Cryptography in the Context of Kolmogorov Entropy

Alexei Semenov Andrej Muchnik

Institute of New Technologies Moscow Cryptographical problem in Kolmogorov theory of complexity:

 $K(B|AD) \approx 0$ $K(B|CD) \approx K(B|C)$ $K(D) \approx K(B|A)$

(\approx holds up to logarithm of lengths)

The Aim: for any given values K(A), K(B), K(C), K(AB), K(BC), K(AC), K(ABC)

- either to prove that for all such A, B, Cthe problem has a solution (D exists)
- or to prove that for some such A, B, C the problem has no solution.

 $K(A) \approx \ell(A), \ K(B) \approx \ell(B), \ K(C) \approx \ell(C).$

1. $K(B|C) \approx 0$ $K(B|CD) \approx K(B|C)$ for any D

2.
$$K(B|A) \approx 0$$

D is empty word

3. $K(A|C) \leq K(B|C)$

The problem is never solvable: if $K(B|AD) \approx 0$, then $K(B|CD) \leq K(A|C)$

4. $K(ABC) \approx K(A) + K(B) + K(C),$ $K(A) \gtrsim K(B)$

 $D = A' \oplus B$, where A' is a beginning of A, $\ell(A') = \ell(B)$

Theorem 1

 $K(A) \gtrsim 2K(B)$

The problem is always solvable.

Theorem 2

 $K(A) \lessapprox 2K(B)$

The problem can be unsolvable.

Moreover,
$$\forall A, B$$

if $K(A) \lessapprox 2K(B)$, then
 $\exists C \ \forall D$
 $K(B|AD) \approx 0 \land K(D) \approx K(B) \Rightarrow$
 $K(B|CD) \lessapprox K(B)$
(in addition,
 $K(B|AC) \approx 0, \ K(C) \le K(B) + \gamma \log K(B)$)

The proof is based on effective constructing an auxiliary function f with several properties.

In particular, the condition $K(B|AC) \approx 0$ is provided by the property f(AC) = B.

We look for the function f in a finite set. Namely, we consider finite functions that map binary words of length $\ell(A) + \ell(C)$ into binary words of length $\ell(B)$.

Using a probabilistic argument, it is proved that the fraction of functions without the properties required is negligibly small. The properties of f that we require are effectively verifiable, if the function K is known.

But K is not computable.

Consider a finite set of functions similar to K by their combinatorial properties.

As f, we take a function that has the properties required for all of those K-like functions. Even in this case, a probabilistic argument shows that there exists such function f.

Thus we can find f by exhaustive search.