Almost periodic sequences

An. Muchnik, A. Semenov, M. Ushakov

April 1, 2007

1 Introduction

Let Σ be a finite alphabet. We will talk of sequences in this alphabet, that is, functions from \mathbb{N} to Σ (here $\mathbb{N}=\{0,1,2, \ldots\}$).

Let $i, j \in \mathbb{N}, i \geq j$. Denote by $[i, j]$ the set $\{i, i+1, \ldots, j\}$. Call this set a segment. If α is a sequence in an alphabet Σ and $[i, j]$ is a segment, then the string $\alpha(i) \alpha(i+$ 1) $\ldots \alpha(j)$ is called a segment of α and written $\alpha[i, j]$. A segment $[i, j]$ is called an occurrence of a string u in a sequence α if $\alpha[i, j]=u$.

We imagine the sequences going horizontally from left to right, so we shall use terms "to the right" or "to the left" to talk about greater and smaller indices respectively.

Definition 1. A sequence $\alpha: \mathbb{N} \rightarrow \Sigma$ is called almost periodic if for any string u there exist such number m that one of the following is true:
(1) There is no occurrence of u in α to the right of m.
(2) Any α 's segment of length m contains at least one occurrence of u.

Let $\mathscr{A} \mathscr{P}$ denote the class of all almost periodic sequences.
The notion of almost periodic sequences generalizes the notion of finally ??? periodic sequences (the sequence α is finally periodic if there exists N and T such that $\alpha(n+T)=\alpha(n)$ for all $n>N)$. We will prove further that there exists a continuum set of almost periodic sequences in a two-character alphabet (this seem to be proved first in [Jacobs]). Obviously, the set of all finally periodic sequences in any finite alphabet is countable. The definition of almost periodic sequence belongs to K . Jacobs [Jacobs], although some particular almost periodic (but not finally periodic) sequences was studied in the works of M. Morse [Morse], M. Keane [Keane] and S. Kakutani [Kakutani].

To be correct, in the paper [Jacobs] a stronger property is considered and called almost periodicity: for any string u that has an occurrence in α there exists a number n such that every α 's segment of length n contain an occurrence of u.

It would be more correct to call our sequences finally almost periodic, to establish a correspondence

periodic	\subset	finally periodic
\cap		\cap
almost periodic	\subset	finally almost periodic

This work studies almost periodic sequences according to the Definition 1. This a more general notion; although we could develop in parallel the theory of almost periodic sequences in the sense of Jacobs' work, we do not do so because the parallel theory does not contain any new ideas. When the parallel theorems present interesting results we will mention them without proofs. Also, we will use the term "almost periodic sequence" in the sense of Definition 1.

The class of almost periodic sequences is significantly richer than the class of finally periodic sequences and corresponds to a richer class of real-world situations. In many cases, however, studying bidirectional sequences (functions from \mathbb{Z} to Σ) would be more adequate. We note that the theory of bidirectional almost periodic sequences can be reduced to the theory of unidirectional almost periodic sequences, and study only unidirectional sequences.

This work studies the class $\mathscr{A} \mathscr{P}$ in four directions. In Section 3 we study various closure properties of $\mathscr{A} \mathscr{P}$. In Section 4 we consider methods of generating almost periodic sequences: block products (known from the paper [Keane]), dynamic systems (an example: the sign of $\sin (n x)$) and, finally, the universal method. In Section 5 we present some interesting examples of almost periodic sequences. Section 6 considers the Kolmogorov complexity of almost periodic sequences. The Section 2 is auxiliary; it presents some equivalent definitions of almost periodic sequences.

2 Equivalent definitions

Consider all strings of length l. These are of two types: ones that occur in α only finitely many times and ones that have infinitely many occurrences. Let us call them type I and type II respectively. For any l there is a start of α such that it contains all occurrences of all strings of type I. Then, every string of length l occurring in the rest of α is of type II.

Consider a string u of type II. The above Definition 1 guarantees that gaps between u 's occurrences in α are bounded above by some constant m. This fact can actually be taken as an equivalent definition of almost periodic sequences.

Definition 2. A sequence α is almost periodic if for any l there exist numbers m and k such that every segment of length l occurring to the right of k occurs infinitely many times in α and gaps between its occurrences are bounded above by m.

We stress that it is necessary to have m depend on l. The following theorem shows this:

Theorem 1. Let α be a sequence and m a number. Suppose that for every l there exists a number k such that every segment of α to the right of k occurs infinitely many times in α and gaps between its occurrences are bounded above by m. Then α is periodic.

Proof. Let us show that α is periodic with period m !. Consider k that corresponds to $m!$ in the statement of this theorem. We shall now prove that for every $i>k \alpha(i)=$ $\alpha(i+m!)$. Let i be greater than k and u be a string occurring in α in positions i through $i+m!-1$. We are guaranteed that gaps between occurrences of u are no more than m. So, there is an occurrence of u starting at position j where $i<j \leq i+m-1$.

Since in that case $\alpha[i . . i+m!-1]=\alpha[j . . j+m!-1]$, we have

$$
\begin{gathered}
\alpha(i)=\alpha(j)=\alpha(i+(j-i)), \\
\alpha(i+(j-i))=\alpha(j+(j-i))=\alpha(i+2(j-i))
\end{gathered}
$$

Taking into account that $j-i<m$ and thus $(j-i) \mid m$!, we get

$$
\alpha(i)=\alpha(i+m!),
$$

which proves the theorem.
This theorem in fact follows from a more general theorem (by An. Muchnik).
Theorem 2. Let us call $\alpha: \mathbb{N}^{s} \rightarrow \Sigma$ semi-linear if for any $\sigma \in \Sigma$ the set $\left\{x \in \mathbb{N}^{s} \mid\right.$ $\alpha(x)=\sigma\}$ is a finite union of sets of form $\left\{x_{0}+i v \mid i \in \mathbb{N}\right\}$.

Let the following be true for $\alpha: \mathbb{N}^{s} \rightarrow \Sigma$:

- These exists a finite set $A \in \mathbb{Z}^{s} \backslash\{0\}$ such that for any r and for any circle $U \in \mathbb{R}^{s}$ of radius r located sufficiently far from the point 0 there exists a point $v \in A$ such that $\alpha(x+v)=\alpha(x)$ for any $x \in U \cap \mathbb{Z}^{s}$.
- For any $i \leq s, a \in \mathbb{N}$, a function $\beta: \mathbb{N}^{s-1} \rightarrow \Sigma$ defined by the formula

$$
\beta\left(a_{1}, \ldots, a_{s-1}\right)=\alpha\left(a_{1}, \ldots, a_{i-1}, a, a_{i}, \ldots, a_{s-1}\right)
$$

is semi-linear.
Then, α is semi-linear.
Finally, let us give an effective variant of our main definition.
Definition 3. An almost periodic sequence α is called effectively almost periodic if

- α is computable,
- m from Definition 1 is computable given u.

A parallel effective variant of Definition 2 is evidently equivalent to this one (we can take all strings of length l in turn, and choose maximal n; conversely, $m+k$ from the effective variant of Definition 2 fits any u of corresponding length l).

3 Closure properties of $\mathscr{A} \mathscr{P}$

Denote by Σ^{*} the set of all strings in alphabet Σ including the empty string Λ.
Definition 4. A map $h: \Sigma^{*} \rightarrow \Delta^{*}$ is called a homomorphism if $h(u v)=h(u) h(v)$ for all $u, v \in \Sigma^{*}$. (We write $u v$ for concatenation of u and v).

Clearly, homomorphism h is fully determined by its values on one-letter strings. Let α be an infinite sequence of letters of Σ. By definition, put

$$
h(\alpha)=h(\alpha(1)) h(\alpha(2)) \ldots h(\alpha(n)) \ldots
$$

Evidently, if α is periodic and $h(\alpha)$ is infinite, then $h(\alpha)$ is periodic.
Theorem 3. Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism, and $\alpha: \mathbb{N} \rightarrow \Sigma$ be such a sequence that $h(\alpha)$ is infinite.

- If α is almost periodic, then so is $h(\alpha)$.
- If α is effectively almost periodic, then so is $h(\alpha)$.

Proof. Let us call a character $a \in \Sigma$ non-empty if $h(a) \neq \Lambda$. Since $h(\alpha)$ is infinite, there are infinitely many occurrences of non-empty letters in α. Now, since α is almost periodic, there exists a number k such that every α 's segment of length k contains at least one non-empty letter.

Take a natural number l. Every string of length l in $h(\alpha)$ is contained in the image of some string of length not more than $k l$ in α (because every k characters in α contain at least one non-empty character).

