen, it is enough to construct a simple family 1; : : : ; N of hash
functions such that N is bounded by a polynomial in n and for any x∈Xy (recall that
Xy is the set of all strings x such that |x|¡n and K(x|y)6m) there exists i such that
the cardinality of the set

{x′ ∈Xy | i(x′) = i(x)}
is bounded by a polynomial.
Our last concession is the following one: we do not need that such i exists for all

x∈Xy. It is enough if such i exists for all x∈Xy except for a small fraction. Indeed,
consider the set of all “bad” values of x (that share the same hash value with many
other elements for any hash function i). Bad values of x can be enumerated if y;m; n
are given (and the hash family is known). Therefore, if there are only few of them,
all bad values have small complexity relative to y (their complexity relative to y is
less than m). Since K(x|y)=m by assumption (here x is the string we started with),
the string x is “good”.

6. How to construct hash functions

After all these concessions we need to show that a family of hash functions with
required properties does exist. It is convenient to represent this family by a bipartite
graph that has strings from X on the left and strings from P on the right. Each string
x∈X is connected by edges with N strings 1(x); : : : ; N (x). (If some values coincide,
there are several edges connecting two vertices.)
We are interested in the restriction of this graph onto Xy; all other left vertices can

be removed. Which vertices in Xy are good (in the sense described above)? If some
vertex x has a right neighbor p that has few left neighbors (in the restricted graph)
then x is guaranteed to be good, because x shares hash value p with small number

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 101

of other elements of Xy. (For simplicity we do not care which hash function gives p.
In fact there is nothing bad if i(x)= j(x′) for i
= j, but we do not take that into
account.)
Let us summarize: a right vertex p is “bad” if it has many left neighbors and

“good” otherwise. A left vertex is “safe” (is guaranteed to be good) if it has at least
one good right neighbor. If it is not the case (x has no good neighbors) we say that
x is “dangerous”. (As we have said, the dangerous vertex can be in fact good, but we
do not take it into account.)
Now assume that the (unrestricted) graph has the following expander-like property:

for any set S ⊂X of size slightly smaller than 2m the set S ′ of all right neighbors of
all vertices from S has at least |S| elements. This property remains true if we restrict
graph to Xy ×P. It guarantees that if the number of bad vertices on the right is small
then the number of dangerous vertices on the left is also small (recall that all neighbors
of dangerous vertices are bad). The number of bad right-hand side vertices does not
exceed the ratio

number of edges in the restricted graph
degree of a bad vertex

:

The total number of edges in the restricted graph is |Xy| ×N (each left-hand side vertex
has N outgoing edges); the degree of any bad vertex is big by de=nition.
The only remaining problem is to construct the family of hash functions having

expander-like property. This is done in the next section. We prove (by a probabilistic
argument) that such a family exists. Then we can try all families (for given n and m)
until we =nd a family with the required property. The =rst family is determined by m
and n and therefore has complexity O(log n).

7. Estimating probabilities

Lemma 1. Let m and n be positive integers and m6n. Let X and P be 4nite sets of
cardinalities 2n − 1 and 2m. Let positive numbers N and u satisfy the inequality

u
2m

¡ 2−(m+n)=N :

Then there exists a family of N functions

1; : : : ; N : X → P

with the following property: for any set U ⊂X having cardinality u the set of all
i(u) for all u∈U and all i∈{1; : : : ; N} contains at least u elements.

Proof. Let us prove that randomly chosen functions 1; : : : ; N have the required prop-
erty with positive probability.
There is at most 2nu possibilities for the set U since there are (2n − 1)u sequences

of length u whose elements belong to X . (A stronger bound would take into account

102 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

that di>erent sequences can lead to the same set U but this bound is enough for our
purposes.)
For a =xed set U let us estimate the probability of the following event: all values

i(u) for all u∈U and for all i belong to a =xed set V ⊂P of cardinality |u − 1|.
This probability is less than (u=2m)Nu since Nu random values are independent and
each belongs to V with probability less than u=2m. The number of di>erent sets V is
at most 2mu. Therefore, the total probability of the bad outcome (for some U all Nu
values belong to some set V of cardinality u− 1) is less than

2mu · 2nu ·
(u
2m

)Nu

and we need this bound to be less than 1. It is easy to see that this requirement is
equivalent to our assumption.

