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1 Introduction

Let Σ be a finite alphabet. We will talk of sequences in this alphabet, that is, functions
from N to Σ (hereN = {0,1,2, . . .}).

Let i, j ∈ N, i ≥ j. Denote by[i, j] the set{i, i +1, . . . , j}. Call this set a segment.
If α is a sequence in an alphabetΣ and [i, j] is a segment, then the stringα(i)α(i +
1) . . .α( j) is called a segment ofα and writtenα[i, j]. A segment[i, j] is called an
occurrence of a stringu in a sequenceα if α[i, j] = u.

We imagine the sequences going horizontally from left to right, so we shall use
terms “to the right” or “to the left” to talk about greater andsmaller indices respectively.

Definition 1. A sequenceα : N → Σ is calledalmost periodicif for any stringu
there exist such numberm that one of the following is true:

(1) There is no occurrence ofu in α to the right ofm.

(2) Any α ’s segment of lengthm contains at least one occurrence ofu.

Let A P denote the class of all almost periodic sequences.
The notion of almost periodic sequences generalizes the notion of finally ??? pe- FIXME

riodic sequences (the sequenceα is finally periodic if there existsN andT such that
α(n+T) = α(n) for all n> N). We will prove further that there exists a continuum set
of almost periodic sequences in a two-character alphabet (this seem to be proved first
in [Jacobs]). Obviously, the set of all finally periodic sequences in any finite alphabet
is countable. The definition of almost periodic sequence belongs to K. Jacobs [Jacobs],
although some particular almost periodic (but not finally periodic) sequences was stud-
ied in the works of M. Morse [Morse], M. Keane [Keane] and S. Kakutani [Kakutani].

To be correct, in the paper [Jacobs] a stronger property is considered and called
almost periodicity: for any stringu that has an occurrence inα there exists a numbern
such that everyα ’s segment of lengthn contain an occurrence ofu.

It would be more correct to call our sequences finally almost periodic, to establish
a correspondence

periodic ⊂ finally periodic
∩ ∩

almost periodic ⊂ finally almost periodic
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This work studies almost periodic sequences according to the Definition 1. This a
more general notion; although we could develop in parallel the theory of almost pe-
riodic sequences in the sense of Jacobs’ work, we do not do so because the parallel
theory does not contain any new ideas. When the parallel theorems present interest-
ing results we will mention them without proofs. Also, we will use the term “almost
periodic sequence” in the sense of Definition 1.

The class of almost periodic sequences is significantly richer than the class of fi-
nally periodic sequences and corresponds to a richer class of real-world situations. In
many cases, however, studying bidirectional sequences (functions fromZ to Σ) would
be more adequate. We note that the theory of bidirectional almost periodic sequences
can be reduced to the theory of unidirectional almost periodic sequences, and study
only unidirectional sequences.

This work studies the classA P in four directions. In Section 3 we study various
closure properties ofA P. In Section 4 we consider methods of generating almost
periodic sequences: block products (known from the paper [Keane]), dynamic systems
(an example: the sign of sin(nx)) and, finally, the universal method. In Section 5 we
present some interesting examples of almost periodic sequences. Section 6 considers
the Kolmogorov complexity of almost periodic sequences. The Section 2 is auxiliary;
it presents some equivalent definitions of almost periodic sequences.

2 Equivalent definitions

Consider all strings of lengthl . These are of two types: ones that occur inα only
finitely many times and ones that have infinitely many occurrences. Let us call them
type I and type II respectively. For anyl there is a start ofα such that it contains all
occurrences of all strings of type I. Then, every string of length l occurring in the rest
of α is of type II.

Consider a stringu of type II. The above Definition 1 guarantees that gaps between
u’s occurrences inα are bounded above by some constantm. This fact can actually be
taken as an equivalent definition of almost periodic sequences.

Definition 2. A sequenceα is almost periodic if for anyl there exist numbersm
andk such that every segment of lengthl occurring to the right ofk occurs infinitely
many times inα and gaps between its occurrences are bounded above bym.

We stress that it is necessary to havem depend onl . The following theorem shows
this:

Theorem 1. Let α be a sequence andm a number. Suppose that for everyl there
exists a numberk such that every segment ofα to the right ofk occurs infinitely many
times in α and gaps between its occurrences are bounded above bym. Then α is
periodic.

Proof. Let us show thatα is periodic with periodm!. Considerk that corresponds
to m! in the statement of this theorem. We shall now prove that foreveryi > k α(i) =
α(i + m!). Let i be greater thank and u be a string occurring inα in positionsi
throughi +m!−1. We are guaranteed that gaps between occurrences ofu are no more
thanm. So, there is an occurrence ofu starting at positionj wherei < j ≤ i +m−1.
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Since in that caseα[i..i +m! −1] = α[ j.. j +m! −1], we have

α(i) = α( j) = α(i +( j − i)),

α(i +( j − i)) = α( j +( j − i)) = α(i +2( j − i)),

. . .

Taking into account thatj − i < m and thus( j − i) | m!, we get

α(i) = α(i +m!),

which proves the theorem.2
This theorem in fact follows from a more general theorem (by An. Muchnik).
Theorem 2. Let us callα : Ns → Σ semi-linearif for any σ ∈ Σ the set{x∈ Ns |

α(x) = σ} is a finite union of sets of form{x0 + iv | i ∈ N}.
Let the following be true forα : Ns → Σ:

• These exists a finite setA∈Zs\{0} such that for anyr and for any circleU ∈Rs

of radiusr located sufficiently far from the point 0 there exists a pointv∈ A such
thatα(x+v) = α(x) for anyx∈U ∩Zs.

• For anyi ≤ s, a∈ N, a functionβ : Ns−1 → Σ defined by the formula

β (a1, . . . ,as−1) = α(a1, . . . ,ai−1,a,ai , . . . ,as−1)

is semi-linear.

Then,α is semi-linear.
Finally, let us give an effective variant of our main definition.
Definition 3. An almost periodic sequenceα is calledeffectively almost periodic

if

• α is computable,

• m from Definition 1 is computable givenu.

A parallel effective variant of Definition 2 is evidently equivalent to this one (we
can take all strings of lengthl in turn, and choose maximaln; conversely,m+ k from
the effective variant of Definition 2 fits anyu of corresponding lengthl ).

3 Closure properties ofA P

Denote byΣ∗ the set of all strings in alphabetΣ including the empty stringΛ.
Definition 4. A maph: Σ∗ → ∆∗ is called ahomomorphismif h(uv) = h(u)h(v) for

all u,v∈ Σ∗. (We writeuv for concatenation ofu andv).
Clearly, homomorphismh is fully determined by its values on one-letter strings.

Let α be an infinite sequence of letters ofΣ. By definition, put

h(α) = h(α(1))h(α(2)) . . .h(α(n)) . . . .

Evidently, if α is periodic andh(α) is infinite, thenh(α) is periodic.
Theorem 3. Let h: Σ∗ → ∆∗ be a homomorphism, andα : N → Σ be such a se-

quence thath(α) is infinite.
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• If α is almost periodic, then so ish(α).

• If α is effectively almost periodic, then so ish(α).

Proof. Let us call a charactera∈ Σ non-empty ifh(a) 6= Λ. Sinceh(α) is infinite,
there are infinitely many occurrences of non-empty letters in α. Now, sinceα is almost
periodic, there exists a numberk such that everyα ’s segment of lengthk contains at
least one non-empty letter.

Take a natural numberl . Every string of lengthl in h(α) is contained in the image
of some string of length not more thankl in α (because everyk characters inα contain
at least one non-empty character).

So, we found out that the homomorphismh can neither shrink nor expand the se-
quence “too much”. The image of any segment of sufficient length L is no longer
thanLS and no shorter thanL/k. This is the main idea that leads us to the desired
result. The following just fills in some technical details.

Let us take a prefix ofα such that every string of lengthkl outside this prefix is of
type II, and letm be a natural number bounding above the gaps between occurrences
of these strings. Also let us take the corresponding prefix ofh(α) and callh̃ the rest
of h(α).

Every single letter inα maps into some segment ofh(α) (which may be empty).
Mark all ends of these segments for all letters ofα. The sequenceh(α) becomes
separated into blocks of letters. All letters within such block map from a single letter
in α (and some blocks may be empty). SinceΣ is finite, there exists an upper boundS
on lengths of such blocks.

Consider any stringu of lengthl in h̃. It is contained in not more thatkl blocks. Let
us denote byv the string inα that produce these blocks and by[i, j] the correspond-
ing α ’s segment. We have|v| ≤ kl. By v denote the string of lengthkl in α starting
at i. Every α ’s segment of lengthm contains a start of at least one occurrence ofv
in α. Let us prove that everyh(α ’s segment of lengthmScontains a start of at least one
occurrence ofu.

Now consider any segment of lengthmS in h(α). It maps fromα ’s segment of
length not less thanmS

S = m (because every letter inα maps to no more thanS letters
in h(α)). This segment has a start of some occurrence ofv in α. The image of this
occurrence contains an occurrence ofu in h(α). Therefore, the considered segment
contains an occurrence ofu.

To prove the second statement note thath(α) is computable and thatmScan be
effectively computed.2

Now let us study mappings done by finite automata.
Definition 5. A finite automaton with outputis a tuple〈Σ,∆,Q,q0,T〉 where

• Σ is a finite set calledinput alphabet,

• ∆ is a finite set calledoutput alphabet,

• Q is a finiteset of states,

• q0 ∈ Q is aninitial state, and
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• T ⊂ Q×Σ×∆×Q is a transition set.

If 〈q,σ ,δ ,q′〉 ∈ T, we say that the automaton in stateq seeing the characterσ goes
to stateq′ and outputs the characterδ .

Definition 6. If for any pair〈q,σ〉 there exists a unique tuple〈q,σ ,δ ,q′〉 ∈ T, the
automaton is calleddeterministic.

Definition 7. Let α be a sequence andA an automaton. A sequence(q0,δ0), . . . ,(q0,δn), . . .
is A ’s routeon α if the following two conditions hold:

• q0 is the initial state ofA , and

• 〈qi ,α(i),δi ,qi+1〉 is A ’s transition for everyi ≥ 0.

Let us callδ0, . . . ,δn, . . . anA ’s output on this route.
If A is deterministic, then it has a unique route on every sequence. Denote byA (α)

its output onα.
Theorem 4. Let A be a deterministic finite automaton andα an almost periodic

sequence. ThenA (α) is also almost periodic. Moreover, ifα is effectively almost
periodic, then so isA (α).