So, we found out that the homomorphism h can neither shrink nor expand the sequence "too much". The image of any segment of sufficient length L is no longer than $L S$ and no shorter than L / k. This is the main idea that leads us to the desired result. The following just fills in some technical details.

Let us take a prefix of α such that every string of length $k l$ outside this prefix is of type II, and let m be a natural number bounding above the gaps between occurrences of these strings. Also let us take the corresponding prefix of $h(\boldsymbol{\alpha})$ and call \tilde{h} the rest of $h(\alpha)$.

Every single letter in α maps into some segment of $h(\alpha)$ (which may be empty). Mark all ends of these segments for all letters of α. The sequence $h(\alpha)$ becomes separated into blocks of letters. All letters within such block map from a single letter in α (and some blocks may be empty). Since Σ is finite, there exists an upper bound S on lengths of such blocks.

Consider any string u of length l in \tilde{h}. It is contained in not more that $k l$ blocks. Let us denote by v the string in α that produce these blocks and by $[i, j]$ the corresponding α 's segment. We have $|v| \leq k l$. By \bar{v} denote the string of length $k l$ in α starting at i. Every α 's segment of length m contains a start of at least one occurrence of \bar{v} in α. Let us prove that every $h(\alpha$'s segment of length $m S$ contains a start of at least one occurrence of u.

Now consider any segment of length $m S$ in $h(\alpha)$. It maps from α 's segment of length not less than $\frac{m S}{S}=m$ (because every letter in α maps to no more than S letters in $h(\alpha)$). This segment has a start of some occurrence of \bar{v} in α. The image of this occurrence contains an occurrence of u in $h(\alpha)$. Therefore, the considered segment contains an occurrence of u.

To prove the second statement note that $h(\alpha)$ is computable and that $m S$ can be effectively computed.

Now let us study mappings done by finite automata.
Definition 5. A finite automaton with output is a tuple $\left\langle\Sigma, \Delta, Q, q_{0}, T\right\rangle$ where

- Σ is a finite set called input alphabet,
- Δ is a finite set called output alphabet,
- Q is a finite set of states,
- $q_{0} \in Q$ is an initial state, and
- $T \subset Q \times \Sigma \times \Delta \times Q$ is a transition set.

If $\left\langle q, \sigma, \delta, q^{\prime}\right\rangle \in T$, we say that the automaton in state q seeing the character σ goes to state q^{\prime} and outputs the character δ.

Definition 6. If for any pair $\langle q, \sigma\rangle$ there exists a unique tuple $\left\langle q, \sigma, \delta, q^{\prime}\right\rangle \in T$, the automaton is called deterministic.

Definition 7. Let α be a sequence and \mathscr{A} an automaton. A sequence $\left(q_{0}, \delta_{0}\right), \ldots,\left(q_{0}, \delta_{n}\right), \ldots$ is \mathscr{A} 's route on α if the following two conditions hold:

- q_{0} is the initial state of \mathscr{A}, and
- $\left\langle q_{i}, \alpha(i), \delta_{i}, q_{i+1}\right\rangle$ is \mathscr{A} 's transition for every $i \geq 0$.

Let us call $\delta_{0}, \ldots, \delta_{n}, \ldots$ an \mathscr{A} 's output on this route.
If \mathscr{A} is deterministic, then it has a unique route on every sequence. Denote by $\mathscr{A}(\alpha)$ its output on α.

Theorem 4. Let \mathscr{A} be a deterministic finite automaton and α an almost periodic sequence. Then $\mathscr{A}(\alpha)$ is also almost periodic. Moreover, if α is effectively almost periodic, then so is $\mathscr{A}(\alpha)$.

Proof. We need to prove that if some string u of length l occurs in $\mathscr{A}(\alpha)$ infinitely many times then the gaps between its occurrences are bounded above by a function in l. To prove this, it is sufficient to prove that for every occurrence $[i, j]$ of u located sufficiently far to the right in $\mathscr{A}(\alpha)$ there exists another occurrence of u within a bounded segment to the left of i. Obviously this already holds for α : there exist two functions k and m such that for any l-character segment $[i, j]$ starting to the right of $k(l)$ there exists a "copy" of it starting between $i-m(l)$ and $i-1$.

Take an l-character string \widetilde{u} in $\mathscr{A}(\alpha)$ and its occurrence $[i, j]$. Suppose it is located sufficiently far to the right (leaving the exact meaning of "sufficiency" to a later discussion). Call u_{1} the corresponding string in α (actually, $u_{1}=\alpha[i, j]$). Let \mathscr{A} enter the segment $[i, j]$ in state q_{1}. For uniformity, denote $i_{1}=i$ and $l_{1}=l$.

There exists an occurrence of u in α starting between $i_{1}-m\left(l_{1}\right)$ and $i_{1}-1$. Denote the start of this occurrence i_{2} and the corresponding \mathscr{A} 's state q_{2}. If $q_{2}=q_{1}$ then \mathscr{A} outputs the string \widetilde{u} starting at i_{2}.

If $q_{2} \neq q_{1}$ consider the string $u_{2}=\alpha\left[i_{2}, j\right]$. Let l_{2} be its length. This string has the following property. If \mathscr{A} enters it in state q_{1}, it outputs \widetilde{u} on the first segment of length l; if \mathscr{A} enters it in state q_{2}, it enters the last segment of length l (which contains a copy of u) in state q_{1} and, again, outputs \widetilde{u}. There exists another occurrence of the string u_{2} with a start between $i_{2}-m\left(l_{2}\right)$ and $i_{2}-1$. Let i_{3} be this start and q_{3} the corresponding \mathscr{A} 's state.

If $q_{3}=q_{2}$ or $q_{3}=q_{1}$, then the automaton enters a copy of the string u_{2} in state q_{2} or q_{1} and outputs \tilde{u} according to the formulated property. If $q_{3} \neq q_{2}$ and $q_{3} \neq q_{1}$, repeat the described procedure.

Namely, on the n 'th step we have a string u_{n} of length l_{n} with an occurrence $\left[i_{n}, j\right]$ in α, and a set of states q_{1}, \ldots, q_{n}. The property is that if \mathscr{A} enters u_{n} in one of the states q_{1}, \ldots, q_{n}, its output contains \widetilde{u}. Then, we find an occurrence of u_{n} with a start between $i_{n}-m\left(l_{n}\right)$ and $i_{n}-1$, call its start i_{n+1} and the corresponding state q_{n+1}. If q_{n+1} equals one of the states q_{1}, \ldots, q_{n}, then we have found an occurrence of \widetilde{u} to the
left of i. Otherwise, we have found a string $u_{n+1}=\alpha\left[i_{n+1}, j\right]$ with a similar property. Since u_{n+1} starts with a copy of u_{n}, if \mathscr{A} enters u_{n+1} in one of the states q_{1}, \ldots, q_{n}, it outputs \widetilde{u} somewhere in this copy; if \mathscr{A} enters u_{n+1} in state q_{n+1}, it outputs \widetilde{u} at the end of u_{n+1}.

Since the set of \mathscr{A} 's states is finite, we only need to do the procedure a finite number of times, namely, $|Q|+1$ (where $|Q|$ is the cardinality of this set). After this number of steps we will definitely find another occurrence of \widetilde{u}.

Let us show that the gap between the found occurrence and the original occurrence $[i, j]$ is bounded above. For the start of u_{2} we have $i_{2}>i_{1}-m\left(l_{1}\right)$. Thus $l_{2}<$ $l_{1}+m\left(l_{1}\right)$. To be able to take this step, we need $i_{1}>k\left(l_{1}\right)$.

On the n 'th step, we have

$$
i_{n+1}>i_{n}-m\left(l_{n}\right)>i_{1}-m\left(l_{1}\right)-m\left(l_{2}\right)-\ldots-m\left(l_{n}\right),
$$

and

$$
l_{n+1} \leq l_{n}+m\left(l_{n}\right) \leq l_{1}+m\left(l_{1}\right)+m\left(l_{2}\right)+\ldots+m\left(l_{n}\right) .
$$

The n 'th step can be performed if $i_{n}>k\left(l_{n}\right)$. To make this true, it is sufficient to have $i_{1}-m\left(l_{1}\right)-\ldots-m\left(l_{n-1}\right)>k\left(l_{n}\right)$, so this is true if

$$
\begin{aligned}
i_{1} & >k\left(l_{1}\right), \\
i_{1} & >k\left(l_{2}\right)+m\left(l_{1}\right), \\
i_{1} & >k\left(l_{3}\right)+m\left(l_{1}\right)+m\left(l_{2}\right), \\
\cdots & \\
i_{1} & >k\left(l_{|Q|+1}\right)+m\left(l_{1}\right)+\ldots+m\left(l_{|Q|}\right) .
\end{aligned}
$$

Let k be the maximum of right-hand sides of these inequalities.
So, we proved that every string \widetilde{u} that has an occurrence $[i, j]$ in $\mathscr{A}(\alpha)$ to the right of k has another occurrence starting between $i-l_{|Q|-1}$ and $i-1$.

