
On mutual information of a binary word and
its entropy

Andrej Muchnik∗

We consider two kinds of the entropy (and the conditional entropy) of
binary words, namely, the simple entropy (introduced by Kolmogorov) de-
noted by KS, and the prefix entropy (introduced by Levin) denoted by KP .
When a statement is true for both kinds of entropy, we write K instead of
KS and KP . We suppose that there are fixed isomorphisms between the set
of naturals and the set of binary words, the set of pairs of binary words, and
so on. All logarithms are binary. The length of a word x is denoted by `(x).

As is known, both entropies under consideration are enumerable from
above and close by the value:

KS(x|y) ≤ KP (x|y) + O(1) ,

KP (x|y) ≤ KS(x|y) + O(log KS(x|y)) .

It is no wonder that KS and KP have many indentical properties. But in
some cases they behave differently. An example of a recursion-theoretical
property that substantially distinguishes KS and KP was published in [1].
In this paper we study quantitative properties, with respect to which KS and
KP behave in an opposite way. We are interested in the following questions:
does a word help to find its entropy and does the entropy of a word help to find
this word itself? More exactly, we want to describe the behaviour of functions
I(x : K(x)) = K(K(x))−K(K(x)|x) and I(K(x) : x) = K(x)−K(x|K(x))
(we write IS instead of I, when K = KS, and IP , when K = KP).
By Kolmogorov–Levin theorem about the symmetry of mutual information
K(x)−K(x|y) ≈ K(y)−K(y|x) ≈ K(x) + K(y)−K(〈x, y〉). If y = K(x),

∗Institute of New Technologies, 10, Nizhnyaya Radishevskaya, Moscow, 109004, Russia.
E-mail: muchnik@lpcs.math.msu.ru, fax: (095)9156963. The work was partially supported
by the Russian Foundation for Basic Research grants 01-01-00505 and 02-01-10904.

1

then (as Gács showed)

K(〈x, y〉) = K(〈x, K(x)〉) = K(x) + O(1)

(a minimal code of a word x gives x itself, and code’s length gives K(x)).
But mutual information is symmetrical only up to the term O

(
log K(x) +

log K(y)
)

(for KS it was proved by Kolmogorov and Levin, and for KP
by Gács). Since K(K(x)) ≤ O(log K(x)), the logarithmic accuracy is not
sufficient.

Our main results that proved in Theorems 1–4 are represented in the
following table.

KS KP

I(K(x) : x)
Mutual information is
bounded

Mutual information
tends to ∞

I(x : K(x))
Mutual information is
not bounded, but does
not tend to ∞

Mutual information
tends to ∞

We see that for KP knowing a word helps to find its entropy and knowing
the entropy helps to find the word. For KS knowing the entropy does not
help to find the word itself and knowing a word sometimes helps to find its
entropy and sometimes does not.

Theorem 1. The function IS(KS(x) : x) is bounded.

Proof. Let us consider a large enough natural number D. Assume that
KS(x|KS(x)) < KS(x) − D. Let y be a minimal code of x when KS(x)
is known. Denote by n a special binary representation of the number
N = KS(x)−`(y), in which each digit is repeated two times. Given the word
n01y one can effectively find x. Indeed, the first from the left occurence of
01 separate y from n; given n one finds KS(x)− `(y); knowing y, one finds
KS(x); given y and KS(x) one finds x. Therefore KS(x) ≤ `(n01y) + C ≤
2 log N + 4 + `(y) + C, where C depends on the choice of an optimal pro-
gramming language only. That is, N = KS(x) − `(y) ≤ 2 log N + C + 4.
Since N > D, for large D we get a contradiction. Thus for large enough D
we have KS(x) ≤ KS(x|KS(x)) + D.

Perhaps, the reader is surprised why the same reasoning cannot be applied
to the function IP (KP (x) : x). In this case y is a minimal prefix code of x

2

when KP (x) is known, n01 is a prefix code of N . It seems that n01y is a
prefix code of x, and we get a similar result. But actually y is a prefix code
of x for a fixed condition only. The set of all codes that correspond to the
function KP (·|·) for all conditions is not a prefix set.

Theorem 2. The function IP (KP (x) : x) tends to infinity.