Proof. We need to prove that if some stringu of lengthl occurs inA (α) infinitely
many times then the gaps between its occurrences are boundedabove by a function inl .
To prove this, it is sufficient to prove that for every occurrence[i, j] of u located suffi-
ciently far to the right inA (α) there exists another occurrence ofu within a bounded
segment to the left ofi. Obviously this already holds forα: there exist two functions
k andm such that for anyl -character segment[i, j] starting to the right ofk(l) there
exists a “copy” of it starting betweeni −m(l) andi −1.

Take anl -character string̃u in A (α) and its occurrence[i, j]. Suppose it is located
sufficiently far to the right (leaving the exact meaning of “sufficiency” to a later dis-
cussion). Callu1 the corresponding string inα (actually,u1 = α[i, j]). Let A enter the
segment[i, j] in stateq1. For uniformity, denotei1 = i andl1 = l .

There exists an occurrence ofu in α starting betweeni1−m(l1) andi1−1. Denote
the start of this occurrencei2 and the correspondingA ’s stateq2. If q2 = q1 then
A outputs the string̃u starting ati2.

If q2 6= q1 consider the stringu2 = α[i2, j]. Let l2 be its length. This string has
the following property. IfA enters it in stateq1, it outputsũ on the first segment of
lengthl ; if A enters it in stateq2, it enters the last segment of lengthl (which contains
a copy ofu) in stateq1 and, again, outputs̃u. There exists another occurrence of the
string u2 with a start betweeni2 −m(l2) and i2 − 1. Let i3 be this start andq3 the
correspondingA ’s state.

If q3 = q2 or q3 = q1, then the automaton enters a copy of the stringu2 in stateq2 or
q1 and outputs̃u according to the formulated property. Ifq3 6= q2 andq3 6= q1, repeat
the described procedure.

Namely, on then’th step we have a stringun of lengthln with an occurrence[in, j]
in α, and a set of statesq1, . . . ,qn. The property is that ifA entersun in one of the
statesq1, . . . ,qn, its output contains̃u. Then, we find an occurrence ofun with a start
betweenin−m(ln) and in−1, call its startin+1 and the corresponding stateqn+1. If
qn+1 equals one of the statesq1, . . . ,qn, then we have found an occurrence ofũ to the
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left of i. Otherwise, we have found a stringun+1 = α[in+1, j] with a similar property.
Sinceun+1 starts with a copy ofun, if A entersun+1 in one of the statesq1, . . . ,qn, it
outputsũ somewhere in this copy; ifA entersun+1 in stateqn+1, it outputsũ at the end
of un+1.

Since the set ofA ’s states is finite, we only need to do the procedure a finite number
of times, namely,|Q|+1 (where|Q| is the cardinality of this set). After this number of
steps we will definitely find another occurrence ofũ.

Let us show that the gap between the found occurrence and the original occur-
rence[i, j] is bounded above. For the start ofu2 we havei2 > i1−m(l1). Thus l2 <
l1 +m(l1). To be able to take this step, we needi1 > k(l1).

On then’th step, we have

in+1 > in−m(ln) > i1−m(l1)−m(l2)− . . .−m(ln),

and
ln+1 ≤ ln +m(ln) ≤ l1 +m(l1)+m(l2)+ . . .+m(ln).

The n’th step can be performed ifin > k(ln). To make this true, it is sufficient to
havei1−m(l1)− . . .−m(ln−1) > k(ln), so this is true if

i1 > k(l1),
i1 > k(l2)+m(l1),
i1 > k(l3)+m(l1)+m(l2),

. . .
i1 > k(l|Q|+1)+m(l1)+ . . .+m(l|Q|).

Let k be the maximum of right-hand sides of these inequalities.
So, we proved that every string̃u that has an occurrence[i, j] in A (α) to the right

of k has another occurrence starting betweeni − l|Q|−1 andi −1.
If the sequenceα is effectively almost periodic, all mentioned numbers can be

computed, soA (α) is also effectively almost periodic.2
Now we modify the definition of a finite automaton, allowing itto output any string

in the output when reading one character from input. We call these devices finite trans-
lators. Formally, a translator’s transition set is a subsetof Q×Σ×∆∗×Q. The output
sequence on the route〈q0,v0〉, . . . ,〈qn,vn〉, . . . now is the concatenationv0v1 . . .vn . . ..

Define the program of effectively almost periodic sequenceα to be a pair of two
programs〈p1, p2〉 wherep1 is a program computingα(n) givenn, andp2 is a program
computingm andk given l (as in Definition 2).

Corollary 5. Let A be a deterministic finite translator with input alphabetΣ and
output alphabet∆, andα : N → Σ∗ be a sequence such that the output sequenceA (α)
is infinite. Then

1. if α is almost periodic, then so isA (α), and

2. if α is effectively almost periodic, thenA (α) is effectively almost periodic, and
the program forA (α) can be effectively constructed given the program forα.
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Proof. The proof follows from Theorems 3 and 4. We decompose the mapping
done by the translator into two: one will be a homomorphism and the other done by a
finite automaton.

Define f (α) as follows: the characteri of f (α) is a pair〈α(i),qi〉, whereqi is
the state ofA when it reads thei’th character inα. Obviously, f can be done by a
(deterministic) finite automaton. Then, defineg(〈σ ,q〉) as the strings thatA outputs
when it readsσ when in stateq. Obviously,g is a homomorphism.

It is also clear thatg( f (α)) = A (α). The effectiveness statement immediately
follows from the mentioned theorems.2

Let α andβ be two sequencesα : N → Σ andβ : N → ∆. Define a cross product
α ×β to be a sequenceα ×β : N → Σ×∆ such thatα ×β (i) = 〈α(i),β (i)〉.

We will show later that a cross product of two almost periodicsequences is not
always almost periodic. On the other hand, a cross product oftwo finally periodic??? FIXME

sequences is finally periodic.
Corollary 6. A cross product of an almost periodic sequence and a finally periodic

sequence is almost periodic.
Proof. The proof immediately follows from Theorem 4 since the crossproduct

can be easily obtained as an output of a finite automaton reading the almost periodic
sequence.2

Now we turn to nondeterministic translators. Denote byA [α] the set of allA ’s
infinite output sequences on the input sequenceα.

Theorem 7. (Theorem of uniformization.) LetA be a translator andα an almost
periodic sequence.

1. If A [α] 6= /0 then there exists a deterministic translatorB such thanB(α) ∈
A [α] (so,A [α] contains an almost periodic sequence).

2. If α is effectively almost periodic then givenA and the program forα one can
effectively compute ifA [α] is empty, and if it is not, effectively findB.

Note that ifα is not almost periodic then the uniformization could be impossible:
Let α be a sequenceα = 01002000200000001. . . (1s and 2s come in random order,

and the number of separating zeroes increases infinitely). Let β be a sequenceβ =
11222222211111111. . . (every zero in a group is substituted by the character following
that group). Then there exists a nondeterministic translator A such thatA [α] = {β},
but there is no deterministic translatorB such thatB(α) = β .

Proof. Let us fix for the following the sequenceα and introduce some terms. Any
pair 〈i,q〉 wherei is an integer andq is a state ofA , we call a point. We say that a
point 〈i2,q2〉 is reachable from the point〈i1,q1〉 if the translatorA can go from the
stateq1 to the stateq2 readingα[i1, i2], namely, there exists a sequence

〈si1,ui1〉,〈si1+1,ui1+1〉, . . . ,〈si2−1,ui2−1〉,si2

such thatsi1 = q1, si2 = q2, and for all i ∈ [i1, i2 − 1] the tuple〈si ,α(i),ui ,si+1〉 is
a valid A ’s transition. The sequence〈si1,ui1〉, . . . ,〈si2−1,ui2−1〉,si2 is called a path
from 〈i1,q1〉 to 〈i2,q2〉, and the stringui1ui1+1 . . .ui2−1 is called the output string of
this path. If there exists a path from〈i1,q1〉 to 〈i2,q2〉 with a nonempty output string,
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we say that〈i2,q2〉 is strongly reachable from〈i1,q1〉. We say that a point is strongly
reachable from a set of points if it is strongly reachable from some point in that set.
Denote byTj(i,q) a set of points〈 j,q′〉 reachable from〈i,q〉. DefineQ j(i,q) = {q′ |
〈 j,q′〉 ∈ Tj(i,q)}.

Let 〈k0,s0〉 be some point. We say that a sequencej0 = k0 < j1 < .. . < jn < .. .
is correct with respect to〈k0,s0〉 if for every n ≥ 1 there exists a point〈kn,sn〉 such
that jn−1 < kn < jn, 〈kn,sn〉 is strongly reachable fromTjn−1(k0,s0), andQ jn(k0,s0) =
Q jn(kn,sn).

k0 jn � 1 kn
jn

We sketch this on a figure. The dots represent points, circle marked jn repre-
sentsQ jn(kn,sn) = Q jn(k0,s0), the wavy lines in the center of the “tube” picture paths,
and straight lines picture paths with a nonempty output string.

Say the point〈0, the initial state ofA 〉 is an initial point. A sequence is called
correct if it is correct with respect to some point reachablefrom the initial point.

Introduce an equivalence relation “∼” on a set of all points:

〈i1,q1〉 ∼ 〈i2,q2〉 iff ∃i ≥ i1, i2 : Qi(i1,q1) = Qi(i2,q2).

This relation is obviously reflexive and symmetric. The transitivity property fol-
lows from the fact that ifQi(i1,q1) = Qi(i2,q2) then for all j > i Q j(i1,q1) = Q j(i2,q2).
This relation has another interesting property. If〈i3,q3〉 is reachable from〈i2,q2〉,
〈i2,q2〉 is reachable from〈i1,q1〉, and〈i1,q2〉 ∼ 〈i3,q3〉 then〈i1,q1〉 ∼ 〈i2,q2〉 ∼ i3q3.
This is so because for alli ≥ i3 we haveQi(i3,q3) ⊂ Qi(i2,q2) ⊂ Qi(i1,q1).

An amazing fact is that there can only be a finite set of equivalence classes, namely,
not more than 2N whereN is the number ofA ’s states. If there were 2N +1 pairwise
nonequivalent points{t1, . . . , t2N+1} then for a sufficiently largei we would have 2N +1
pairwise different setsQi(t1), Qi(t2),. . . ,Qi(t2N+1), and that is impossible.