If the sequence α is effectively almost periodic, all mentioned numbers can be computed, so $\mathscr{A}(\alpha)$ is also effectively almost periodic.

Now we modify the definition of a finite automaton, allowing it to output any string in the output when reading one character from input. We call these devices finite translators. Formally, a translator's transition set is a subset of $Q \times \Sigma \times \Delta^{*} \times Q$. The output sequence on the route $\left\langle q_{0}, v_{0}\right\rangle, \ldots,\left\langle q_{n}, v_{n}\right\rangle, \ldots$ now is the concatenation $v_{0} v_{1} \ldots v_{n} \ldots$.

Define the program of effectively almost periodic sequence α to be a pair of two programs $\left\langle p_{1}, p_{2}\right\rangle$ where p_{1} is a program computing $\alpha(n)$ given n, and p_{2} is a program computing m and k given l (as in Definition 2).

Corollary 5. Let \mathscr{A} be a deterministic finite translator with input alphabet Σ and output alphabet Δ, and $\alpha: \mathbb{N} \rightarrow \Sigma^{*}$ be a sequence such that the output sequence $\mathscr{A}(\alpha)$ is infinite. Then

1. if α is almost periodic, then so is $\mathscr{A}(\alpha)$, and
2. if α is effectively almost periodic, then $\mathscr{A}(\alpha)$ is effectively almost periodic, and the program for $\mathscr{A}(\alpha)$ can be effectively constructed given the program for α.

Proof. The proof follows from Theorems 3 and 4. We decompose the mapping done by the translator into two: one will be a homomorphism and the other done by a finite automaton.

Define $f(\alpha)$ as follows: the character i of $f(\alpha)$ is a pair $\left\langle\alpha(i), q_{i}\right\rangle$, where q_{i} is the state of \mathscr{A} when it reads the i 'th character in α. Obviously, f can be done by a (deterministic) finite automaton. Then, define $g(\langle\sigma, q\rangle)$ as the strings that \mathscr{A} outputs when it reads σ when in state q. Obviously, g is a homomorphism.

It is also clear that $g(f(\alpha))=\mathscr{A}(\alpha)$. The effectiveness statement immediately follows from the mentioned theorems.

Let α and β be two sequences $\alpha: \mathbb{N} \rightarrow \Sigma$ and $\beta: \mathbb{N} \rightarrow \Delta$. Define a cross product $\alpha \times \beta$ to be a sequence $\alpha \times \beta: \mathbb{N} \rightarrow \Sigma \times \Delta$ such that $\alpha \times \beta(i)=\langle\alpha(i), \beta(i)\rangle$.

We will show later that a cross product of two almost periodic sequences is not always almost periodic. On the other hand, a cross product of two finally periodic ??? sequences is finally periodic.

Corollary 6. A cross product of an almost periodic sequence and a finally periodic sequence is almost periodic.

Proof. The proof immediately follows from Theorem 4 since the cross product can be easily obtained as an output of a finite automaton reading the almost periodic sequence.

Now we turn to nondeterministic translators. Denote by $\mathscr{A}[\alpha]$ the set of all \mathscr{A} 's infinite output sequences on the input sequence α.

Theorem 7. (Theorem of uniformization.) Let \mathscr{A} be a translator and α an almost periodic sequence.

1. If $\mathscr{A}[\alpha] \neq \emptyset$ then there exists a deterministic translator \mathscr{B} such than $\mathscr{B}(\alpha) \in$ $\mathscr{A}[\alpha]$ (so, $\mathscr{A}[\alpha]$ contains an almost periodic sequence).
2. If α is effectively almost periodic then given \mathscr{A} and the program for α one can effectively compute if $\mathscr{A}[\alpha]$ is empty, and if it is not, effectively find \mathscr{B}.

Note that if α is not almost periodic then the uniformization could be impossible:
Let α be a sequence $\alpha=01002000200000001 \ldots$ (1s and 2 s come in random order, and the number of separating zeroes increases infinitely). Let β be a sequence $\beta=$ $11222222211111111 \ldots$ (every zero in a group is substituted by the character following that group). Then there exists a nondeterministic translator \mathscr{A} such that $\mathscr{A}[\alpha]=\{\beta\}$, but there is no deterministic translator \mathscr{B} such that $\mathscr{B}(\alpha)=\beta$.

Proof. Let us fix for the following the sequence α and introduce some terms. Any pair $\langle i, q\rangle$ where i is an integer and q is a state of \mathscr{A}, we call a point. We say that a point $\left\langle i_{2}, q_{2}\right\rangle$ is reachable from the point $\left\langle i_{1}, q_{1}\right\rangle$ if the translator \mathscr{A} can go from the state q_{1} to the state q_{2} reading $\alpha\left[i_{1}, i_{2}\right]$, namely, there exists a sequence

$$
\left\langle s_{i_{1}}, u_{i_{1}}\right\rangle,\left\langle s_{i_{1}+1}, u_{i_{1}+1}\right\rangle, \ldots,\left\langle s_{i_{2}-1}, u_{i_{2}-1}\right\rangle, s_{i_{2}}
$$

such that $s_{i_{1}}=q_{1}, s_{i_{2}}=q_{2}$, and for all $i \in\left[i_{1}, i_{2}-1\right]$ the tuple $\left\langle s_{i}, \alpha(i), u_{i}, s_{i+1}\right\rangle$ is a valid \mathscr{A} 's transition. The sequence $\left\langle s_{i_{1}}, u_{i_{1}}\right\rangle, \ldots,\left\langle s_{i_{2}-1}, u_{i_{2}-1}\right\rangle, s_{i_{2}}$ is called a path from $\left\langle i_{1}, q_{1}\right\rangle$ to $\left\langle i_{2}, q_{2}\right\rangle$, and the string $u_{i_{1}} u_{i_{1}+1} \ldots u_{i_{2}-1}$ is called the output string of this path. If there exists a path from $\left\langle i_{1}, q_{1}\right\rangle$ to $\left\langle i_{2}, q_{2}\right\rangle$ with a nonempty output string,
we say that $\left\langle i_{2}, q_{2}\right\rangle$ is strongly reachable from $\left\langle i_{1}, q_{1}\right\rangle$. We say that a point is strongly reachable from a set of points if it is strongly reachable from some point in that set. Denote by $T_{j}(i, q)$ a set of points $\left\langle j, q^{\prime}\right\rangle$ reachable from $\langle i, q\rangle$. Define $Q_{j}(i, q)=\left\{q^{\prime} \mid\right.$ $\left.\left\langle j, q^{\prime}\right\rangle \in T_{j}(i, q)\right\}$.

Let $\left\langle k_{0}, s_{0}\right\rangle$ be some point. We say that a sequence $j_{0}=k_{0}<j_{1}<\ldots<j_{n}<\ldots$ is correct with respect to $\left\langle k_{0}, s_{0}\right\rangle$ if for every $n \geq 1$ there exists a point $\left\langle k_{n}, s_{n}\right\rangle$ such that $j_{n-1}<k_{n}<j_{n},\left\langle k_{n}, s_{n}\right\rangle$ is strongly reachable from $T_{j_{n-1}}\left(k_{0}, s_{0}\right)$, and $Q_{j_{n}}\left(k_{0}, s_{0}\right)=$ $Q_{j_{n}}\left(k_{n}, s_{n}\right)$.

We sketch this on a figure. The dots represent points, circle marked j_{n} represents $Q_{j_{n}}\left(k_{n}, s_{n}\right)=Q_{j_{n}}\left(k_{0}, s_{0}\right)$, the wavy lines in the center of the "tube" picture paths, and straight lines picture paths with a nonempty output string.

Say the point $\langle 0$, the initial state of $\mathscr{A}\rangle$ is an initial point. A sequence is called correct if it is correct with respect to some point reachable from the initial point.