We use Lemma 1 with

u
2m

¡ 1=n:

In this case we may let N =2�n=log n�, and each hash function i can be speci=ed by
O(logN)=O(log n) bits (it is enough to specify n, m, and i).

8. Estimating the number of neighbors

In this section we provide bounds for the number of bad and dangerous vertices.
Recall that we consider strings x and y of length less than n and K(x|y)=m. By X
we denote the set of all strings of length less than n; by P we denote the set of all
strings of length m (used as hash values).
The set X contains 2n − 1 elements; the set P contains 2m elements. We apply

Lemma 1 with N =2�n=log n� and some value of u that will be speci=ed later and get
a bipartite graph connecting strings with their hash values.
Let x and y be =xed. A hash value p∈P is “bad” if it has more than nc neighbors

in the set Xy that contains all strings x′ ∈X such that K(x′|y)6m. (The exact value of
a constant c will be speci=ed later.) As we have seen, the number of bad hash values
is less than

|Xy| · N=nc ¡ 2 · 2m · 2n=nc =
(

4
nc−1

)
· 2m

(recall that |Xy|¡2 · 2m since the number of programs of length at most m is less
than 2 · 2m, and N¡2n). Let u be the (integer part of the) right-hand side of this
inequality. We assume that c¿4, therefore u=2m¡1=n and we can apply Lemma 1
with N = �2n=log n�. Lemma guarantees that the number of dangerous vertices in Xy
is less than u (otherwise u dangerous vertices would have less than u neighbors, since
the number of bad vertices is less than u).

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 103

Therefore, the complexity of any dangerous vertex when y is known does not exceed

O(log n) + log
(

4
nc−1 · 2m

)
= O(log n) + m− (c − 1) log n:

Indeed, to specify a dangerous vertex it is enough to =x m and n (after that the family
of hash function is known) and then specify its ordinal number in the enumeration of all
dangerous vertices (for given y). We see that if c is big enough (in fact c=4 suOces)
and n is big enough the complexity of any dangerous vertex is less than m. Therefore,
the initial vertex x is not dangerous and has a good neighbor p. Then K(p|x)=O(log n)
(to get p from x we specify i such that i(x)=p) and K(x|y; p)=O(log n) (since x
is one of at most nc neighbors of p in Xy, we can specify x by its ordinal number
in the list of all neighbors which can be generated if we know y; p; n; m; recall that n
and m contain O(log n)-bits.)
Theorem 1 is proved.

Remark. The code p is not de=ned uniquely by the properties mentioned in Theorem 1.
Indeed, assume that y and z are random independent strings of the same length and
x=yz. Then both y and y⊕ z can be used as p but have no mutual information.

9. Codes for several conditions

The construction of codes using hash functions has other applications. Now we use
it to construct a code that works for several conditions. Assume that we have strings
x; y; z of length less than n and K(x|y)=K(x|z)=m. It turns out that there exists a
string p of length m such that

K(p|x) = O(log n);

K(x|p; y) = O(log n);

K(x|p; z) = O(log n):

This p is a code for x when y is known and at the same time a code for x when z is
known. (Moreover, p is simple relative to x, but even without this requirement it is
not trivial to =nd such a string p.)
The proof is given below (for a more general situation); let us explain informally

how it works.
We use the family of hash functions

1; : : : ; N : X → P;

where X is the set of all strings of length less than n and P=Bm is the set of all
strings of length m. The code p (that we are looking for) is i(x) for some i. The
family of hash functions is represented as a bipartite graph on X ×P. This graph is the
same for both y and z. However, the sets Xy and Xz (that contain strings of complexity