Now we are ready to prove the important
Lemma 8. A [α] 6= /0 iff there exists a correct sequence.
Proof. If there is a correct sequence then surelyA [α] 6= /0: on the figure we see the

path with a nonempty output string drawn in the center of the “tube”.
Now, supposeA [α] 6= /0. Fix some route〈q0,u0〉, . . . ,〈qn,un〉, . . . of A onα with a

nonempty output sequenceu0u1 . . .un . . .. Consider a sequence of points〈0,q0〉,〈1,q1〉, . . . ,〈n,qn〉, . . .
where each point is reachable from the previous. Then this points separate into a finite
set of equivalence classes:

{〈i,qi〉 | 0≤ i ≤ i1},
{〈i,qi〉 | i1 < i ≤ i2},

. . .
{〈i,qi〉 | im < i}.
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We see that all points〈i,qi〉 where i > im is equivalent. Now we can construct a
correct sequence. Letk0 = im + 1, s0 = qk0. We will construct two sequencesjn
and〈kn,sn〉 such thatjn−1 < kn ≤ jn, Q jn(kn,sn) = Q jn(k0,s0), and the point〈kn,sn〉
is strongly reachable fromTjn−1(k0,s0). The statesn will always be equal toq jn. Sup-
pose we already foundkn−1 and jn−1. Let kn be any number such thatkn > jn and the
point 〈kn,qkn〉 is strongly reachable fromTjn−1(k0,s0). We can find such a point be-
cause the output sequence of the path〈i,qi〉 is infinite. Since〈k0,s0〉 ∼ 〈kn,qkn〉, there
exists a jn such thatQ jn(kn,qkn) = Q jn(k0,s0). By induction, we construct a correct
sequence with respect to〈k0,qk0〉, and that point is reachable from the initial point, so
we have constructed a correct sequence. The proof of the lemma is complete.2

Lemma 9. (a) If α is almost periodic andA [α] 6= /0 then there exists a correct
sequencej0, j1, . . . , jn, . . . such that∃∆∀n( jn+1− jn) < ∆.

(b) If α is effectively almost periodic then givenA and the program forα one can
find out if A [α] is empty. IfA [α] 6= /0, one can find∆ and a point〈k0,s0〉 reachable
from the initial point such that there exists a correct sequence jn with ( jn+1− jn) < ∆.

Proof. Let us construct an auxiliary deterministic finite automaton C with the
output alphabet{0,1}. Among its states we will have a state ¯s for every statesof A .

We will need the following property ofC . Denote byC〈k,s〉(α) the output sequence
of C if we run it onα starting at timek in the state ¯s (this sequence starts at indexk;
one can imagine its firstk−1 positions filled with zeroes). The property is that if there
exists a correct sequence with respect to the point〈k,s〉 thenC〈k,s〉(α) is a characteristic
sequence of one such sequence. Otherwise,C〈k,s〉(α) contains only a finite number of
1s. (Under characteristic sequence of a sequencej0 < j1 < .. . < jn < .. . we understand
the sequence{ai} where

ai =

{
1, if ∃ni = jn,
0, otherwise.)

We describe the automatonC informally (omitting details regarding its states and
transitions).

At the timek the automaton rememberss and print 1. At the timei (i > k) the
automaton remembers the following (we denote byj the last time less thani when
C printed 1):

1. Qi(k,s),

2. the set of statesq∈Qi(k,s) such that the point〈i,q〉 is strongly reachable fromTj(k,s),
and

3. the set of all setsQi(l ,q) wherel ≤ i and the point〈l ,q〉 is strongly reachable
from Tj(k,s).

The automaton prints 1 if it sees that one of the sets from the third item equals
to the set in the first item. Otherwise, it prints 0. It is obvious that the information
remembered by the automaton is finite, and is bounded above bya function in the
number of states ofA .

The needed property ofC immediately follows from the fact that if there exists a
correct sequence with respect to the point〈k,s〉 then for all i ≥ k there exists a point
that is strongly reachable fromTi(k,s) and equivalent to〈k,s〉.
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Now we are ready to prove the statement (a) of the Lemma. SupposeA [α] 6= /0. Ac-
cording to Lemma 8 there exists a correct sequence with respect to some point〈k0,s0〉
reachable from the initial point. ThenC〈k0,s0〉(α) is a characteristic sequence of some
correct sequencej0 < j1 < .. .. If α is almost periodic then so isC〈k0,s0〉(α) according
to Theorem 4. It follows that there exists∆ such that∀n( jn+1− jn) < ∆.

Now we turn to the statement (b). To prove it, we build anotherauxiliary finite
translatorD . We describeD informally, too. The idea is to find a point〈k,s〉 such that
there exists a correct sequence with respect to that point. To do this, the translatorD
at time i runs a copy of the automatonC starting in every point〈i,s〉 reachable from
the initial point. It is impossible for a finite translator toremember all these copies.
But not all of these copies are different. Namely, at some time it can turn out that two
copies are in the same state. Then these two copies are considered “united” andD may
forget one of them. We will make it forget the one that was started later. So, at any
time,D remembers a finite list of different states corresponding toremembered copies
of C . The later the copy was started the bigger its number in the list. LetD print a
message “I am forgetting the copy numbern” when D forgets a copy. If some copy,
say numbern, should print 1, letD print a message “The copy numbern prints 1”. For
convenience, letD print a message “I rememberl copies” every time.

If α is effectively almost periodic, then so isD(α), so givenA and the program
for α we can compute the program forD(α).

Every started copy will either be forgotten at some time or will survive infinitely. In
the latter case its number in the list will stop decreasing sometime. LetN be the number
of such “survivors”; suppose they are started in pointst1, . . . , tN. Let i0 be the time when
the numbers of “survivors” stop decreasing (and thus becameequal 1, . . . ,N). Every
later copy will eventually be forgotten, i.e. will unite with one of the “survivors”. So,
A [α] 6= /0 iff one of the “survivors” prints infinitely many 1s. In other words, iff for
somei ≤ N D prints infinitely many messages “The copy numberi prints 1”.

If we know the program forD(α), we can find the numberN (it is one less than
the smallestn such thatD prints “I am forgetting the copy numbern” infinitely many
times), and know if there existsi ≤ N with the required property. So, we can know
whetherA [α] = /0. If A [α] 6= /0, we can findi and the pointti . Then there exists a
correct sequence with respect toti and we can find∆ (given a program forD(α)) such
that the copy numberi prints 1 on every segment of length∆, that is, there exists a
correct sequencejn such that for everyn ( jn+1− jn) < ∆. This completes the proof of
the Lemma.2

Now we finish the proof of Theorem 7. SupposeA [α] 6= /0 andα is almost periodic.
We should build a deterministic finite translatorB for thatB(α) ∈ A [α]. According
to Lemma 9 we find a point〈k0,s0〉 and a number∆ such that there exists a correct
(w.r.t. the point〈k0,s0〉) sequencejn such that for everyn ( jn+1− jn) < ∆. (Whenα is
almost periodic, this can be effectively found givenA and the program forα).

Let B work as follows. Up to the timek0 the translatorB prints an empty string.
At the timek0 the translator prints an output string of any path from the initial point to
the point〈k0,s0〉. Then,B “marks” numbersjn, kn and statessn such that

1. jn−1 < kn ≤ jn,

2. 〈kn,sn〉 is strongly reachable fromTjn−1(k0,s0), and
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3. Q jn(kn,sn) = Q jn(k0,s0).

To do this, the translator remembers at the timei ≥ k0 (here we denote byk and j
the last positions marked as such):

1. α(i),α(i −1), . . . ,α(i −2∆),

2. the last marked states and a pair of numbers(∆1,∆2) such thati −∆1 = j and
i −∆2 = k,

3. Qi−∆1(k0,s0), Qi(k0,s0).

If i −∆1 < i −∆2, then the translator searches for the next “j”, so when it turns
out thatQi(k0,s0) = Qi(i −∆2,s), it marks i as the new “j”. If i −∆1 ≥ i −∆2, then
the translator searches for the next “k”. To do this, it searchesTi(k0,s0) for a point
strongly reachable fromTi−∆1(k0,s0), and, when it finds, marks the correspondingi
as the new “k” and the corresponding state at the timei as the new “s”. In this case,
besides, the translator prints the nonempty output string of some path from the last
marked point〈k,s〉 to the newly marked point. In all other casesB prints an empty
string.

Since jn− kn−1 < 2∆, the remembered 2∆ characters ofα will suffice to know if
the currenti should be marked as “k” or “ j”, and to find the needed output string.

The output sequence ofB is a concatenation of an infinite set of nonempty stringsu0u1 . . .un . . .
such thatu0 is an output string of a path from the initial point to〈k0,s0〉, and for ev-
ery n > 0 un is an output string of a path from〈kn−1,sn−1〉 to 〈kn,sn〉. It follows
thatB(α) ∈ A [α].

SinceB can be effectively constructed, the proof is complete.2

4 Generating almost periodic sequences.
The universal method

In the paper [Keane] an interesting method of generating infinite 0-1-sequences is pre-
sented. It is based on “block algebra”.

4.1 Block product

Let u,v be strings in the alphabet{0,1} (we will use the symbolB for this alphabet
from this point onwards, and also writeB-sequences in place of 0-1-sequences). The
block productu⊗v is defined by induction on the length ofv as follows:

u⊗Λ = Λ
u⊗v0 = (u⊗v)u
u⊗v1 = (u⊗v)ū,

whereū is a string obtained fromu by changing every 0 to 1 and vice versa. It is easy to
check that block product is associative and distributive with respect to concatenation:

u⊗ (vw) = (u⊗v)(u⊗w).

11



Define the infinite block product. Letun, n = 0,1, . . . be a sequence of nonempty

strings in the alphabetB such that forn≥ 1 un starts with 0. Then the product
∞⊗

n=0
un

is defined as the limit of the sequence of stringsu0, u0⊗u1,. . . ,u0⊗u1 . . .⊗un⊗ . . ..
Since for everyn≥ 1 un starts with 0, it follows that every string in this sequence is a
prefix of the next string, so the sequence converges to some infinite B-sequence.

In the paper [Jacobs] it is proved that for any sequence{un} of strings that start

with 0 their block product
∞⊗

n=0
un is strongly almost periodic. This fact allows us to

prove that the cardinality ofA P is continuum:

For aB-sequenceω defineαω =
∞⊗

n=0
(0ω(n)). Now the mappingω 7→ αω is an

injection of continuum intoA P.