Introduce an equivalence relation " \sim " on a set of all points:

$$
\left\langle i_{1}, q_{1}\right\rangle \sim\left\langle i_{2}, q_{2}\right\rangle \quad \text { iff } \quad \exists i \geq i_{1}, i_{2}: Q_{i}\left(i_{1}, q_{1}\right)=Q_{i}\left(i_{2}, q_{2}\right) .
$$

This relation is obviously reflexive and symmetric. The transitivity property follows from the fact that if $Q_{i}\left(i_{1}, q_{1}\right)=Q_{i}\left(i_{2}, q_{2}\right)$ then for all $j>i Q_{j}\left(i_{1}, q_{1}\right)=Q_{j}\left(i_{2}, q_{2}\right)$. This relation has another interesting property. If $\left\langle i_{3}, q_{3}\right\rangle$ is reachable from $\left\langle i_{2}, q_{2}\right\rangle$, $\left\langle i_{2}, q_{2}\right\rangle$ is reachable from $\left\langle i_{1}, q_{1}\right\rangle$, and $\left\langle i_{1}, q_{2}\right\rangle \sim\left\langle i_{3}, q_{3}\right\rangle$ then $\left\langle i_{1}, q_{1}\right\rangle \sim\left\langle i_{2}, q_{2}\right\rangle \sim i_{3} q_{3}$. This is so because for all $i \geq i_{3}$ we have $Q_{i}\left(i_{3}, q_{3}\right) \subset Q_{i}\left(i_{2}, q_{2}\right) \subset Q_{i}\left(i_{1}, q_{1}\right)$.

An amazing fact is that there can only be a finite set of equivalence classes, namely, not more than 2^{N} where N is the number of \mathscr{A} 's states. If there were $2^{N}+1$ pairwise nonequivalent points $\left\{t_{1}, \ldots, t_{2^{N}+1}\right\}$ then for a sufficiently large i we would have $2^{N}+1$ pairwise different sets $Q_{i}\left(t_{1}\right), Q_{i}\left(t_{2}\right), \ldots, Q_{i}\left(t_{2^{N}+1}\right)$, and that is impossible.

Now we are ready to prove the important
Lemma 8. $\mathscr{A}[\alpha] \neq \emptyset$ iff there exists a correct sequence.
Proof. If there is a correct sequence then surely $\mathscr{A}[\alpha] \neq \emptyset$: on the figure we see the path with a nonempty output string drawn in the center of the "tube".

Now, suppose $\mathscr{A}[\alpha] \neq \emptyset$. Fix some route $\left\langle q_{0}, u_{0}\right\rangle, \ldots,\left\langle q_{n}, u_{n}\right\rangle, \ldots$ of \mathscr{A} on α with a nonempty output sequence $u_{0} u_{1} \ldots u_{n} \ldots$. Consider a sequence of points $\left\langle 0, q_{0}\right\rangle,\left\langle 1, q_{1}\right\rangle, \ldots,\left\langle n, q_{n}\right\rangle, \ldots$ where each point is reachable from the previous. Then this points separate into a finite set of equivalence classes:

$$
\begin{gathered}
\left\{\left\langle i, q_{i}\right\rangle \mid 0 \leq i \leq i_{1}\right\}, \\
\left\{\left\langle i, q_{i}\right\rangle \mid i_{1}<i \leq i_{2}\right\}, \\
\ldots \\
\left\{\left\langle i, q_{i}\right\rangle \mid i_{m}<i\right\} .
\end{gathered}
$$

We see that all points $\left\langle i, q_{i}\right\rangle$ where $i>i_{m}$ is equivalent. Now we can construct a correct sequence. Let $k_{0}=i_{m}+1, s_{0}=q_{k_{0}}$. We will construct two sequences j_{n} and $\left\langle k_{n}, s_{n}\right\rangle$ such that $j_{n-1}<k_{n} \leq j_{n}, Q_{j_{n}}\left(k_{n}, s_{n}\right)=Q_{j_{n}}\left(k_{0}, s_{0}\right)$, and the point $\left\langle k_{n}, s_{n}\right\rangle$ is strongly reachable from $T_{j_{n-1}}\left(k_{0}, s_{0}\right)$. The state s_{n} will always be equal to $q_{j_{n}}$. Suppose we already found k_{n-1} and j_{n-1}. Let k_{n} be any number such that $k_{n}>j_{n}$ and the point $\left\langle k_{n}, q_{k_{n}}\right\rangle$ is strongly reachable from $T_{j_{n-1}}\left(k_{0}, s_{0}\right)$. We can find such a point because the output sequence of the path $\left\langle i, q_{i}\right\rangle$ is infinite. Since $\left\langle k_{0}, s_{0}\right\rangle \sim\left\langle k_{n}, q_{k_{n}}\right\rangle$, there exists a j_{n} such that $Q_{j_{n}}\left(k_{n}, q_{k_{n}}\right)=Q_{j_{n}}\left(k_{0}, s_{0}\right)$. By induction, we construct a correct sequence with respect to $\left\langle k_{0}, q_{k_{0}}\right\rangle$, and that point is reachable from the initial point, so we have constructed a correct sequence. The proof of the lemma is complete.

Lemma 9. (a) If α is almost periodic and $\mathscr{A}[\alpha] \neq \emptyset$ then there exists a correct sequence $j_{0}, j_{1}, \ldots, j_{n}, \ldots$ such that $\exists \Delta \forall n\left(j_{n+1}-j_{n}\right)<\Delta$.
(b) If α is effectively almost periodic then given \mathscr{A} and the program for α one can find out if $\mathscr{A}[\alpha]$ is empty. If $\mathscr{A}[\alpha] \neq \emptyset$, one can find Δ and a point $\left\langle k_{0}, s_{0}\right\rangle$ reachable from the initial point such that there exists a correct sequence j_{n} with $\left(j_{n+1}-j_{n}\right)<\Delta$.

Proof. Let us construct an auxiliary deterministic finite automaton \mathscr{C} with the output alphabet $\{0,1\}$. Among its states we will have a state \bar{s} for every state s of \mathscr{A}.

We will need the following property of \mathscr{C}. Denote by $\mathscr{C}_{\langle k, s\rangle}(\alpha)$ the output sequence of \mathscr{C} if we run it on α starting at time k in the state \bar{s} (this sequence starts at index k; one can imagine its first $k-1$ positions filled with zeroes). The property is that if there exists a correct sequence with respect to the point $\langle k, s\rangle$ then $\mathscr{C}_{\langle k, s\rangle}(\alpha)$ is a characteristic sequence of one such sequence. Otherwise, $\mathscr{C}_{\langle k, s\rangle}(\alpha)$ contains only a finite number of 1s. (Under characteristic sequence of a sequence $j_{0}<j_{1}<\ldots<j_{n}<\ldots$ we understand the sequence $\left\{a_{i}\right\}$ where

$$
a_{i}=\left\{\begin{array}{l}
1, \text { if } \exists n i=j_{n}, \\
0, \text { otherwise. } .
\end{array}\right.
$$

We describe the automaton \mathscr{C} informally (omitting details regarding its states and transitions).

At the time k the automaton remembers s and print 1 . At the time $i(i>k)$ the automaton remembers the following (we denote by j the last time less than i when \mathscr{C} printed 1):

1. $Q_{i}(k, s)$,
2. the set of states $q \in Q_{i}(k, s)$ such that the point $\langle i, q\rangle$ is strongly reachable from $T_{j}(k, s)$, and
3. the set of all sets $Q_{i}(l, q)$ where $l \leq i$ and the point $\langle l, q\rangle$ is strongly reachable from $T_{j}(k, s)$.

The automaton prints 1 if it sees that one of the sets from the third item equals to the set in the first item. Otherwise, it prints 0 . It is obvious that the information remembered by the automaton is finite, and is bounded above by a function in the number of states of \mathscr{A}.

The needed property of \mathscr{C} immediately follows from the fact that if there exists a correct sequence with respect to the point $\langle k, s\rangle$ then for all $i \geq k$ there exists a point that is strongly reachable from $T_{i}(k, s)$ and equivalent to $\langle k, s\rangle$.

Now we are ready to prove the statement (a) of the Lemma. Suppose $\mathscr{A}[\alpha] \neq \emptyset$. According to Lemma 8 there exists a correct sequence with respect to some point $\left\langle k_{0}, s_{0}\right\rangle$ reachable from the initial point. Then $\mathscr{C}_{\left\langle k_{0}, s_{0}\right\rangle}(\alpha)$ is a characteristic sequence of some correct sequence $j_{0}<j_{1}<\ldots$. If α is almost periodic then so is $C_{\left\langle k_{0}, s_{0}\right\rangle}(\alpha)$ according to Theorem 4. It follows that there exists Δ such that $\forall n\left(j_{n+1}-j_{n}\right)<\Delta$.