104 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

at most m with respect to y and z) are di>erent, so we have to consider two restrictions
of that graph (onto Xy ×P and Xz ×P). Therefore, we get two types of “bad” vertices
(having many neighbors in Xy and Xz). The proof of Theorem 1 shows that we can =nd
y-good neighbor of x as well as z-good neighbor, but if these neighbors are di>erent,
we are in trouble.
To overcome this diOculty we prove that most neighbors of x are y-good and that

most neighbors of x are z-good. Then we conclude that there exists a neighbor p that
is both y- and z-good. This p is the code we are looking for.
To prove that most neighbors are good we need to change the de=nition of a dan-

gerous vertex. We say that a vertex in X is y-dangerous (z-dangerous) if the fraction
of y-good (z-good) vertices among its neighbors does not exceed 1

2 . We shall prove
that x is neither y-dangerous nor z-dangerous.
Expander-like property should be modi=ed accordingly: we require now that for any

set Z ⊂P of cardinality u the set

{x∈X | at least half of the neighbors of x belong to Z}
has less than u elements. (The requirements for u will be discussed later.) Note that
this requirement is stronger than the previous one: replacing “at least half of” by “all”
we get the previous requirement.
The last adjustment is needed when complexities K(x|y) and K(x|z) di>er. Assume

that K(x|y)= a and K(x|z)= b and a¿b. Then one can =nd two codes p (for x when
y is known) and q (for x when z is known) such that |p|= a, |q|= b and q is a pre=x
of p. (Both p and q are simple when x is known.)
To prove that p and q exist we consider hash functions with values in Ba as well as

their shortened versions that contain only =rst b bits. We require that both the “long”
and “shortened” families have expander-like properties. (In fact, it is convenient to
have expander-like properties for pre=xes of any length, see the next section.)
Using codes p and q one can easily construct a program M that maps both y and

z into x and has length

max(K(x|y); K(x|z)) + O(log n):

Program M =nds out which of the strings y and z is given as input (since y and
z di>er at some place, we can distinguish between them if we know this place; this
knowledge requires O(log n) bits). Then M applies one of the programs that maps p; y
or q; z into x. (Strings p and q are “compiled-in” constants in M ; it is enough to have
the longer one in full and the length of the shorter one.)

10. Probability estimates for several codes

To construct the common code for several conditions we need to generalize Lemma 1.
We denote by Bt the set of all binary strings of length t. If x∈Bt and s6t then we
denote by [x]s the pre=x of x having length s.

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 105

Lemma 2. Let n and N be positive integers and � be a positive real number. Assume
that

n 2N+2n+1�N=2 ¡ 1:

Then there exists a family of functions

1; : : : ; N : Bn → Bn

with the following property: for any m∈{1; : : : ; n} and for any set Q⊂Bm having at
most �2m elements the set of all x∈Bn such that

[i(x)]m ∈Q for at least half values of i∈{1; : : : ; N}
contains less than |Q| elements (where |Q| stands for the cardinality of Q).

Proof. We show that for randomly chosen functions 1; : : : ; N (values of i(x) are
independent for all i and for all x and are uniformly distributed in Bn) the required
property is violated with probability less than 1. To estimate this probability let us =x
some m6n, some u6�2m and some sets P⊂Bn and Q⊂Bm such that |P|= |Q|= u.
Consider the following event: for any x∈P at least half of the values

1(x); : : : ; N (x)

belongs to Q. The probability of this event is bounded by (2N �N=2)u since for any x∈P
for any of at most 2N subsets T of the set {1; : : : ; N} with |T |= �N=2� the probablity
of the event “i(x)∈Q for all i∈T” does not exceed �N=2 (m-pre=xes of uniformly
distributed independent strings are independent and uniformly distributed).
Summing over all T , we get (for a given x) the bound 2N �N=2. Events for di>erent

x are independent, and we get the bound mentioned above.
It remains to show that

n∑
m=1

�2m∑
u=1

∑
P⊂Bn;|P|=u

∑
Q⊂Bm;|Q|=u

(2N �N=2)u ¡ 1:

The number of di>erent sets P does not exceed 2nu (the number of sequences of length
u composed from elements of Bn); the number of di>erent sets Q does not exceed 2mu.
Therefore, it is enough to show that

n∑
m=1

�2m∑
u=1

2nu 2mu (2N �N=2)u ¡ 1:

The internal sum is a geometric progression. Lemma’s assumption guarantees that the
quotient of this progression is less than 1

2 , therefore its sum is bounded by 2 · (the =rst
term). Now we get rid of u; remaining sum has n terms and (since 2mu62nu) it is
enough to prove that

n 2 · 22n 2N �N=2 ¡ 1

which is exactly our assumption. Lemma 2 is proved.