4.2 The universal method

Let Σ be a finite alphabet.
Definition 8. A sequence of tuples〈ln,An,Bn〉 whereln is an increasing sequence

of natural numbers, andAn andBn is finite sets of strings in the alphabetΣ, is called
Σ-scheme if the following three conditions hold:

(C1) all strings inAn have lengthln,

(C2) any string inBn has the formv1v2 wherev1,v2 ∈ An, and

(C3) every stringu in An+1 has the formv1v2 . . .vk where for eachi < k vivi+1 ∈ Bn

(and thusvi ,vi+1 ∈ An) and for allw∈ Bn ∃i < kw= vivi+1.

Note that since all strings inAn have equal lengths, the representationu = v1 . . .vk

of a stringu ∈ An+1 is unique, and so is the representationw = v1v2 of a stringw ∈
Bn. Also note thatln | ln+1. A Σ-scheme is computable if the sequence〈ln,An,Bn〉 is
computable.

Definition 9. We say that the sequenceα : N→Σ is generated by aΣ-scheme〈ln,An,Bn〉
if for all n∈ N there existsk such that for alli ∈ N α[kn + iln,kn +(i +2)ln−1] ∈ Bn],
that is, a concatenation of any two successive string in the sequence

α[kn,kn + ln−1],α[kn + ln,kn +2ln−1], . . .

is in Bn.
The sequence is perfectly generated by the scheme ifln | kn.
The sequence is effectively generated if the sequencekn is computable.
Proposition 10.Any scheme perfectly generates some sequence.
Proof. Let 〈ln,An,Bn〉 be any scheme. Choose any sequencexn ∈ An and let

α = x0x0 . . .x0︸ ︷︷ ︸
l1
l0

times

x1x1 . . .x1︸ ︷︷ ︸
l2
l1
−1 times

. . . xnxn . . .xn︸ ︷︷ ︸
ln+1

ln
−1 times

. . . .

Thenα is perfectly generated by the scheme if we letkn = ln+1. 2

Theorem 11. (a) Either of the next two properties of a sequenceα : N → Σ is
equivalent to the almost periodicity ofα:
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• α is generated by someΣ-scheme,

• α is perfectly generated by someΣ-scheme.

(b) Either of the next two properties of a computable sequence α : N → Σ is equiv-
alent to the effective almost periodicity ofα:

• α is effectively generated by some computableΣ-scheme,

• α is effectively and perfectly generated by some computableΣ-scheme.

Proof. We start with proving (a). Supposeα is generated by someΣ-scheme〈ln,An,Bn〉.
Let us prove thatα is almost periodic. Take a stringu∈ Σ∗ such thatu has infinitely
many occurrences inα. We prove that for someN everyα ’s segment of lengthN has
an occurrence ofu. Denote the length ofu by |u|. Taken such thatln ≥ |u|. Let us
prove that every string inAn+1 containsu as a substring. Takekn from the Definition 9.
Sinceu has infinitely many occurrences inα, there exists an occurrence ofu to the
right of kn, starting, say, on a segment[kn + iln,kn +(i + 1)ln−1]. Since|u| ≤ ln, the
whole occurrence is contained in the segment[kn + iln,kn +(i + 2)ln−1]. According
to the same Definition, this segment ofα is in Bn. So, some string inBn containsu.
It follows that every string inAn+1 containsu since every string inAn+1 contains all
strings fromBn (see (C3)).

Now, due to the definition of generation and to (C2), (C3), there existskn+1 such
that for everyi

α[kn+1 + iln+1,kn+1 +(i +1)ln+1−1] ∈ An+1,

and thus everyα ’s segment of length 2ln+1 to the right ofkn+1 contains at least one
occurrence of some string fromAn+1, and thus, an occurrence ofu.

Now supposeα is almost periodic. We construct a scheme〈ln,An,Bn〉 that perfectly
generatesα. Say that the occurrence[i, i + |u|−1] of the stringu∈An∪Bn in α is good
if ln | i. Let

An = {u∈ Σln | u has infinitely many good occurrences inα}
Bn = {u∈ Σ2ln | u has infinitely many good occurrences inα}

We still need to defineln. We do this by induction. Letl0 = 1. To find an appropriate
value forln+1 havingln, we prove the following

Lemma 12. There exists a numberl ′ such that everyα ’s segment of lengthl ′

contains a good occurrence of every string inBn.
Proof. Let string x in the alphabet{1,2, . . . , ln} be 1,2, . . . , ln,1,2, . . . , ln, and a

sequenceβ in the same alphabet to be an infinite concatenationxxx. . .. Define the cross
product of string of equal lengths similarly to the cross product of infinite sequences.
Then u is in Bn iff u× x has infinitely many occurrences inα × β . According to
Corollary 6, the sequenceα ×β is almost periodic, so there existsl ′ such that every
segment of lengthl ′ has an occurrence ofu× x for everyu ∈ Bn. So, every segment
of α of length l ′ has a good occurrence of everyu∈ Bn. This completes the proof of
the Lemma.2

Let ln+1 be a number such thatln | ln+1 and everyα ’s segment of lengthln+1 has a
good occurrence of every string fromBn.
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Let us prove that〈ln,An,Bn〉 is a scheme. To do this, it is sufficient to prove that
if u∈ An+1, u = v1v2 . . .vk where|vi | = ln, k =

ln+1
ln

, then for eachi < k vivi+1 ∈ Bn and
for every stringw∈ Bn there existsi < k such thatw = vivi+1.

Sinceu∈ An+1, u has infinitely many good occurrences inα. Hence, for alli < k
vivi+1 has infinitely many occurrences inα with a start of the formcln+1 +(i −1)|vi |.
But this expression is a multiple ofln, sovivi+1 has infinitely many good occurrences
in α, sovivi+1 ∈ Bn for all i < k.

Now supposew ∈ Bn. The stringu has an occurrence inα (even infinitely many
ones). Let one of these be[ j, j + ln+1 − 1]. According to the choice ofln+1, the
segment[ j, j + ln+1 − 1] has a good occurrence of the stringw, so for somei we
havevivi+1 = w.

Now we prove thatα is perfectly generated by the constructed scheme. For everyn
we letkn be the multiple ofln such that every stringu× x that has only finite number
of occurrences inα ×β , does not have any occurrences to the right ofkn.

(b) It is easy to check that the proof in both directions is effective.2
Now we describe the universal method of generating stronglyalmost periodic se-

quences. Say that〈ln,An〉 is a strongΣ-scheme if forln andAn the property (C1) holds,
and for everyn every stringu∈An+1 is of the formu= v1v2 . . .vk wherevi ∈An and for
everyw∈ An there existsi < k such thatw = vivi+1. Also, we say thatα is generated
by a strong scheme if for everyi andn α[iln,(i +1)ln−1] ∈ An.

The theorem analogous to the Theorem 11 is as follows:
Theorem 13. The sequenceα is strongly almost periodic iff it is generated by

some strongΣ-scheme.
The proof of this Theorem is analogous to the proof of Theorem11, although more

simple, and is omitted here.
Now we prove that the block product is strongly almost periodic.
Proposition 14. Let un be a sequence ofB-strings each starting with 0. Then the

sequence
∞⊗

n=0
un is generated by some strongB-scheme.

Proof. Let α =
∞⊗

n=0
un. Consider two cases.

(a) Starting from somen all the stringsun do not contain 1. Thenα has the
form vvv. . . for somev and thus is periodic. The scheme can be constructed trivially.

(b) For an infinitely manyn’s the stringun contains at least one 1. Thenα can be

represented as
∞⊗

n=0
wn where eachwn starts with 0 and contains 1. We prove this by

using the associative property of the block product. The product

u0⊗u1⊗ . . .⊗un⊗ . . .

can be divided into groups

(u0⊗u1⊗ . . .⊗un1−1)⊗ (un1 ⊗ . . .⊗un2−1)⊗ . . .

so that each group contains and least one term that contains 1. Lettingwi be the block
product of thei’th group, we getwi start with 0 and contain at least one 1.
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Now we define the strongB-scheme generatingα =
∞⊗

n=0
wn. Let xn =

n⊗
i=0

wi , ln =

|xn|, andAn = {xn, x̄n}. Since for everyn the stringwn contains both 0 and 1,〈ln,An〉
is a strongB-scheme. It is obvious thatα is generated by this scheme.

The proposition is proved.2

4.3 Dynamic systems

LetV be a topological space,A1, . . . ,Ak be pairwise disjoint open subsets ofV, f : V →
V be a continuous function, andx0 ∈V be a point such that its orbit{ f n(x0) | n∈N} lies

inside
k⋃

j=0
Vj . Define the sequenceα : N → {1, . . . ,k} by the conditionf n(x0) ∈ Aα(n).

We will show here two conditions yielding thatα is strongly almost periodic and one
yielding thatα is effectively and strongly almost periodic. (We say thatα is effectively
and strongly almost periodic if it is computable and givenu we can computen such
that eitheru does not occur inα or everyα ’s segment of lengthn has an occurrence
of u.)

Theorem 15. If V is bicompact and the orbit of any point ofV is dense??? in V, FIXME

thenα is strongly almost periodic.
Theorem 16.If V is a compact metric space andf is isometric, thenα is strongly

almost periodic.
It follows from the Theorem 16 that ifx/π is irrational, then the sequence{the sign of sinnx}

is strongly almost periodic: to prove this, one can take a circle for theV and a rotation
with the anglex for the f .

Before we formulate the third theorem, fix some definitions. The setTs = [0,1)s is
calleds-dimensional torus. Fix the following metric onTs. Let the mappingφ : Rs →
Ts be defined by equalityφ(x1, . . . ,xs) = ({x1}, . . . ,{xs}) where{x} denotes the frac-
tional part ofx. Thenρ(a,b) = min{|a′−b′| : φ(a′) = a,φ(b′) = b}.

A setA⊂ Rs is called algebraic if it is a solution set of some system of polynomial
inequalities (either strict or not) with integer coefficients. A set is called semi-algebraic
if it is a union of a finite set of algebraic sets. A setA⊂ Ts is called semi-algebraic if
there exists a semi-algebraicB⊂ Rs such thatA = B∩Ts.

Supposev∈Rs. The mappingfv : Ts→Ts defined by the equalityfv(x) = φ(x+v)
is called a shift by the vectorv. This mapping is surely isometric.