Now we turn to the statement (b). To prove it, we build another auxiliary finite translator \mathscr{D}. We describe \mathscr{D} informally, too. The idea is to find a point $\langle k, s\rangle$ such that there exists a correct sequence with respect to that point. To do this, the translator \mathscr{D} at time i runs a copy of the automaton \mathscr{C} starting in every point $\langle i, s\rangle$ reachable from the initial point. It is impossible for a finite translator to remember all these copies. But not all of these copies are different. Namely, at some time it can turn out that two copies are in the same state. Then these two copies are considered "united" and \mathscr{D} may forget one of them. We will make it forget the one that was started later. So, at any time, \mathscr{D} remembers a finite list of different states corresponding to remembered copies of \mathscr{C}. The later the copy was started the bigger its number in the list. Let \mathscr{D} print a message "I am forgetting the copy number n " when \mathscr{D} forgets a copy. If some copy, say number n, should print 1 , let \mathscr{D} print a message "The copy number n prints 1 ". For convenience, let \mathscr{D} print a message "I remember l copies" every time.

If α is effectively almost periodic, then so is $\mathscr{D}(\alpha)$, so given \mathscr{A} and the program for α we can compute the program for $\mathscr{D}(\alpha)$.

Every started copy will either be forgotten at some time or will survive infinitely. In the latter case its number in the list will stop decreasing sometime. Let N be the number of such "survivors"; suppose they are started in points t_{1}, \ldots, t_{N}. Let i_{0} be the time when the numbers of "survivors" stop decreasing (and thus became equal $1, \ldots, N$). Every later copy will eventually be forgotten, i.e. will unite with one of the "survivors". So, $\mathscr{A}[\alpha] \neq \emptyset$ iff one of the "survivors" prints infinitely many 1s. In other words, iff for some $i \leq N \mathscr{D}$ prints infinitely many messages "The copy number i prints 1 ".

If we know the program for $\mathscr{D}(\alpha)$, we can find the number N (it is one less than the smallest n such that \mathscr{D} prints "I am forgetting the copy number n " infinitely many times), and know if there exists $i \leq N$ with the required property. So, we can know whether $\mathscr{A}[\alpha]=\emptyset$. If $\mathscr{A}[\alpha] \neq \emptyset$, we can find i and the point t_{i}. Then there exists a correct sequence with respect to t_{i} and we can find Δ (given a program for $\mathscr{D}(\alpha)$) such that the copy number i prints 1 on every segment of length Δ, that is, there exists a correct sequence j_{n} such that for every $n\left(j_{n+1}-j_{n}\right)<\Delta$. This completes the proof of the Lemma.

Now we finish the proof of Theorem 7. Suppose $\mathscr{A}[\alpha] \neq \emptyset$ and α is almost periodic. We should build a deterministic finite translator \mathscr{B} for that $\mathscr{B}(\alpha) \in \mathscr{A}[\alpha]$. According to Lemma 9 we find a point $\left\langle k_{0}, s_{0}\right\rangle$ and a number Δ such that there exists a correct (w.r.t. the point $\left\langle k_{0}, s_{0}\right\rangle$) sequence j_{n} such that for every $n\left(j_{n+1}-j_{n}\right)<\Delta$. (When α is almost periodic, this can be effectively found given \mathscr{A} and the program for α).

Let \mathscr{B} work as follows. Up to the time k_{0} the translator \mathscr{B} prints an empty string. At the time k_{0} the translator prints an output string of any path from the initial point to the point $\left\langle k_{0}, s_{0}\right\rangle$. Then, \mathscr{B} "marks" numbers j_{n}, k_{n} and states s_{n} such that

1. $j_{n-1}<k_{n} \leq j_{n}$,
2. $\left\langle k_{n}, s_{n}\right\rangle$ is strongly reachable from $T_{j_{n-1}}\left(k_{0}, s_{0}\right)$, and
3. $Q_{j_{n}}\left(k_{n}, s_{n}\right)=Q_{j_{n}}\left(k_{0}, s_{0}\right)$.

To do this, the translator remembers at the time $i \geq k_{0}$ (here we denote by k and j the last positions marked as such):

1. $\alpha(i), \alpha(i-1), \ldots, \alpha(i-2 \Delta)$,
2. the last marked state s and a pair of numbers $\left(\Delta_{1}, \Delta_{2}\right)$ such that $i-\Delta_{1}=j$ and $i-\Delta_{2}=k$,
3. $Q_{i-\Delta_{1}}\left(k_{0}, s_{0}\right), Q_{i}\left(k_{0}, s_{0}\right)$.

If $i-\Delta_{1}<i-\Delta_{2}$, then the translator searches for the next " j ", so when it turns out that $Q_{i}\left(k_{0}, s_{0}\right)=Q_{i}\left(i-\Delta_{2}, s\right)$, it marks i as the new " j ". If $i-\Delta_{1} \geq i-\Delta_{2}$, then the translator searches for the next " k ". To do this, it searches $T_{i}\left(k_{0}, s_{0}\right)$ for a point strongly reachable from $T_{i-\Delta_{1}}\left(k_{0}, s_{0}\right)$, and, when it finds, marks the corresponding i as the new " k " and the corresponding state at the time i as the new " s ". In this case, besides, the translator prints the nonempty output string of some path from the last marked point $\langle k, s\rangle$ to the newly marked point. In all other cases \mathscr{B} prints an empty string.

Since $j_{n}-k_{n-1}<2 \Delta$, the remembered 2Δ characters of α will suffice to know if the current i should be marked as " k " or " j ", and to find the needed output string.

The output sequence of \mathscr{B} is a concatenation of an infinite set of nonempty strings $u_{0} u_{1} \ldots u_{n} \ldots$ such that u_{0} is an output string of a path from the initial point to $\left\langle k_{0}, s_{0}\right\rangle$, and for every $n>0 u_{n}$ is an output string of a path from $\left\langle k_{n-1}, s_{n-1}\right\rangle$ to $\left\langle k_{n}, s_{n}\right\rangle$. It follows that $\mathscr{B}(\alpha) \in \mathscr{A}[\alpha]$.

Since \mathscr{B} can be effectively constructed, the proof is complete.

4 Generating almost periodic sequences. The universal method

In the paper [Keane] an interesting method of generating infinite $0-1$-sequences is presented. It is based on "block algebra".

4.1 Block product

Let u, v be strings in the alphabet $\{0,1\}$ (we will use the symbol \mathbb{B} for this alphabet from this point onwards, and also write \mathbb{B}-sequences in place of 0 - 1 -sequences). The block product $u \otimes v$ is defined by induction on the length of v as follows:

$$
\begin{gathered}
u \otimes \Lambda=\Lambda \\
u \otimes v 0=(u \otimes v) u \\
u \otimes v 1=(u \otimes v) \bar{u},
\end{gathered}
$$

where \bar{u} is a string obtained from u by changing every 0 to 1 and vice versa. It is easy to check that block product is associative and distributive with respect to concatenation:

$$
u \otimes(v w)=(u \otimes v)(u \otimes w) .
$$

Define the infinite block product. Let $u_{n}, n=0,1, \ldots$ be a sequence of nonempty strings in the alphabet \mathbb{B} such that for $n \geq 1 u_{n}$ starts with 0 . Then the product $\bigotimes_{n=0}^{\infty} u_{n}$ is defined as the limit of the sequence of strings $u_{0}, u_{0} \otimes u_{1}, \ldots, u_{0} \otimes u_{1} \ldots \otimes u_{n} \otimes \ldots$. Since for every $n \geq 1 u_{n}$ starts with 0 , it follows that every string in this sequence is a prefix of the next string, so the sequence converges to some infinite \mathbb{B}-sequence.

In the paper [Jacobs] it is proved that for any sequence $\left\{u_{n}\right\}$ of strings that start with 0 their block product $\stackrel{\infty}{\otimes}_{\otimes} u_{n}$ is strongly almost periodic. This fact allows us to prove that the cardinality of ${ }_{\mathscr{A}}=0 . \mathscr{P}$ is continuum:

For a \mathbb{B}-sequence ω define $\alpha^{\omega}=\bigotimes_{n=0}^{\infty}(0 \omega(n))$. Now the mapping $\omega \mapsto \alpha^{\omega}$ is an injection of continuum into $\mathscr{A} \mathscr{P}$.

4.2 The universal method

Let Σ be a finite alphabet.
Definition 8. A sequence of tuples $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ where l_{n} is an increasing sequence of natural numbers, and A_{n} and B_{n} is finite sets of strings in the alphabet Σ, is called Σ-scheme if the following three conditions hold:
(C1) all strings in A_{n} have length l_{n},
(C2) any string in B_{n} has the form $v_{1} v_{2}$ where $v_{1}, v_{2} \in A_{n}$, and
(C3) every string u in A_{n+1} has the form $v_{1} v_{2} \ldots v_{k}$ where for each $i<k v_{i} v_{i+1} \in B_{n}$ (and thus $v_{i}, v_{i+1} \in A_{n}$) and for all $w \in B_{n} \exists i<k w=v_{i} v_{i+1}$.
Note that since all strings in A_{n} have equal lengths, the representation $u=v_{1} \ldots v_{k}$ of a string $u \in A_{n+1}$ is unique, and so is the representation $w=v_{1} v_{2}$ of a string $w \in$ B_{n}. Also note that $l_{n} \mid l_{n+1}$. A Σ-scheme is computable if the sequence $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ is computable.