106 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

We use this lemma for �=1=n. In this case the condition can be rewritten as

n2N+2n+1 ¡ nN=2

or

log n+ N + 2n+ 1¡ (N=2) log n:

We see that for big enough constant d and for N = �dn=log n� this condition is satis=ed
for all n.

11. Codes that are pre�xes of each other

Theorem 2. Let x; y; z be strings of length less than n. Then there exist strings p
and q such that

|p| = K(x|y); |q| = K(x|z);
the shorter of strings p and q is a pre4x of the longer one;

K(p|x) = O(log n); K(q|x) = O(log n);

K(x|p; y) = O(log n); K(x|q; z) = O(log n):

(As usual, constants in O(log n)-notation do not depend on n.)

Proof. Using Lemma 2, we construct N hash functions

1; : : : ; N : X → Bn;

where X is the set of all strings of length less that n, �=1=n and N =O(n=log n).
We may assume that the complexity of the family 1; : : : ; N is O(log n) (the =rst

family satisfying the required property can be e>ectively found for a given n if we try
all families in some prescribed ordering).
Assume that K(x|y)= a and K(x|z)= b. If we take into account only =rst a (or b)

bits of hash values, we get N mappings of type X →Ba (or X →Bb). These mappings
determine a bipartite graph on X ×Ba (and X ×Bb). Each vertex on the left has n
adjacent edges (some of them may lead to the same vertex on the right). We need
the restrictions of these graphs onto Xy ×Ba and Xz ×Bb, where Xy is the set of all
strings x′ of length less than n such that K(x′|y)6a and Xz is the set of strings x′ of
length less than n such that K(x′|z)6b.
A vertex in Ba is good if it has at most nc neighbors in Xy; a vertex in Bb is good

if it has at most nc vertices in Xz. (The exact value of the constant c which should be
large enough will be speci=ed later.)
The number of bad vertices in Ba (in Bb) does not exceed

2N · 2a=nc [2N · 2b=nc];

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 107

since any bad vertex has degree at least nc and the number of edges in the restricted
graph is |Xy| ·N [|Xz| ·N] and |Xy|¡2 · 2a [|Xz|¡2 · 2b]. (Recall that the number of
programs of length at most m is 2 · 2m − 1.)
A vertex in Xy is dangerous if at least half of its neighbors in Ba are bad. Lemma 2

guarantees that the number of dangerous vertices is less than

2N · 2a=nc

(we assume that c is large enough, therefore the number of bad vertices is less than
�2a, where �=1=n, so Lemma 2 can be applied). Since we can enumerate dangerous
vertices e>ectively (if n, a, and y are known), the complexity of any dangerous vertex
with respect to y does not exceed

log(2N · 2a=nc) + O(log n)6a− c log n+O(log n)

(recall that N =O(n=log n) where hidden constant in O-notation does not depend on c).
If c is large enough, all dangerous vertices have complexity (relative to y) less than
a, therefore the initial vertex x is not dangerous. Therefore, more than N=2 of hash
values of x have pre=xes of length a that are good elements of Ba.

For the same reasons more than N=2 hash values of x have good pre=xes of length
b. Therefore, there is a hash value i(x) that has good pre=xes of length a and b.
Let p= [i(x)]a and q= [i(x)]b. Then p is a pre=x of q or vice versa. Moreover,
K(p|x)=O(log n) and K(q|x)=O(log n) since p and q are determined by x; i; a; b.
Finally, K(x|p; y)=O(log n), because for any p and y we can enumerate all neighbors
of p in Xy (note that we know a= |p|) and to specify x it is enough to give its ordinal
number in this enumeration that is at most nc and is O(log n)-long. For the same reasons
K(x|q; z)=O(log n).
Theorem 2 is proved.

12. Number of hash functions

The following theorem shows that the number of hash-functions used in Theorem 1
(and therefore in Theorem 2) cannot be reduced signi=cantly.