Theorem 17. Let V be s-dimensional torus, the pointx0 have algebraic coordi-
nates,f a shift by a vector with algebraic coordinates, andAi open semi-algebraic sets.
Thenα is effectively and strongly almost periodic.

Proof. (of Theorems 15, 16 and 17) We start with proving Theorem 15. We need
to show that if a stringu∈ {1, . . . ,k}∗ has an occurrence inα thenu is contained in any
sufficiently long segment ofα. Let u be of lengthl and have an occurrence inα, say,
u = α[i0, i0 + l −1]. Denote byBu the open set

{x∈V | x∈ Au(1), f (x) ∈ Au(2), . . . , f l−1(x) ∈ Au(l)}.

Then f i0(x0) ∈ Bu, soBu is not empty. Since every orbit is dense inV, we have∀x∈

V ∃i ∈N f i(x)∈Bu. This meansV ⊂
∞⋃

i=0
f−i(Bu). Since each setf−i(Bu) is open andV

15



is compact, there existsm∈N such thatV ⊂
∞⋃

i=0
f−i(Bu). That is,∀x∈V ∃i ≤m fi(x)∈

Bu. In particular,∀n∃i < m fn+i(x0) ∈ Bu, so anyα ’s segment of lengthm+ l + 1
contains an occurrence ofu.

Let us prove Theorem 16 by reduction to Theorem 15. LetV1 be a closure of the
orbit of x0. ThenV1 is also compact. Denote the metric ofV by ρ .

Lemma 18. f (V1) ⊂V1.
Proof. Supposex∈V1. We prove thatf (x)∈V1. Letε > 0. There existsk∈N such

thatρ( f k(x0),x) < ε. Henceρ( f k+1(x0), f (x0)) < ε becausef is isometric. Since this
holds for everyε > 0, f (x) ∈V1. 2

Lemma 19.For all x∈V1 the orbit ofx is dense inV1.
Proof. Let x ∈ V1, y ∈ V1, ε > 0. We need to show that there existsn such

thatρ( f n(x),y) < eps. There existk andl such thatρ( f k(x0),x) < ε/3, ρ( f l (x0),y) <
ε/3 (sincex,y∈V1). We have two cases.

Case 1:l ≥ k. Taken = l −k. We have

ρ( f l−k(x),y) ≤ ρ( f l−k(x), f l (x0))+ρ( f l (x0),y) =

ρ(x, f k(x0))+ρ( f l (x0),y) ≤ ε/3+ ε/3 < ε.

Case 2:l < k. First we prove that there exists a numberl ′≥ k such thatρ( f l ′(x0), f l (x0))<

ε/3. Thenρ( f l ′(x0),y) < 2ε/3 and we can reason as in case 1.
SinceV is compact, for anyδ > 0 there existsN such that among anyN point there

exist two with a distance less thanδ . TakeN corresponding toδ = ε
3k . Among the

points f (x0), f 2(x0), . . . , f N(x0) there are two with a distance less thanε
3k . Let these

be f i0(x0) and f i0+r(x0) (wherer > 0). Thenρ( f i0(x0), f i0+r(x0)) < ε
3k , and sincef is

isometric, for anyi we haveρ( f i(x0), f i+r(x0)) < ε
3k . In particular,

ρ( f l (x0), f l+r(x0)) < ε
3k ,

ρ( f l+r(x0), f l+2r(x0)) < ε
3k ,

. . .

ρ( f l+(k−1)r(x0), f l+kr(x0)) < ε
3k ,

and henceρ( f l (x0), f l+kr(x0)) < ε/3. Now we can takel ′ = l +kr ≥ k. The proof of
the lemma is complete.2

Now we can prove Theorem 16. For the spaceV1, the function f1 = f |V1, the
point x0 and the setsA′

i = Ai ∩V1 all conditions of Theorem 15 hold. Henceα is
strongly almost periodic and the Theorem 16 is proved.

Let us switch to proving Theorem 17. SinceTs is a compact metric space and the
shift is isometric, the resulting sequence is almost periodic according to Theorem 16.
Our goal is effectiveness issues.

Lemma 20. If V is a compact metric space,f is isometric,Ai are open subsets
of V, and the following conditions hold:

(a) Given a pointf k(x0) in one of the setsAi , one can enumerate from below the
radius of its neighborhood that lies in the sameAi .

(b) Givenε, one can effectively find anε-net in the closure of the orbit ofx0.
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(c) Given two points in the closure ofx0’s orbit, one can approximate the distance
between them.

(d) Givenu one can compute ifu occurs anywhere inα.

Then,α is effectively and strongly almost periodic.
Proof. Denotexn = f n(x0).
We are givenu and we should find suchm that everyα ’s segment of lengthm

contains an occurrence ofu. Supposeu occurs inα, say,u = α[i, j] (we can find out
if it occurs anywhere using (d), and if it does, find the neededindex by trying them
in turn). Find the pointsxi , . . . ,x j and for each pointxk find a numberεk such that
all theεk-neighborhood of this point is included in the same setAα(k) (we can do this
using (a)). Letε = min{εk} and letδ = ε/4.

Constructδ -net ??? in the closure ofx0’s orbit using (b). Starting atx0, start FIXME

calculating points of the orbit until every point ofδ -net is approximated with an error≤
δ (here we use (c)). Suppose we needed to calculatel points of the orbit. Thenm= 2l .
Let us prove this.

Suppose we have some segment ofα of lengthm starting at indexi0. Consider
the corresponding points in the orbit,xi0, . . . ,xi0+m−1. Take the middle point of this
segment,xi0+l , and find the pointy of δ -net that is closer thanδ to it. Find the point in
the starting segment ofα that is closer thanδ to y. All this is done using (c). Suppose
it has the numbern < l . Then the pointxi0+l−n is closer than 2δ to x0.

Now perform a similar operation with a pointxi (the starting point of a known
occurrence ofu). Namely, find a pointz in the δ -net that is closer thanδ to xi and
find a point in the starting segment ofα that is closer thanδ to z. Suppose it has the
numberp < l . The pointxp is closer than 2δ to xi .

Remember that the pointxi0+l−n is closer than 2δ to x0. Thus we have that the
point xi0+l−n+p is closer than 4δ to xi . Since 4δ = ε, the pointxi0+l−n+p is closer
thanε to xi , so there is an occurrence ofu starting at indexi0 + l −n+ p.

The lemma is proved.2
Now we need to show that in the situation of Theorem 17 the conditions (a)–(d) of

Lemma 20 hold.
One major construct that is used heavily in the following proof is the Tarski The-

orem [Tarski]. It states that if we have a first order formulaφ(x1, . . . ,xn) in the sig-
nature{+,×,<} and representations of algebraic numbersa1, . . . ,an, we can find out
if φ(a1, . . . ,an) is true in the ordered field of real numbers. Call a setA representable if
there exists a first order formulaφ(x) that is true iffx∈ A. Surely any semi-algebraic
set in the torus is representable.

Let us check the conditions.
(a) Given a point with algebraic coordinates (all points in the orbit have algebraic

coordinates since bothx0 and the shift vector have algebraic coordinates) we can write a
formulaφ(r) stating that any point at a distance less thanr is in An. Then, enumerating
all rational numbers, we can estimate from below the needed neighborhood radius.

(c) All points involved will have algebraic coordinates, sothe distance will be al-
gebraic, and thus it can be approximated.

Checking (b) and (d) is harder. We will do this after studyingthe structure ofV1

(the closure ofx0’s orbit) more thoroughly.
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Lemma 21. V1 is a union of a finite number of affine subspaces of equal dimen-
sions.

Proof. Take a pointa∈V1. If there exists a neighborhood ofa that does not contain
any other points ofV1, then the orbit is finite.

Otherwise, there are points in the orbit at deliberately small distances froma. Con-
sider straight lines going througha and these points, and the directions of these lines
(in other words, the points where these lines meet a unit sphere centered ata). Since
sphere is compact, there is a nonempty set of limit directions. (Such directionsw that
for everyε > 0 andδ > 0 there exist infinitely many points in the orbit such that they
are closer thanε to a and the corresponding directions are closer thanδ to w.) Consider
the corresponding straight lines. We prove that their affinecull is contained inV1.

First, we prove that every limit line is contained inV1. Take a pointx on the
line. There exists a pointy in the orbit such thatρ(a,y) < ε/4 and the angle be-
tween(a,x) and(a,y) is less than ε

constρ(a,x) . Also, there exists a pointz in the orbit

such thatρ(a,z) < ε
constρ(a,y). Then, the angle between(a,x) and(z,y) is still very

small (less than ε
constρ(a,x) ).

We need to make sure thatz is earlier in the orbit thany. If z is later, we changey as
follows. Find a pointy′ in the orbit later thanz such thatρ(y′,y) < ε

constρ(z,y), so the
angle changes small, and the line(z,y′) is still close to(a,x). Let the newy be thisy′.

Now we have that the angle between(z,y) and (a,x) is less than ε
constρ(a,x) , and

ρ(z,y) < ε/2. Let us traversez along the orbit until it becomesy. In the same number
of stepsy became anothery1 such thaty1 − y = y− z. So, y1 lies on the line(z,y).
Repeating the operation, we get to the neighborhood ofx. The nearest tox point of
the sequenceyn is at distance not more than the sum of the distance betweenx and the
line (z,y) (which is less thanε/2 according to our construction) and the distance be-
tween two points in the sequence (which isρ(z,y) < ε/2). So, we have approximatedx
by the point in the orbit with error not more thanε. This proves thatx∈V1.

Up to this point, we know that every limit line is contained inV1. Our next goal
is to prove that their affine cull is contained inV1. Suppose we proved that a cull of
some of the lines is contained inV1. Take a new limit line that is linearly independent
of the considered cull (say,(a,b)) and prove that the new cull is still contained inV1.
Consider a pointx in the new cull and project it along(a,b) to the previous cull. Denote
the projectionx1. Using the same technique as above, find two pointsz andy in the
orbit that are close toa, to each other, and such that the angle between(z,y) and(a,b)
is less than ε

constρ(x1,x)
. Also, we needz to be earlier in the orbit thany. Find a pointx′1

in the orbit that is later in the orbit thanzand is closer tox1 thanε/2. Traversezalong
the orbit until it becomesx′1. Theny becomesy′. We haveρ(y′,x′1) < ε/2, and the
angle between(x′1,y

′) and(x1,x) is less than ε
constρ(x1,x)

. Traversingx′1 to becomey′

and further, as above, we find a point in the orbit that is closer thanε to x. We just
added a new line to the cull. This procedure increases the dimension of the cull, so it
can be performed only finitely many times.