Proof. As is known, the enumerable from below function µ(x|y) = 2−KP (x|y)

for every y specifies a semimeasure on the domain of x and it is the greatest
one among such semimeasures up to a multiplicative constant. And respec-
tively µ(x) = 2−KP (x). By µt denote the result of a step t in the enumeration
from below of the function µ. For every t, the domain where µt 6= 0 is finite.

Let us define a computable function νt
k(x|n) of natural arguments x, n, t

and k > 0 with rational values. For t = 0, the function ν is identically equal
to zero. While t is increasing, the function is not decreasing, and for all t, n,
k it holds

∑
x

νt
k(x|n) ≤ 2−k.

Put νt+1
k (x|n) = 2k · min{µt(x), 2−n} if

∑
x

min{µt(x), 2−n} ≤ 2−2k, and

νt+1
k (x|n) = νt

k(x|n) otherwise.
The function ν(x|n) =

∑
k

max
t

νt
k(x|n) is enumerable from below and∑

x

ν(x|n) ≤ 1. Therefore ν(x|n) ≤ O(µ(x|n)).

For every k, there exists x0 such that
∑

x≥x0

µ(x) ≤ 2−2k−1, and there exists

n0 such that for all n ≥ n0 it holds
∑

x<x0

2−n ≤ 2−2k−1. Hence for n ≥ n0 we

get
∑
x

min{µt(x), 2−n} ≤ 2−2k, and therefore ν(x|n) ≥ 2k · min{µ(x), 2−n}.

For all large enough x the value of µ(x) is not greater than 2−n0 ; it implies
that for n = − log µ(x) = KP (x), we have ν(x|n) ≥ 2k ·µ(x). Since µ(x|n) ≥
2−C ·ν(x|n) ≥ 2k−C ·µ(x), we obtain KP (x|KP (x)) ≤ KP (x)−k+C, where
C depends on the choice of an optimal programming language only.

Theorem 3. The function IP (x : KP (x)) tends to infinity.

Proof. The proof of this theorem is similar to the proof of the previous one.
Let us define a computable function νt

k(n|x) of natural arguments n, x, t
and k > 0 with rational values. For t = 0, the function ν is identically equal
to zero. While t is increasing, the function is not decreasing, and for all t, n,
k it holds

∑
n

νt
k(n|x) ≤ 2−k.

3

To define νt+1
k (n|x) we use an auxiliary function

αk(n|x) =

{
2k · µt(n) if µt(x) = 2−n,

νt
k(n|x) otherwise.

If
∑
n

αk(n|x) ≤ 2−k, put νt+1
k (n|x) = αk(n|x), and νt+1

k (n|x) = νt
k(n|x) in the

converse case.
The function ν(n|x) =

∑
k

max
t

νt
k(n|x) is enumerable from below and∑

n

ν(n|x) ≤ 1. Therefore ν(n|x) ≤ O(µ(n|x)).

For every k, there exists n0 such that
∑

n≥n0

2kµ(n) ≤ 2−k, and there exists

x0 such that for all x ≥ x0 it holds µ(x) ≤ 2−n0 . Hence for x ≥ x0 we
get ν(n|x) = 0 if n < n0, and the inequality

∑
n

αk(n|x) ≤ 2−k from the

definition of ν holds for all t. Thus for n = − log µ(x) = KP (x) we have
ν(n|x) ≥ 2k · µ(n). Since µ(n|x) ≥ 2−C · ν(n|x) ≥ 2k−C · µ(n), we obtain
KP (KP (x)|x) ≤ KP (x) − k + C, where C depends on the choice of an
optimal programming language only.

Theorem 4. The function IS(x : KS(x)) is not bounded, but does not tend
to infinity.

Proof. The unboundedness of the function IS(x : KS(x)) is almost obvious.
Let x be a random word of length n (that is KS(x) = n + O(1)). Then
KS(KS(x)|x) = O(1), and on the other hand KS(KS(x)) →∞.

Now our aim is to prove that the function IS(x : KS(x)) is bounded on
an infinite set. For any word x of length n, the simple entropy of x is not
greater than n + O(1), therefore KS(KS(x)) ≤ log n + O(1). We shall show
that

∀n ∃x `(x) = n ∧KS(KS(x)|x) ≥ log n−O(1) , (∗)
from where the statement of the theorem follows immediately.