Theorem 3. For any positive real c; any string x and any set P of cardinality less
than K(x)=c logK(x) whose elements are strings of length �K(x)=2� there exists a
string y such that:
(i) K(y)¡O(K(x));
(ii) K(x|y)¡K(x)=2;
(iii) (∀p∈P)K(x|y; p)¿(c − O(1)) logK(x).

Proof. Assume that P= {p1; : : : ; pj} and j¡K(x)=c logK(x). By vi we denote a pre=x
of pi of length �c logK(x)=3�. Let w be the concatenation of strings v1; : : : ; vj. Then

|w|¡ j�c logK(x)=3�¡ K(x)=3:

108 A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109

Consider the value K(x|w; z) for di>erent pre=xes z of string x. As |z| changes by 1,
the value of K(x|w; z) changes by O(1). We have

K(x|w;+)¿ K(x)− K(w)− O(logK(x))¿ K(x)− |w| − O(logK(x)):

Taking into account the estimate for |w|, we get K(x|w;+)¿K(x)=2 for suOciently
large K(x). On the other hand, K(x|w; x)¡O(1). Therefore, there is a pre=x z0 of the
string x such that K(x)=2¿K(x|w; z0)¿K(x)=2 − O(1). Let y be the pair 〈w; z0〉 (its
code). Let us check (i):

K(y)¡ K(w) + K(z0) + O(logK(x))¡ K(x)=3 + K(x) + O(logK(x)):

Now let us check (ii):

K(x|y) = K(x|w; z0)¡ K(x)=2:

Finally, we have to check (iii). For each i the string y contains “signi=cant” information
about pi:

K(pi|y)¡ K(x)=2− c logK(x)=3 + O(logK(x)):

(When w is known, it is enough to specify the position of the substring vi in the string
w and the remaining part of pi after vi to specify pi.) This inequality implies (for
every i) that

K(x|y; pi)¿ K(x|y)− K(pi|y)− O(logK(x))

¿ (K(x)=2− O(1))− (K(x)=2− c logK(x)=3 + O(logK(x)))− O(logK(x))

= (c − O(1)) logK(x):

Theorem is proved.

13. Concluding remarks

• Theorem 2 and its proof could be easily generalized to the case of three (or poly-
nomially many) conditions instead of two.

• Theorems 1 and 2 give us a code p of string x when y (or z) is known. We assumed
that all the three strings x; y; z have length less than n. However, our proof does not
use any assumption about y and z. Moreover, one can replace the assumption |x|¡n
by K(x)¡n.

Acknowledgements

The proofs of Theorems 1–3 were explained on the Kolmogorov seminar (Septem-
ber 1999). The preliminary short version of this paper was published in [5]. Author
is grateful to Alexander Shen for his help in elaborating it; this paper follows his
suggestions.

A.A. Muchnik / Theoretical Computer Science 271 (2002) 97–109 109

References

[1] C.H. Bennett, P. G3acs, M. Li, P.M.B. Vitanyi, W.H. Zurek, Information distance, IEEE Trans. Inform.
Theory 44 (3) (1998) 1407–1423.

[2] L. Fortnow, S. Laplante, Nearly optimal language compression using extractors, 15th Ann. Symp.
Theoretical Aspects of Computer Science, Paris, France, 25–27 February 1998, Lecture Notes in
Computer Science, Vol. 1373, Springer, Berlin, 1998, pp. 84–93.

[3] K.Yu. Gorbunov, On a complexity of the formula ((A ∨ B) → C), Theoret. Comput. Sci. 207 (1998)
383–386.

[4] M. Li, P. Vit3anyi, An introduction to Kolmogorov Complexity and Its Applications, 2nd Edition, Springer,
Berlin, 1997.

[5] A. Muchnik, A. Semenov, Multi-conditional descriptions and codes in kolmogorov complexity, Electronic
Colloquium on Computational Complexity, Report No. 15, January 27, 2000.

[6] N.K. Vereshchagin, M.V. Vyugin, Independent minimum length programs to translate between given
strings, Theoret. Comput. Sci., this issue.