Now we prove that all points of the orbit that are not contained in the cull are not
closer to the cull than some a positive distance.

Assume for anyε > 0 there exists a pointx(ε) in the orbit that is closer thanε to
the cull but is not contained in it. Takeε > 0. Takex(ε) and a pointy in the orbit and in
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the cull such thaty is close to the orthogonal projection ofx(ε). Traversex andy along
the orbit untily becomes some pointy′ close toa. Thenx becomesx′ such that(y′,x′) is
almost orthogonal to the cull. Hence(a,x′) is almost orthogonal to the cull. Asε → 0
we havex′ → a, and(a,x′) tend to be perpendicular to the cull. So, we found a new
limit line, contradiction.

Now every point of the orbit is contained in an affine subspaceof the same di-
mension (since every one of them can be obtained from anotherby a shift; this also
shows that all are parallel). Consider an orthogonal complement to these subspaces
and project them to this complement. Every subspace projects into a point. The dis-
tance between any two of these points is more than some positive number. So, there
are only a finite number of these affine subspaces.2

Note that ifW is one of the affine subspaces such thatW∩Ts⊂V1, then alsoφ(W)⊂
V1. This follows from the proof of Lemma 21.

We want to find these affine subspaces givenf andx0. Without loss of generality
we can assume thatx0 = 0 since we always can shift the origin of the torus tox0. Let
the translation vectorv have coordinates(t1, . . . , ts).

Let d′ = dimQ{t1, . . . , ts,1}− 1. We prove that the dimension of the affine sub-
spacesd equalsd′.

Proof. Recall thatd′ + 1 is the cardinality of the minimal subset of coordinatesti
such that all the coordinates can be rationally expressed interms of these coordinates
and 1.

First, we prove thatd ≤ d′. Without loss of generality, we assume that the firstk−
1= s−d′ coordinatest1, . . . , tk−1 can be expressed in terms of the lastd′: tk . . . ts. Write
these expressions:

t1 = α1
k tk + . . .+α1

s ts+α1
0 ·1

. . .

tk−1 = αk−1
k tk + . . .+αk−1

s ts+αk−1
0 ·1

Consider these relations inf n, a shift by a vectorvn. We see thatt ′i = nti −ki ·1. So
the relations are the same except the coefficientsα i

0 differ. If we make the denominator
of all fractionsαb

a the same, we will see that the denominator ofα i
0 remains the same

when going fromf to f n. Since all theti are less than 1, the absolute values of coeffi-
cientsα i

0 are bounded above. Hence there are only a finite number of possible values
for α i

0. So, for anyn the vectorvn that is equal tof n(x0) (sincex0 = 0) lies in one of
the finite number of affine subspaces of dimensiond′. So,d ≤ d′.

Now we prove thatd ≥ d′. Project the whole picture onto the lastd′ coordi-
natesk, . . . ,s. If d < d′ then each affine subspace ofV1 projects into subspace of
dimension not more thand, so they all cannot cover the whole coordinate subspace.
Let us prove that the projection ofV1 covers all the coordinate subspacek, . . . ,s.

More precisely, we prove the following: if we project the whole picture onto a coor-
dinate subspace of dimensionl ≤ d′, the image will cover all the mentioned subspace.
We do this by induction onl . The induction base isl = 0. This case is obvious. As-
sume we proved the statement with some value ofl . Let us prove it withl +1. Project
the picture onto lastl coordinates. According to the induction hypothesis, the image
has the dimensionl . So, the projection on the lastl + 1 coordinates has a dimension
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of either l + 1 or l . We need to prove that it isl + 1. Assume, for the contrary, that
the dimension isl , that is, the projection ofV1 is a union of parallel affine subspaces
of dimensionl . They are not parallel to any coordinate axis (because if they were, we
could project the picture along this axis, and the spaces would project into spaces of
dimension at mostl −1, which cannot be true due to the induction hypothesis). The
subspaces intersecti’th coordinate axis by a point. The distances between adjacent
points are the same. Since the coordinate axis can be regarded as a circle (because we
are in the torus!), this distance is rational. Write the equation of j ’th subspace

ti = αktk + . . .+αsts+α j
0.

Since for differentj the difference betweenα j
0 is rational, and the point 0 is contained

in one of them, then allα j
0 is rational.

Consider the subspace containing 0 and its intersection with a two-dimensional
coordinate subspace of coordinatesi andq. Its equation isti = αqtq. Consider a vector
in this subspace (but outside the torus) withq-coordinate of 1. Denote itsi-coordinate
by xi . We have

xi = αq ·1.

The equivalent vector in the torus hasq-coordinate of 0, andi-coordinate ofxi −n for
some integern. It is contained in some affine subspace numberj, so

xi −n = αq ·0+α j
0.

Sinceα j
0 is rational, then the number

αq = α j
0 +n

is rational too. So, all the coefficientsαk is rational. This contradicts the fact that{ti}
are linearly independent overQ. 2

Now, we are ready to prove that the conditions (b) and (d) of Lemma 20 hold in our
case.

First, find a primitive elementγ in the fieldQ[t1, . . . , ts,(x0)1, . . . ,(x0)s], represent
all coordinates of the vectorsv andx0 as polynomials inγ and findd = d′ and the
coefficients of all equations of affine subspaces—except for the coefficientsα i

0. We
can find all possible values forα i

0, but we still need to know which give us the needed
subspaces ofV1. To find these, we findx0,x1, . . . until we have aε-net in every subspace
that has at least one point of the orbit. Then we can say that wehave all the subspaces.
Suppose we then jump (atn’th step) from a known subspace to a not yet known. There
was a pointxm of theε-net near toxn. Then there is a pointxm+1 near toxn+1. But xn+1

is in the new subspace, andρ(xm+1,xn+1) = ρ(xm,xn) < ε, soxm+1 is also in the new
subspace (remember that subspaces are separated by a positive distance), so really this
subspace is not new, but old.

Hence we can find the closure of the orbit and thus build aε-net in it. So, the
condition (b) is met. KnowingV1, we can also meet the condition (d). Suppose we
have a stringu and want to know if it occurs anywhere inα. We construct the set

Bu = {φ(y) | y∈ Ts,φ(y) ∈ Au(1), . . .φ(y+(|u|−1)v) ∈ Au(|u|)}
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This set is representable sinceAi is semi-algebraic sets andv has algebraic coordinates.
We can, givenu, v andAi , find a formulaψ(x) that is true iffx ∈ Bu. Then, we can
construct a formula stating that there is a pointy in the closure of the orbit such thaty∈
Bu. Then, we use the Tarski theorem to find out if there exists such point. So, the
condition (d) is also met, and this, finally, proves the Theorem 17.2

5 Interesting examples

Theorem 22.For anym∈N there exists a setA of m+1 effectively almost periodicB-
sequences such that the cross product of anym sequences fromA is effectively almost
periodic, and the cross product of allm+1 sequences is not almost periodic.

Theorem 23. For anym∈ N there exists a setA of m+1 effectively almost peri-
odic B-sequences such that the cross product of anym sequences fromA is effectively
almost periodic, and the cross product of allm+ 1 sequences almost periodic but not
effectively almost periodic.

A homomorphismh: Σ∗ → ∆∗ is called a collapse if for any characterσ ∈ Σ
|h(σ)| = 1 and|∆| < |Σ|.

Theorem 24.For anym∈N there exists a computable sequenceα : N→{1, . . . ,m}
such that for any collapseh the sequenceh(α) is effectively almost periodic. However,

(a) α is not almost periodic,

(b) α is almost periodic, but not effectively almost periodic.

Proof. (of Theorems 22, 23 and 24) We say that〈ln,An,Bn〉 is pseudoscheme if for
any collapseh 〈ln,h(An),h(Bn)〉 is a scheme. We start by proving Theorem 24(a). To do
this, we construct a pseudoscheme〈ln,An,Bn〉 and a non-almost periodic sequenceα
such that for any collapseh h(α) is generated by〈ln,h(An),h(Bn)〉.

Let Σm be the alphabet{1, . . . ,m}. We will identify permutations overΣm with
strings of lengthm in the alphabetΣm without equal characters.

Define a sequenceln and auxiliary setsRu
n ⊂ Σln

m (whereu∈ Bn+1). The setsRu
n for

differentu∈ Bn+1 are pairwise disjoint and have equal cardinalities.
We letR0

0 be the set of even permutations overΣm, andR1
0 be the set of add permu-

tations overΣm.
Supposeln and the setsRu

n are already defined so that the setsRu
n are pairwise

disjoint and have equal cardinalities. DenoteOv
n = Rv0

n ∪Rv1
n for all v∈ Bn. We say that

the stringu is a complete concatenation of strings for a finite setM if u = v1v2 . . .vk of
strings fromM such that every string fromM is used and for every two stringsw1,w2 ∈
M there exists an indexi < k such thatw1 = vi andw2 = vi+1. Let kn+1 be a minimalk
such that there exists a complete concatenation of strings fromOu

n (sinceOu
n have equal

cardinalities,kn does not depend onu). Let ln+1 = ln(kn+1 +2).
For u∈ Bn+2 we defineRu

n+1 as follows. Letε,δ be the last two characters ofu so
thatu = u′εδ . Let

Ru
n+1 = {v1 . . .vkn+1w1w2 |

v1 . . .vkn+1 is a complete concatenation fromOu′
n ,w1 ∈ Ru′ε

n ,w2 ∈ Ru′δ
n }
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It is obvious thatRu
n+1 is pairwise disjoint and have equal cardinalities. We will

nameOu
n zones of rankn andRu

n regions of rankn. So, Ruε
n is a region of zoneOu

n
whenε ∈ B. We thus have 2n pairwise disjoint zones of rankn, each being a disjoint
union of two regions of rankn.