We say that a computable function f(x, t) (where x is a binary word, t
and values of f are naturals) is a semi-enumerator if f(x, t) is monotonically
non-increasing in t and lim

t→∞
f(x, t) ≥ KS(x). If ∀x lim

t→∞
f(x, t) = KS(x),

then f is called an enumerator. Values of f are called hypotheses about the
entropy of x.

Let f0 be an enumerator, C be a large enough natural number. Let us
transform them into a semi-enumerator f1. For every x it passes to a new

4

0. For all natural a n > 5 in parallel do the following.
1. Sequentially for each x of length n:

2. Put t = 0.
3. If f(x, t) ≤ n/2 + a,

then stop the process for this n.
4. Look for a word y of length f(x, t)− a

such that g(y, a) has not defined yet;
if the word has been found,
then put g(y, a) = x,
else stop the process for this n.

5. Wait for t′ > t such that f(x, t′) < f(x, t).
6. If f(x, t′) < f(x, t)− a− 1,

then go to the next x from the Item 1,
else put t = t′ and go to the Item 3.

Figure 1: The algorithm that enumerates the graph of the function g.

hypothesis f1(x, t) only if within the time t this hypothesis was introduced by
the enumerator f0 and it was discovered that KS(f1(x, t)|x) < blog `(x)c−C.
The number of hypotheses of f1 for every x is less than `(x)/2C . The simple
entropy of a program for computing f1 is less than log C+O(1). Assume that
the statement (∗) is false, then ∃n ∀x [`(x) = n ⇒ lim

t→∞
f(x, t) = KS(x)].

Now it is sufficient to prove the following lemma.

Lemma. Let a number c be large enough and a semi-enumerator f be defined
by a program of simple entropy d > 0. If ∀x [`(x) = n ⇒ lim

t→∞
f(x, t) =

KS(x)], then on a certain x of length n the number of hypotheses of f is
greater than n/(cd).

This lemma strengthens two results from the paper [2].

Proof. Without loss of generality it can be assumed that f(x, 0) = `(x) +
O(1) > `(x). Let us construct an auxiliary partial computable function
g(y, a) (where y is a binary word, a and values of g are naturals). On Figure 1
we present an algorithm that enumerates the graph of the function g (in the
sequel we refer to the items of this algorithm).

It is obvious that ∀a, x KS(x) ≤ min{`(y) | g(y, a) = x}+ O(d + log a).
Suppose b is a large enough number (it depends on the choice of an optimal

5

programming language). Let us fix a = bd. In Item 5 we can always find
t′ > t such that f(x, t′) < f(x, t), because a > O(d + log a). For all n, m
there is not more than one y of length m such that g(y, a) = x, `(x) = n
and KS(x) ≥ m − 1 (such y will be called an exception). For `(y) = m,
a value g(y, a) could be defined while considering of numbers n < 2m in
Item 0 only. The cardinality of {x | KS(x) < m− 1} is less than 2m/2, the
number of exceptions of length m is less than 2m; therefore if in Item 4 we
did not managed to find y, then it would hold 2m/2 < 2m, that contradicts
the condition n > 5 in Item 0.

For n < 4a, the statement of the lemma is true if c ≥ 4b. Suppose n ≥ 4a.
If for every x of length n the number of hypotheses of f is not greater

than n/(cd), then for some t the condition in Item 6 will necessarily be true.
Indeed, while f(x, t) increases from n + O(1) to n/2 + a it makes less than
n/(cd) jumps, hence, one of them is greater than (n/2 − a) : (n/(cd)) ≥
cd/4 > a + 1 (if c > 4b + 4). Thus for every x of length n the length of some
hypothesis of f is strictly less than n. But the cardinality of {x | KS(x) < n}
is strictly less than 2n, and the number of words of length n is equal to 2n.
A contradiction.

This completes the proof of the theorem.

In Theorems 2 and 3 there was no effective bound on the growth rate of
the functions IP (KP (x) : x) IP (x : KP (x)). This fact is not surprising: as
is known, even for the functions KP (x) KP (KP (x)) there are no unlimited
partial computable lower bounds. Nonetheless, the two following theorems
show that for each of the functions IP (KP (x) : x) IP (x : KP (x)) there
exists an infinite (and not too thin) set such that the function grows on it
fast enough.

Theorem 5. For every natural k, there exists a binary word z of length not
greater than k such that IP (KP (z) : z) ≥ log k −O(1).

Proof. Assume that the number k is great enough (for small k, the statement
is trivial).