Definition 9. We say that the sequence $\alpha: \mathbb{N} \rightarrow \Sigma$ is generated by a Σ-scheme $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ if for all $n \in \mathbb{N}$ there exists k such that for all $\left.i \in \mathbb{N} \alpha\left[k_{n}+i l_{n}, k_{n}+(i+2) l_{n}-1\right] \in B_{n}\right]$, that is, a concatenation of any two successive string in the sequence

$$
\alpha\left[k_{n}, k_{n}+l_{n}-1\right], \alpha\left[k_{n}+l_{n}, k_{n}+2 l_{n}-1\right], \ldots
$$

is in B_{n}.
The sequence is perfectly generated by the scheme if $l_{n} \mid k_{n}$.
The sequence is effectively generated if the sequence k_{n} is computable.
Proposition 10. Any scheme perfectly generates some sequence.
Proof. Let $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ be any scheme. Choose any sequence $x_{n} \in A_{n}$ and let

$$
\alpha=\underbrace{x_{0} x_{0} \ldots x_{0}}_{\frac{l_{1}}{l_{0}} \text { times }} \underbrace{x_{1} x_{1} \ldots x_{1}}_{\frac{l_{2}}{l_{1}}-1 \text { times }} \ldots \underbrace{x_{n} x_{n} \ldots x_{n}}_{\frac{l_{n+1}}{l_{n}}-1 \text { times }} \ldots
$$

Then α is perfectly generated by the scheme if we let $k_{n}=l_{n+1}$.
Theorem 11. (a) Either of the next two properties of a sequence $\alpha: \mathbb{N} \rightarrow \Sigma$ is equivalent to the almost periodicity of α :

- α is generated by some Σ-scheme,
- α is perfectly generated by some Σ-scheme.
(b) Either of the next two properties of a computable sequence $\alpha: \mathbb{N} \rightarrow \Sigma$ is equivalent to the effective almost periodicity of α :
- α is effectively generated by some computable Σ-scheme,
- α is effectively and perfectly generated by some computable Σ-scheme.

Proof. We start with proving (a). Suppose α is generated by some Σ-scheme $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$. Let us prove that α is almost periodic. Take a string $u \in \Sigma^{*}$ such that u has infinitely many occurrences in α. We prove that for some N every α 's segment of length N has an occurrence of u. Denote the length of u by $|u|$. Take n such that $l_{n} \geq|u|$. Let us prove that every string in A_{n+1} contains u as a substring. Take k_{n} from the Definition 9 . Since u has infinitely many occurrences in α, there exists an occurrence of u to the right of k_{n}, starting, say, on a segment $\left[k_{n}+i l_{n}, k_{n}+(i+1) l_{n}-1\right]$. Since $|u| \leq l_{n}$, the whole occurrence is contained in the segment $\left[k_{n}+i l_{n}, k_{n}+(i+2) l_{n}-1\right]$. According to the same Definition, this segment of α is in B_{n}. So, some string in B_{n} contains u. It follows that every string in A_{n+1} contains u since every string in A_{n+1} contains all strings from B_{n} (see (C3)).

Now, due to the definition of generation and to (C2), (C3), there exists k_{n+1} such that for every i

$$
\alpha\left[k_{n+1}+i l_{n+1}, k_{n+1}+(i+1) l_{n+1}-1\right] \in A_{n+1}
$$

and thus every α 's segment of length $2 l_{n+1}$ to the right of k_{n+1} contains at least one occurrence of some string from A_{n+1}, and thus, an occurrence of u.

Now suppose α is almost periodic. We construct a scheme $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ that perfectly generates α. Say that the occurrence $[i, i+|u|-1]$ of the string $u \in A_{n} \cup B_{n}$ in α is good if $l_{n} \mid i$. Let

$$
\begin{aligned}
& A_{n}=\left\{u \in \Sigma^{l_{n}} \mid u \text { has infinitely many good occurrences in } \alpha\right\} \\
& B_{n}=\left\{u \in \Sigma^{2 l_{n}} \mid u \text { has infinitely many good occurrences in } \alpha\right\}
\end{aligned}
$$

We still need to define l_{n}. We do this by induction. Let $l_{0}=1$. To find an appropriate value for l_{n+1} having l_{n}, we prove the following

Lemma 12. There exists a number l^{\prime} such that every α^{\prime} 's segment of length l^{\prime} contains a good occurrence of every string in B_{n}.

Proof. Let string x in the alphabet $\left\{1,2, \ldots, l_{n}\right\}$ be $1,2, \ldots, l_{n}, 1,2, \ldots, l_{n}$, and a sequence β in the same alphabet to be an infinite concatenation $x x x \ldots$. Define the cross product of string of equal lengths similarly to the cross product of infinite sequences. Then u is in B_{n} iff $u \times x$ has infinitely many occurrences in $\alpha \times \beta$. According to Corollary 6 , the sequence $\alpha \times \beta$ is almost periodic, so there exists l^{\prime} such that every segment of length l^{\prime} has an occurrence of $u \times x$ for every $u \in B_{n}$. So, every segment of α of length l^{\prime} has a good occurrence of every $u \in B_{n}$. This completes the proof of the Lemma.

Let l_{n+1} be a number such that $l_{n} \mid l_{n+1}$ and every α 's segment of length l_{n+1} has a good occurrence of every string from B_{n}.

Let us prove that $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ is a scheme. To do this, it is sufficient to prove that if $u \in A_{n+1}, u=v_{1} v_{2} \ldots v_{k}$ where $\left|v_{i}\right|=l_{n}, k=\frac{l_{n+1}}{l_{n}}$, then for each $i<k v_{i} v_{i+1} \in B_{n}$ and for every string $w \in B_{n}$ there exists $i<k$ such that $w=v_{i} v_{i+1}$.

Since $u \in A_{n+1}, u$ has infinitely many good occurrences in α. Hence, for all $i<k$ $v_{i} v_{i+1}$ has infinitely many occurrences in α with a start of the form $c l_{n+1}+(i-1)\left|v_{i}\right|$. But this expression is a multiple of l_{n}, so $v_{i} v_{i+1}$ has infinitely many good occurrences in α, so $v_{i} v_{i+1} \in B_{n}$ for all $i<k$.

Now suppose $w \in B_{n}$. The string u has an occurrence in α (even infinitely many ones). Let one of these be $\left[j, j+l_{n+1}-1\right]$. According to the choice of l_{n+1}, the segment $\left[j, j+l_{n+1}-1\right]$ has a good occurrence of the string w, so for some i we have $v_{i} v_{i+1}=w$.

Now we prove that α is perfectly generated by the constructed scheme. For every n we let k_{n} be the multiple of l_{n} such that every string $u \times x$ that has only finite number of occurrences in $\alpha \times \beta$, does not have any occurrences to the right of k_{n}.
(b) It is easy to check that the proof in both directions is effective.

Now we describe the universal method of generating strongly almost periodic sequences. Say that $\left\langle l_{n}, A_{n}\right\rangle$ is a strong \sum-scheme if for l_{n} and A_{n} the property (C 1) holds, and for every n every string $u \in A_{n+1}$ is of the form $u=v_{1} v_{2} \ldots v_{k}$ where $v_{i} \in A_{n}$ and for every $w \in A_{n}$ there exists $i<k$ such that $w=v_{i} v_{i+1}$. Also, we say that α is generated by a strong scheme if for every i and $n \alpha\left[i l_{n},(i+1) l_{n}-1\right] \in A_{n}$.

The theorem analogous to the Theorem 11 is as follows:
Theorem 13. The sequence α is strongly almost periodic iff it is generated by some strong Σ-scheme.

The proof of this Theorem is analogous to the proof of Theorem 11, although more simple, and is omitted here.

Now we prove that the block product is strongly almost periodic.
Proposition 14. Let u_{n} be a sequence of \mathbb{B}-strings each starting with 0 . Then the sequence $\bigotimes_{n=0}^{\infty} u_{n}$ is generated by some strong \mathbb{B}-scheme.