Let τ = u0,u1, . . . is a sequence ofB-strings such that|un| = n. Let Aτ
n = Oun

n , and
let Bτ

n beAτ
nAτ

n, a pairwise concatenation of strings inAτ
n. We prove that〈ln,Aτ

n,B
τ
n〉 is

a pseudoscheme.
Lemma 25. For any collapseh, for any n and any stringu1, u2 of lengthn+ 1

there exists a bijectionφ : Ru1
n → Ru2

n such that∀x∈ Ru1
n h(x) = h(φ(x)) (in particular,

h(Ru1
n ) = h(Ru2

n )).
Proof. We use induction overn.
Let n = 0. If u1 = u2, let φ be an identity function. Ifu1 = 0, u2 = 1, we takei, j ∈

Σm such thath(i) = h( j) (suchi and j do exist becauseh is a collapse). Defineφ by
the equalitiesφ(i) = j, φ( j) = i, andφ(k) = k for k 6= i, j.

Suppose the statement forn is already proved. Then for anyu1,u2 ∈ Bn there
exists a bijectionφ : Ou1

n → Ou2
n that preservesh. We construct a bijection for any

two regions of rankn+ 1. Let u1ε1δ1 andu2ε2δ2 be any two strings of lengthn+

2, where|ui | = n, εi ,δi ∈ B. Then every string inRu1ε1δ1
n+1 can be represented asx =

v1 . . .vkn+1w1w2 wherevi ∈ Ou1
n , w1 ∈ Ru1ε1

n , w2 ∈ Ru1δ1
n . By the induction hypothesis,

there exist bijectionsφ1 : Ou1
n → Ou2

n , φ2 : Ru1ε1
n → Ru2ε2

n , andφ3 : Ru1δ1
n → Ru2δ2

n , that
preserveh. Let

φ(x) = φ1(v1)φ1(v2) . . .φ1(vkn+1)φ2(w1)φ3(w2).

Then φ1(v1) . . .φ1(vkn+1) is a complete concatenation of strings inOu2
n , thusφ(x) ∈

Ru2ε2δ2
n+1 . Obviously,φ is a bijection fromRu1ε1δ1

n+1 to Ru2ε2δ2
n+1 .

Sinceφ1, φ2 andφ3 preserveh, so doesφ . 2

It follows from this Lemma that the images of all zones under any collapseh co-
incide, i.e.h(Ou1

n ) = h(Ou2
n ). It is now obvious that〈ln,h(Aτ

n),h(Bτ
n)〉 is a scheme for

anyτ andh.
Now we construct a sequence ofB-stringsτ = u0,u1, . . . and non-almost periodic

sequenceα such that for any collapseh the scheme〈ln,h(Aτ
n),h(Bτ

n)〉 generatesh(α).
Let

un =

{
0l , if n is even,
10ln−1, if n is odd.

For everyn∈ N choose a stringxn from Aτ
n = Oun

n and let

α = x0x0 . . .x0︸ ︷︷ ︸
l1
l0

times

x1x1 . . .x1︸ ︷︷ ︸
l2
l1
−1 times

. . . xnxn . . .xn︸ ︷︷ ︸
ln+1

ln
−1 times

. . . .

Let us prove thatα is not almost periodic. As we can see from the definition, any
string inO10...0

n wheren≥ 2 contains every complete concatenationt1 . . . tk2 of strings
from O1

1. So every complete concatenationt1 . . .tk2 of strings fromO1
1 occurs inα

infinitely many times. Fix one such complete concatenation

y = v1
1 . . .v1

k1
w1

1w1
2v2

1 . . .v2
k1

w2
1w2

2 . . .vk2
1 . . .vk2

k1
wk2

1 wk2
2 ,
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wherevi
j ∈ OΛ

0 , wi
1 ∈ R1

0, wi
2 ∈ R0

0∪R1
0 = OΛ

0 .
Assumeα is almost periodic. Then the stringy should occur in every sufficiently

long α ’s segment. Hencey is contained inxn for a sufficiently largen.
Let us prove thatx does not containy for evenn. It is easy to check that for

everyε ∈ B every string inOuε
n+1 is a concatenation of strings fromOu

n. So for evenn
xn is a concatenation of strings fromO0

1. This means thatxn is a concatenation of
strings of the formv1 . . .vk1w1w2 wherevi ,w2 ∈ OΛ

0 , andw1 ∈ R0
0, so w1 is an even

permutation.
We havexn built from blocks each having the length ofm characters, and blocks

with numbers that are equal tok1 +1 modulok1 +2 are even permutations. Supposey
is a substring ofxn, say,y = xn[i, i + |y| − 1]. (We start numbering characters in the
block with 0.) Let us prove thatm | i, so that the blocks iny are the blocks inxn, too.
Assume thati is not multiple ofm: i = mq+ r where 0< r < m. For a stringv denote
the sets of characters that occur in this string byMv. Denote byti the (q+ i − 1)’th
block ofxn, and byr i the i’th block of y. Then

ti [r,m−1] = r i [0,m− r −1], ti [0, r −1] = r i−1[m− r,m−1].

But sinceMti [r,m−1] ∪Mti [0,r−1] equalsΣm, it follows thatMr i [0,m−r−1] ∪Mr i−1[m−r,m−1]

also equalsΣm. But sinceMr i−1[m−r,m−1] ∪Mr i−1[0,m−r−1] equalsΣm, too, we have for
anyi Mr i−1[0,m−r−1] = Mr i [0,m−r−1], so the firstm− r characters in all blocks ofy are the
same; this contradicts the assumption thaty is a complete concatenation. So,i = mq
for someq∈ N.

Every block ofxn with a number equal tok1 +1 modulok1 +2 is an even permu-
tation. Hence there existsi (and 1≤ i ≤ k1 + 2) such thatr j is an even permutation
for all j ≡ i (mod k1 + 2). If i = k1 + 1, this contradicts the fact thatrk1+1 is an odd
permutation: we haverk1+1 = w1

1 (see the definition ofy). If i 6= k1 +1, this contradict
the fact thaty is a complete concatenation. Part (a) of Theorem 24 is proved.

Now turn to the part (b). Fix some enumerable, but undecidable setE ⊂ N. Define
a sequence ofB-stringsun as follows. Let|un| = n and letun(i) = 1 if the numberi
is generated in less thann steps of enumeratingE. Thenun is a computable sequence
having the following property: for everyi there exists∆ such that for alln≥ ∆ un(i) =
E(i), but∆ cannot be computed giveni. Let An = Oun

n , andBn = AnAn. Then, as it was
shown above,〈ln,An,Bn〉 is a pseudoscheme. Let (as above)

α = x0x0 . . .x0︸ ︷︷ ︸
l1
l0

times

x1x1 . . .x1︸ ︷︷ ︸
l2
l1
−1 times

. . . xnxn . . .xn︸ ︷︷ ︸
ln+1

ln
−1 times

. . . ,

wherexn is lexicographically first string inAn. It is clear thatα is computable. For
any collapseh h(α) is effectively generated by〈ln,h(An),h(Bn)〉, soh(α) is effectively
almost periodic.

Let us show thatα is almost periodic. Letvn be n’th prefix of a characteristic
sequence ofE, that is, |vn| = n, andvn(i) = E(i). TakeCn = Ovn

n and Dn = CnCn.

Then 〈ln,Cn,Dn〉 is a scheme becausevn+1 = vnE(n) and every string inOvnE(n)
n+1 is

a complete concatenation of strings fromOvn
n . Let us prove thatα is generated by

the scheme〈ln,Cn,Dn〉. Taken ∈ N. We need to findm∈ N such that for allj ∈ N
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α[m+ jln,m+( j +2)ln−1] ∈ Dn. There exists∆ ≥ n such that for alli ≥ ∆ ui starts
with vn. Hencexi is a concatenation of strings fromCn = Ovn

n . It follows that for all j ∈
N we haveα[l∆ + jln, l∆ +( j +1)ln−1] ∈Cn, andα[l∆ + jln, l∆ +( j +2)ln−1] ∈ Dn.

Let us prove thatα is not effectively almost periodic. Assumeα is effectively
almost periodic. We will obtain thatE is decidable then. This will easily follow from
this property ofα: vn is a unique string such that every complete concatenation of
strings fromOvn

n occurs infinitely many times inα. Let us prove this property.
For a sufficiently largei the stringui starts withvi , soxi contains every complete

concatenation ofkn+1 strings fromOvn
n , andα has infinitely many occurrences of these

concatenations. Ifu 6= vn, denote byj the number of the first characters where they
differ. Then for a sufficiently largei the stringui starts withvn[0, j], andxi is a con-

catenation of strings fromOvn[0, j]
j+1 . Using the same technique we used for proving the

part (a), one can prove that a complete concatenation of strings fromOu[0, j]
j+1 cannot be

a substring of a concatenation of strings fromOvn[0, j]
j+1 . Hence,α contains only a finite

number of complete concatenations ofOu
n.

The Theorems 22 and 23 follow from the Theorem 24.
Let us construct a sequenceα in the alphabetBm+1 that is not almost periodic,

but becomes almost periodic under every collapse. Letαi be i’th projection in the
cross productB×B× . . .×B, havingα = α1 × . . .×αm+1. Then the cross product
of everym sequences from the set{α1, . . . ,αm+1} results from a collapse ofα, and is
almost periodic.

Theorem 23 is proved in a similar way.2

6 Almost periodic sequences and Kolmogorov complex-
ity

Let u be a string inB∗. Consider all programs on a Turing machine that printu (i.e.
they halt withu on the tape). Of all these programs there is the shortest one (in some
fixed coding system).

Definition 10. The length of the shortest program outputtingu is calledu’s Kol-
mogorov complexityand written asK(u).

Let α be an almost periodic sequence andαn its prefix of lengthn. We shall
studyK(αn) as a function ofn.

Consider the following simple example: divide a circle intok arcs withk points
(having computable coordinates). Take a real numberφ such that φ

2π is irrational.
Defineα(i) as the number of arc containing the pointnφ . The constructed sequenceα
is almost periodic according to Theorem 16.

Theorem 26.For the constructed sequenceα,

K(αn) ≤ O(logn)

Proof. Denote the division points byx1, . . . ,xk. For then’th prefix mark every point
on the circle with the number of arc it will go to after being multiplied by n. We will
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havenk arcs corresponding to thek arcs of initial picture. Call themn-arcs. To tell
what arc will containnφ it is sufficient to know whatn-arc containsφ .

Now to describe then’th prefix of α we can use the numbers ofm-arcs containingφ
for all m≤ n. To know all these numbers mark the boundaries of allm-arcs for allm≤
n. There aren(n−1)

2 k boundaries. They divide the circle inn(n−1)
2 k pieces. We need

to know the piece containingφ . To write its number, we needO(log(n(n−1)
2 k)) bits.