Let us define a computable function νt(n|x) of natural arguments n, x,
and t with rational values. For t = 0, the function ν is identically equal to
zero. While t is increasing, the function is not decreasing, and for all t, n it
holds

∑
n

νt(n|x) ≤ 1.

6

Put νt+1(x|n) = (n/4) · 2−n if µt(x) ≥ 2−n and
∣∣{x|µt(x) ≥ 2−n}

∣∣ ≤
2n+2/n, in the other case νt+1(x|n) = νt(x|n).

The function ν(x|n) = max
t

νt(x|n) is enumerable from below,
∑
x

ν(x|n) ≤

1, therefore ν(n|x) ≤ O(µ(n|x)).
Let us show that there is n ∈ [k/2, k] such that for all t it holds∣∣{x|µt(x) ≥ 2−n}

∣∣ ≤ 2n+2/n. If this was not true, then

∀n ∈ [k/2, k]
∣∣{x|µ(x) ≥ 2−n}

∣∣ · 2−n > 4/n .

Summing, we obtain

k∑
n=k/2

∣∣{x|µ(x) ≥ 2−n}
∣∣ · 2−n >

k∑
n=k/2

4/n > 2 .

On the other hand,

2 ≥
∑

x

2µ(x) ≥
k∑

n=k/2

∣∣{x|µ(x) ≥ 2−n}
∣∣ · 2−n ,

a contradiction.
Let us fix this n.
Consider a random word y of length k. Its simple, and hence prefix,

entropy is greater than k − O(1). Let yi be the beginning of y of length
i. It is clear that in the sequence KP (yk), KP (yk−1), . . . the difference be-
tween neighbouring numbers is less than a constant. If j is the least nat-
ural number such that KP (yk−j) ≤ n, then KP (yk−j) ≥ n − C, where
C depends on the choice of an optimal programming language only. Put
z = yk−j, then µ(z) ≥ 2−n and µt(z) ≥ 2−n for t greater than some t0. For
t > t0, we have νt(z|n) = (n/4) · 2−n (by the choice of n). Hence µ(z|n) ≥
2−O(1) · (n/4) · 2−n. Taking a logarithm, we get KP (z|n) ≤ n− log n +O(1).
Since |KP (z)− n| ≤ C, we obtain KP (z|KP (z)) ≤ KP (z|n)+O(1). There-
fore KP (z)−KP (z|KP (z)) ≥ (n−C)− (n− log n + O(1)) ≥ log k −O(1).
This completes the proof.

Theorem 6. For every natural k, there exists a binary word z of length not
greater than k such that IP (z : KP (z)) ≥ log k −O(log log k).

7

Proof. Assume that the number k is great enough (for small k, the statement
is trivial).

Consider a natural number n ≤ k such that the binary representation of it
is a random word of length blog kc, that is KS(n) = blog kc+O(1). Let z be a
random word of length n, that is KS(z) = n+O(1). It is clear that KS(n)−
O(1) ≤ KP (n) ≤ KP (KP (z)) + KP (KP (z)− n) + O(1) ≤ KP (KP (z)) +
KP (O(log n)) + O(1) ≤ KP (KP (z)) + O(log log n). Hence KP (KP (z)) ≥
log k − O(log log k). On the other hand, KP (KP (z)|z) ≤ KP (n|z) +
KP (KP (z)− n|z) + O(1) ≤ O(1) + KP (O(log n)|z) ≤ O(log log k). There-
fore, KP (KP (z)) − KP (KP (z)|z) ≥ log k − O(log log k). The theorem is
proved.

It was useful and helpful for the author to be acquainted with the paper [2]
and a comment of an anonymous referee of that paper about its connections
with the work [3]. The author is grateful to Alexey Chernov for his help in
preparing the text.

References

[1] An. A. Muchnik, S. Ye. Positselsky. Kolmogorov entropy in the con-
text of computability theory. Theoretical Computer Science, 2002, v. 271,
pp. 15–35.

[2] R. Beigel, H. Buhrman, P. Fejer, L. Fortnow, L. Longpré, F. Stephan,
L. Torenvliet. Enumerators of the Kolmogorov Function. Manuscript,
2002.

[3] P. Gács. On the symmetry of algorithmic information. Sov. Math. Dokl.,
1974, 15, 1477–1480

8