Proof. Let $\alpha=\bigotimes_{n=0}^{\infty} u_{n}$. Consider two cases.
(a) Starting from some n all the strings u_{n} do not contain 1. Then α has the form $v \nu v \ldots$ for some v and thus is periodic. The scheme can be constructed trivially.
(b) For an infinitely many n 's the string u_{n} contains at least one 1 . Then α can be represented as $\bigotimes_{n=0}^{\infty} w_{n}$ where each w_{n} starts with 0 and contains 1 . We prove this by using the associative property of the block product. The product

$$
u_{0} \otimes u_{1} \otimes \ldots \otimes u_{n} \otimes \ldots
$$

can be divided into groups

$$
\left(u_{0} \otimes u_{1} \otimes \ldots \otimes u_{n_{1}-1}\right) \otimes\left(u_{n_{1}} \otimes \ldots \otimes u_{n_{2}-1}\right) \otimes \ldots
$$

so that each group contains and least one term that contains 1 . Letting w_{i} be the block product of the i 'th group, we get w_{i} start with 0 and contain at least one 1 .

Now we define the strong \mathbb{B}-scheme generating $\alpha=\bigotimes_{n=0}^{\infty} w_{n}$. Let $x_{n}=\bigotimes_{i=0}^{n} w_{i}, l_{n}=$ $\left|x_{n}\right|$, and $A_{n}=\left\{x_{n}, \bar{x}_{n}\right\}$. Since for every n the string w_{n} contains both 0 and $1,\left\langle l_{n}, A_{n}\right\rangle$ is a strong \mathbb{B}-scheme. It is obvious that α is generated by this scheme.

The proposition is proved.

4.3 Dynamic systems

Let V be a topological space, A_{1}, \ldots, A_{k} be pairwise disjoint open subsets of $V, f: V \rightarrow$ V be a continuous function, and $x_{0} \in V$ be a point such that its orbit $\left\{f^{n}\left(x_{0}\right) \mid n \in N\right\}$ lies inside $\bigcup_{j=0}^{k} V_{j}$. Define the sequence $\alpha: \mathbb{N} \rightarrow\{1, \ldots, k\}$ by the condition $f^{n}\left(x_{0}\right) \in A_{\alpha(n)}$. We will show here two conditions yielding that α is strongly almost periodic and one yielding that α is effectively and strongly almost periodic. (We say that α is effectively and strongly almost periodic if it is computable and given u we can compute n such that either u does not occur in α or every α 's segment of length n has an occurrence of u.)

Theorem 15. If V is bicompact and the orbit of any point of V is dense ??? in V, \quad FIXME then α is strongly almost periodic.

Theorem 16. If V is a compact metric space and f is isometric, then α is strongly almost periodic.

It follows from the Theorem 16 that if x / π is irrational, then the sequence $\{$ the sign of $\sin n x\}$ is strongly almost periodic: to prove this, one can take a circle for the V and a rotation with the angle x for the f.

Before we formulate the third theorem, fix some definitions. The set $T^{s}=[0,1)^{s}$ is called s-dimensional torus. Fix the following metric on T^{s}. Let the mapping $\phi: \mathbb{R}^{s} \rightarrow$ T^{s} be defined by equality $\phi\left(x_{1}, \ldots, x_{s}\right)=\left(\left\{x_{1}\right\}, \ldots,\left\{x_{s}\right\}\right)$ where $\{x\}$ denotes the fractional part of x. Then $\rho(a, b)=\min \left\{\left|a^{\prime}-b^{\prime}\right|: \phi\left(a^{\prime}\right)=a, \phi\left(b^{\prime}\right)=b\right\}$.

A set $A \subset \mathbb{R}^{s}$ is called algebraic if it is a solution set of some system of polynomial inequalities (either strict or not) with integer coefficients. A set is called semi-algebraic if it is a union of a finite set of algebraic sets. A set $A \subset T^{s}$ is called semi-algebraic if there exists a semi-algebraic $B \subset \mathbb{R}^{s}$ such that $A=B \cap T^{s}$.

Suppose $v \in \mathbb{R}^{s}$. The mapping $f_{v}: T^{s} \rightarrow T^{s}$ defined by the equality $f_{v}(x)=\phi(x+v)$ is called a shift by the vector v. This mapping is surely isometric.

Theorem 17. Let V be s-dimensional torus, the point x_{0} have algebraic coordinates, f a shift by a vector with algebraic coordinates, and A_{i} open semi-algebraic sets. Then α is effectively and strongly almost periodic.

Proof. (of Theorems 15, 16 and 17) We start with proving Theorem 15. We need to show that if a string $u \in\{1, \ldots, k\}^{*}$ has an occurrence in α then u is contained in any sufficiently long segment of α. Let u be of length l and have an occurrence in α, say, $u=\alpha\left[i_{0}, i_{0}+l-1\right]$. Denote by B_{u} the open set

$$
\left\{x \in V \mid x \in A_{u(1)}, f(x) \in A_{u(2)}, \ldots, f^{l-1}(x) \in A_{u(l)}\right\} .
$$

Then $f^{i_{0}}\left(x_{0}\right) \in B_{u}$, so B_{u} is not empty. Since every orbit is dense in V, we have $\forall x \in$ $V \exists i \in \mathbb{N} f^{i}(x) \in B_{u}$. This means $V \subset \bigcup_{i=0}^{\infty} f^{-i}\left(B_{u}\right)$. Since each set $f^{-i}\left(B_{u}\right)$ is open and V
is compact, there exists $m \in \mathbb{N}$ such that $V \subset \bigcup_{i=0}^{\infty} f^{-i}\left(B_{u}\right)$. That is, $\forall x \in V \exists i \leq m f^{i}(x) \in$ B_{u}. In particular, $\forall n \exists i<m f^{n+i}\left(x_{0}\right) \in B_{u}$, so any α 's segment of length $m+l+1$ contains an occurrence of u.

Let us prove Theorem 16 by reduction to Theorem 15. Let V_{1} be a closure of the orbit of x_{0}. Then V_{1} is also compact. Denote the metric of V by ρ.

Lemma 18. $f\left(V_{1}\right) \subset V_{1}$.
Proof. Suppose $x \in V_{1}$. We prove that $f(x) \in V_{1}$. Let $\varepsilon>0$. There exists $k \in \mathbb{N}$ such that $\rho\left(f^{k}\left(x_{0}\right), x\right)<\varepsilon$. Hence $\rho\left(f^{k+1}\left(x_{0}\right), f\left(x_{0}\right)\right)<\varepsilon$ because f is isometric. Since this holds for every $\varepsilon>0, f(x) \in V_{1}$.

Lemma 19. For all $x \in V_{1}$ the orbit of x is dense in V_{1}.
Proof. Let $x \in V_{1}, y \in V_{1}, \varepsilon>0$. We need to show that there exists n such that $\rho\left(f^{n}(x), y\right)<e p s$. There exist k and l such that $\rho\left(f^{k}\left(x_{0}\right), x\right)<\varepsilon / 3, \rho\left(f^{l}\left(x_{0}\right), y\right)<$ $\varepsilon / 3$ (since $x, y \in V_{1}$). We have two cases.

Case 1: $l \geq k$. Take $n=l-k$. We have

$$
\begin{aligned}
& \rho\left(f^{l-k}(x), y\right) \leq \rho\left(f^{l-k}(x), f^{l}\left(x_{0}\right)\right)+\rho\left(f^{l}\left(x_{0}\right), y\right)= \\
& \rho\left(x, f^{k}\left(x_{0}\right)\right)+\rho\left(f^{l}\left(x_{0}\right), y\right) \leq \varepsilon / 3+\varepsilon / 3<\varepsilon .
\end{aligned}
$$

Case 2: $l<k$. First we prove that there exists a number $l^{\prime} \geq k$ such that $\rho\left(f^{l^{\prime}}\left(x_{0}\right), f^{l}\left(x_{0}\right)\right)<$ $\varepsilon / 3$. Then $\rho\left(f^{l^{\prime}}\left(x_{0}\right), y\right)<2 \varepsilon / 3$ and we can reason as in case 1 .

Since V is compact, for any $\delta>0$ there exists N such that among any N point there exist two with a distance less than δ. Take N corresponding to $\delta=\frac{\varepsilon}{3 k}$. Among the points $f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots, f^{N}\left(x_{0}\right)$ there are two with a distance less than $\frac{\varepsilon}{3 k}$. Let these be $f^{i_{0}}\left(x_{0}\right)$ and $f^{i_{0}+r}\left(x_{0}\right)$ (where $\left.r>0\right)$. Then $\rho\left(f^{i_{0}}\left(x_{0}\right), f^{i_{0}+r}\left(x_{0}\right)\right)<\frac{\varepsilon}{3 k}$, and since f is isometric, for any i we have $\rho\left(f^{i}\left(x_{0}\right), f^{i+r}\left(x_{0}\right)\right)<\frac{\varepsilon}{3 k}$. In particular,

$$
\begin{gathered}
\rho\left(f^{l}\left(x_{0}\right), f^{l+r}\left(x_{0}\right)\right)<\frac{\varepsilon}{3 k} \\
\rho\left(f^{l+r}\left(x_{0}\right), f^{l+2 r}\left(x_{0}\right)\right)<\frac{\varepsilon}{3 k} \\
\cdots \\
\rho\left(f^{l+(k-1) r}\left(x_{0}\right), f^{l+k r}\left(x_{0}\right)\right)<\frac{\varepsilon}{3 k}
\end{gathered}
$$

and hence $\rho\left(f^{l}\left(x_{0}\right), f^{l+k r}\left(x_{0}\right)\right)<\varepsilon / 3$. Now we can take $l^{\prime}=l+k r \geq k$. The proof of the lemma is complete.

