Cryptography in the Context of Kolmogorov Entropy

Alexei Semenov Andrej Muchnik

Institute of New Technologies
Moscow

Cryptographical problem in Kolmogorov theory of complexity:

$K(B \mid A D) \approx 0$
$K(B \mid C D) \approx K(B \mid C)$
$K(D) \approx K(B \mid A)$
(\approx holds up to logarithm of lengths)

The Aim:
for any given values
$K(A), K(B), K(C), K(A B), K(B C), K(A C), K(A B C)$

- either to prove that for all such A, B, C the problem has a solution (D exists)
- or to prove that for some such A, B, C the problem has no solution.
$K(A) \approx \ell(A), K(B) \approx \ell(B), K(C) \approx \ell(C)$.

1. $K(B \mid C) \approx 0$
$K(B \mid C D) \approx K(B \mid C)$ for any D
2. $K(B \mid A) \approx 0$
D is empty word
3. $K(A \mid C) \lesseqgtr K(B \mid C)$

The problem is never solvable:
if $K(B \mid A D) \approx 0$, then $K(B \mid C D) \lesssim K(A \mid C)$
4. $K(A B C) \approx K(A)+K(B)+K(C)$, $K(A) \gtrsim K(B)$
$D=A^{\prime} \oplus B$,
where A^{\prime} is a beginning of $A, \ell\left(A^{\prime}\right)=\ell(B)$
$I(A: B) \approx 0, I(B: C) \approx 0, I(A: C) \approx 0$

Theorem 1

$K(A) \gtrsim 2 K(B)$
The problem is always solvable.

Theorem 2

$K(A) \lesseqgtr 2 K(B)$
The problem can be unsolvable.

Moreover, $\forall A, B$
if $K(A) \lesseqgtr 2 K(B)$, then
$\exists C \forall D$
$K(B \mid A D) \approx 0 \wedge K(D) \approx K(B) \Rightarrow$

$$
K(B \mid C D) \lesseqgtr K(B)
$$

(in addition,
$K(B \mid A C) \approx 0, K(C) \leq K(B)+\gamma \log K(B))$

The proof is based on effective constructing an auxiliary function f with several properties.

In particular, the condition $K(B \mid A C) \approx 0$ is provided by the property $f(A C)=B$.

We look for the function f in a finite set. Namely, we consider finite functions that map binary words of length $\ell(A)+\ell(C)$ into binary words of length $\ell(B)$.

Using a probabilistic argument, it is proved that the fraction of functions without the properties required is negligibly small.

The properties of f that we require are effectively verifiable, if the function K is known.

But K is not computable.

Consider a finite set of functions similar to K by their combinatorial properties.

As f, we take a function that has the properties required for all of those K-like functions.
Even in this case, a probabilistic argument shows that there exists such function f.

Thus we can find f by exhaustive search.