Thus we will have the following program to printαn. It will incorporaten and the
number of the piece containingφ . These are the values depending onn. The program
will also have an invariant section (that does not depend onn). It will contain the
pointsx1, . . . ,xk and the code of the program itself. When the program is executed, it
will take n, calculate the boundaries of all them-arcs for everym≤ n, and thus the
boundaries of all pieces. Then it will take the piece containing φ and thus know what
m-arc containsφ for everym≤ n. Now it will be able to calculateαn.

The length of this program isO(log(n(n−1)
2 k))+O(1) (the last term is the length

of the invariant section). Since log(n(n−1)
2 k) ≤ 2logn+ logk, we have

K(αn) ≤ O(logn).

The proof is complete.2
For simplicity, we will stick to the alphabetB. It is evident thatK(αn) ≤ n+O(1)

(we can incorporateαn itself in the program). The following theorem shows that this
bound cannot be reached for an almost periodic sequence.

Theorem 27. For any almost periodic sequenceα there exists a positiveε such
that

K(αn) < (1− ε)n

Proof. First, prove that there exists a string of type I (occurring in α only finitely
many times). Either the string 1 or the string 0 belongs to type II. We assume, without
loss of generality, that this is the string 0. There exist numbersp andl such that every
substring ofα of length l to the right ofp contains at least one zero. Thus, a string
consisting ofl + 1 1’s occurs only finitely many times. Letu be a string of minimal
length that occurs inα only finitely many times.

If |u| = 1 (which implies thatα consists entirely of ones or zeroes), thenK(αn) ≤
O(logn), becauseαn is determined only byn, and we can incorporaten in the program
usingO(logn) bits.

In the following we consider only thep’th suffix of α.
Let u′ be a string resulting when we omit the last character inu. Assume w.l.o.g.

that we omitted 0, sou = u′0. We know that every occurrence ofu′ is followed by 1.
The stringu′1 occurs infinitely many times inα (because if it had only finitely many
occurrences,u′ would have had only finitely many occurrences, which contradicts the
assumption thatu is the shortest string occurring only finitely many times). Hence
there existm andk such that everyα ’s substring of lengthm to the right ofk contains
at least one instance ofu′1. Letq = max{k, p}.

Let us show a “compression” algorithm that will encodeαn using (1− ε)n bits.
Divide αn into blocks in the following way: first block has lengthq and is written
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directly; the others has lengthm and are encoded. The encoding procedure finds the
first occurrence ofu′1 in the block and write the block replacing this occurrence of u′1
with u′.

Now we need to show that this encoding does not lose information (i.e. the original
string can be reconstructed knowingu′) and that we can build a program using this
encoding that outputsαn and has length less than(1− ε)n.

The decoding procedure is obvious. The first block of lengthq is just left as it is.
For every other block (it has lengthm−1 because exactly one occurrence ofu′1 was
replaced withu′) we find the first occurrence ofu′ and insert a 1 after it.

Now let us calculate the length of the program to outputαn. Its invariant section
will contain the stringu, the numbersq andm, and the first block of the encoded string.
The part which depends onn will contain the other blocks. The length of invariant part
is constant. In the other part for everym characters inα we write onlym−1 bits. So,
for n−q characters we will need(n−q)m−1

m bits. Thus

K(αn) ≤ (n−q)
m−1

m
+O(1) ≤ n

(
1−

1
m

)
+O(1) ≤ n(1− ε)

for appropriateε. This proves the theorem.2
We will show that there exists a strongly almost periodic sequenceα such that

K(αn) > n(1− ε). This result is proved in the remaining part of this section.

6.1 The construction

Let us build a scheme〈ln,An〉 that will generate our sequence.
Define some setA0 of strings of lengthl0. Let

An = {v1 . . .vkn | vi ∈ An−1, ∀a∈ An−1∃i : a = vi} ,

wherekn = ln
ln−1

. The values forkn (and for ln, respectively) as well as forA0 and l0,
will be chosen later.

First, we prove the following Lemma:
Lemma 28. Let A be an alphabet andA′ its subset. Denote byB the set of all

strings of lengthk that contain all characters inA′. Then for a sufficiently large|A| and
for k > 2|A| ln |A| the following holds:

|B| ≥
1
2
|A|k.

Proof. We will prove this forA′ = A, then for anyA′ it will be true too.
Let us take a randomk-character string in the alphabetA and calculate the prob-

ability of its containing not all characters ofA. It is composed of|A| − 1 different
characters, and

Pr(the string does not containi’th character) =

(|A|−1)k

|A|k
=

(
1−

1
|A|

)|A| k
|A|

≤ 2e
− k

|A| ,
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for sufficiently large|A|. If k > |A| ln4|A|, then

Pr(the string does not containi’th character) = 2e
− k

|A| ≤ 2e− ln4|A| =
1

2|A|
.

Thus the probability of a random string not to be inB is less than

|A|Pr(the string does not containi’th character) ≤
1
2
,

so at least half of thek-character strings are inB, and

1
2
|A|k ≤ |B| ≤ |A|k,

which proves the lemma (the bound onk in the statement is weaker, but more useful).
2

The sequenceα is generated by the built scheme in the following way. For thestep
0 take a stringαl0 in A0. For then’th step take a stringαln in An such that itsln−1-prefix
equals to the stringαln−1 chosen on the previous step. We will get a sequenceα such
that all its prefixes of lengthln are strings fromAn.

Our next goal is to prove that we can choose strings on each step in a way that
gives us the desired bound on Kolmogorov complexity. In doing this, we will impose
restrictions on (yet undefined) values forkn, l0 andA0.

Defining
kn > 4|An−1| log|An−1|, (1)

we assure that from the Lemma 28 it follows that

|An| ≥
1
2
|An−1|

kn−1.

This assignment makes the following Lemma true:
Lemma 29. If A0 = Bl0 andl0 ≥ 8

ε , then

log|An|

ln
≥ (1− ε/4).

Proof. Observe the transition fromn to n+1. We have

log|An|

ln
≥

log 1
2|An−1|

kn−1

ln
≥

kn−1 log|An−1|−1
ln

=
log|An−1|

ln−1
−

1
ln

.

Repeating these calculations, we get

log|An|

ln
≥

log|A0|

l0
−

n

∑
i=1

1
ln

.

Sincekn > 2, 1
ln

< 1
2nl0

and thus the sum is less than its doubled first term. Now

letting l0 be greater than8ε andA0 = Bl0 we get (sincel1 > l0)

log|An|

ln
≥

log|A0|

l0
−

2
l1

≥ 1− ε/4,
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that proves the Lemma.2
Let us prove that for the stepn we can choose such string fromAn that the complex-

ity of every itsm-prefix is greater thanm(1−ε). Then, by the compactness theorem, it
will follow that there exists an infinite sequenceα such that every itsln-prefix is inAn

and everym-prefix has the Kolmogorov complexity greater thanm(1− ε).
For the stepn+ 1 we will calculate the fraction inAn+1 of all stringsw with the

following property: there exists a numberm(ln < m≤ ln+1) such thatK(wm)≤m−εm.
For a fixedm the number of simple (with complexity less thanm− εm) strings of

lengthm is less than 2m−εm. We will calculate the number of strings inAn+1 whose
m’th prefix equals to the fixed simple stringw of lengthm.

Every string inAn+1 consists ofkn+1 blocks, every block is a string fromAn. As-
sume that the positionm is in j ’th block, i.e. ( j − 1)ln < m≤ jln. In j ’th block
m− ( j − 1)ln characters are fixed, andjln −m are free, so there are no more than
2 jln−m strings of lengthjln starting withw. There are stillkn+1− j blocks free. We
can choose each of them to be any block fromAn, getting|An|

kn+1− j ways to construct
a string inAn+1. Some of the resulting strings are not inAn+1 (because they do not
contain all blocks fromAn), but we seek an upper bound, so this does not matter. Thus
there are no more than

2 jln−m|An|
kn+1− j

strings inAn+1 that start withw, and no more than

2m−εm2 jln−m|An|
kn+1− j

strings that start with any simple string of lengthm. For the fractionfm of those strings
in An+1 we have

fm =
1

|Am+1|
2 jln−εm|An|

kn+1− j ≤
21+ jln−εm|An|

kn+1− j

|An|kn+1

(because|An+1| ≥
1
2|An|

kn+1),

fm ≤
21+ jln−εm

|An| j ≤ 21+ jln−εm− jln(1−ε/4)

(becauselog|An|
ln

≥ 1− ε/4). Taking logarithm, we get

log fm ≤ 1+ jln− εm− jln(1− ε/4) ≤ 1− εm+ jlnε/4

(becausem> ( j −1)ln)

log fm ≤ 1− lnε
(

3
4

j −1

)
.

Let us sum these fraction over allm. Each one depends only onj, so the sum is
actually overj:

ln+1

∑
m=ln

fm =
kn+1

∑
j=2

ln fm ≤ ln
kn+1

∑
j=2

21−lnε( 3
4 j−1) = ln21+lnε

kn+1

∑
j=2

2−
3
4 jlnε ≤

ln21+lnε 2−
3
2 lnε

1−2−
3
4 lnε

≤ ln21− 1
2 lnε 1

1−2−
3
4 lnε

≤ 2−
1
4 lnε
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for a sufficiently largeln (since the denominator tends to 1).
We have proved that there is only a small fraction of strings in An+1 having simple

prefixes of lengthsln +1 throughln+1. Let us compute the fraction inAn+1 of strings
with simple prefixes of lengthsln−1+1 throughln. We already know the fraction these
strings constitute inAn. Every string fromAn can be made into a string inAn+1 in the
same number of ways. So the fraction inAn+1 of the considered strings is the same as
in An. The same argument works for smaller lengths of simple prefixes. So, the bound
on fraction inAn+1 of strings having a simple prefix of arbitrary length can be obtained
by summing the above bound over alll i ≤ ln:

n

∑
i=0

2−
1
4 l iε ≤

2−
1
4 l0ε

1−2−
1
4ε

≤ 1

for a sufficiently largel0. Since the fraction is less than 1, we have proved that for anyn
there exists a string inAn such that all itsi-prefixes have Kolmogorov complexity more
thani(1− ε).

Recalling the compactness argument, we prove the followingTheorem:
Theorem 30. For any positive real numberε there exists an almost periodic se-

quenceα ∈ B∗ such that
K(αn) > n(1− ε).
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