Now we can prove Theorem 16. For the space V_{1}, the function $f_{1}=\left.f\right|_{V_{1}}$, the point x_{0} and the sets $A_{i}^{\prime}=A_{i} \cap V_{1}$ all conditions of Theorem 15 hold. Hence α is strongly almost periodic and the Theorem 16 is proved.

Let us switch to proving Theorem 17. Since T^{s} is a compact metric space and the shift is isometric, the resulting sequence is almost periodic according to Theorem 16. Our goal is effectiveness issues.

Lemma 20. If V is a compact metric space, f is isometric, A_{i} are open subsets of V, and the following conditions hold:
(a) Given a point $f^{k}\left(x_{0}\right)$ in one of the sets A_{i}, one can enumerate from below the radius of its neighborhood that lies in the same A_{i}.
(b) Given ε, one can effectively find an ε-net in the closure of the orbit of x_{0}.
(c) Given two points in the closure of x_{0} 's orbit, one can approximate the distance between them.
(d) Given u one can compute if u occurs anywhere in α.

Then, α is effectively and strongly almost periodic.
Proof. Denote $x_{n}=f^{n}\left(x_{0}\right)$.
We are given u and we should find such m that every α 's segment of length m contains an occurrence of u. Suppose u occurs in α, say, $u=\alpha[i, j]$ (we can find out if it occurs anywhere using (d), and if it does, find the needed index by trying them in turn). Find the points x_{i}, \ldots, x_{j} and for each point x_{k} find a number ε_{k} such that all the ε_{k}-neighborhood of this point is included in the same set $A_{\alpha(k)}$ (we can do this using (a)). Let $\varepsilon=\min \left\{\varepsilon_{k}\right\}$ and let $\delta=\varepsilon / 4$.

Construct δ-net ??? in the closure of x_{0} 's orbit using (b). Starting at x_{0}, start calculating points of the orbit until every point of δ-net is approximated with an error \leq δ (here we use (c)). Suppose we needed to calculate l points of the orbit. Then $m=2 l$. Let us prove this.

Suppose we have some segment of α of length m starting at index i_{0}. Consider the corresponding points in the orbit, $x_{i_{0}}, \ldots, x_{i_{0}+m-1}$. Take the middle point of this segment, $x_{i_{0}+l}$, and find the point y of δ-net that is closer than δ to it. Find the point in the starting segment of α that is closer than δ to y. All this is done using (c). Suppose it has the number $n<l$. Then the point $x_{i_{0}+l-n}$ is closer than 2δ to x_{0}.

Now perform a similar operation with a point x_{i} (the starting point of a known occurrence of u). Namely, find a point z in the δ-net that is closer than δ to x_{i} and find a point in the starting segment of α that is closer than δ to z. Suppose it has the number $p<l$. The point x_{p} is closer than 2δ to x_{i}.

Remember that the point $x_{i_{0}+l-n}$ is closer than 2δ to x_{0}. Thus we have that the point $x_{i_{0}+l-n+p}$ is closer than 4δ to x_{i}. Since $4 \delta=\varepsilon$, the point $x_{i_{0}+l-n+p}$ is closer than ε to x_{i}, so there is an occurrence of u starting at index $i_{0}+l-n+p$.

The lemma is proved.
Now we need to show that in the situation of Theorem 17 the conditions (a)-(d) of Lemma 20 hold.

One major construct that is used heavily in the following proof is the Tarski Theorem [Tarski]. It states that if we have a first order formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ in the signature $\{+, \times,<\}$ and representations of algebraic numbers a_{1}, \ldots, a_{n}, we can find out if $\phi\left(a_{1}, \ldots, a_{n}\right)$ is true in the ordered field of real numbers. Call a set A representable if there exists a first order formula $\phi(x)$ that is true iff $x \in A$. Surely any semi-algebraic set in the torus is representable.

Let us check the conditions.
(a) Given a point with algebraic coordinates (all points in the orbit have algebraic coordinates since both x_{0} and the shift vector have algebraic coordinates) we can write a formula $\phi(r)$ stating that any point at a distance less than r is in A_{n}. Then, enumerating all rational numbers, we can estimate from below the needed neighborhood radius.
(c) All points involved will have algebraic coordinates, so the distance will be algebraic, and thus it can be approximated.

Checking (b) and (d) is harder. We will do this after studying the structure of V_{1} (the closure of x_{0} 's orbit) more thoroughly.

Lemma 21. V_{1} is a union of a finite number of affine subspaces of equal dimensions.

Proof. Take a point $a \in V_{1}$. If there exists a neighborhood of a that does not contain any other points of V_{1}, then the orbit is finite.

Otherwise, there are points in the orbit at deliberately small distances from a. Consider straight lines going through a and these points, and the directions of these lines (in other words, the points where these lines meet a unit sphere centered at a). Since sphere is compact, there is a nonempty set of limit directions. (Such directions w that for every $\varepsilon>0$ and $\delta>0$ there exist infinitely many points in the orbit such that they are closer than ε to a and the corresponding directions are closer than δ to w.) Consider the corresponding straight lines. We prove that their affine cull is contained in V_{1}.

First, we prove that every limit line is contained in V_{1}. Take a point x on the line. There exists a point y in the orbit such that $\rho(a, y)<\varepsilon / 4$ and the angle between (a, x) and (a, y) is less than $\frac{\varepsilon}{\operatorname{const} \rho(a, x)}$. Also, there exists a point z in the orbit such that $\rho(a, z)<\frac{\varepsilon}{\text { const }} \rho(a, y)$. Then, the angle between (a, x) and (z, y) is still very small (less than $\left.\frac{\varepsilon}{\operatorname{const} \rho(a, x)}\right)$.

We need to make sure that z is earlier in the orbit than y. If z is later, we change y as follows. Find a point y^{\prime} in the orbit later than z such that $\rho\left(y^{\prime}, y\right)<\frac{\varepsilon}{\text { const }} \rho(z, y)$, so the angle changes small, and the line $\left(z, y^{\prime}\right)$ is still close to (a, x). Let the new y be this y^{\prime}.

Now we have that the angle between (z, y) and (a, x) is less than $\frac{\varepsilon}{\operatorname{const\rho } \rho(a, x)}$, and $\rho(z, y)<\varepsilon / 2$. Let us traverse z along the orbit until it becomes y. In the same number of steps y became another y_{1} such that $y_{1}-y=y-z$. So, y_{1} lies on the line (z, y). Repeating the operation, we get to the neighborhood of x. The nearest to x point of the sequence y_{n} is at distance not more than the sum of the distance between x and the line (z, y) (which is less than $\varepsilon / 2$ according to our construction) and the distance between two points in the sequence (which is $\rho(z, y)<\varepsilon / 2$). So, we have approximated x by the point in the orbit with error not more than ε. This proves that $x \in V_{1}$.

Up to this point, we know that every limit line is contained in V_{1}. Our next goal is to prove that their affine cull is contained in V_{1}. Suppose we proved that a cull of some of the lines is contained in V_{1}. Take a new limit line that is linearly independent of the considered cull (say, (a, b)) and prove that the new cull is still contained in V_{1}. Consider a point x in the new cull and project it along (a, b) to the previous cull. Denote the projection x_{1}. Using the same technique as above, find two points z and y in the orbit that are close to a, to each other, and such that the angle between (z, y) and (a, b) is less than $\frac{\varepsilon}{\operatorname{const} \rho\left(x_{1}, x\right)}$. Also, we need z to be earlier in the orbit than y. Find a point x_{1}^{\prime} in the orbit that is later in the orbit than z and is closer to x_{1} than $\varepsilon / 2$. Traverse z along the orbit until it becomes x_{1}^{\prime}. Then y becomes y^{\prime}. We have $\rho\left(y^{\prime}, x_{1}^{\prime}\right)<\varepsilon / 2$, and the angle between $\left(x_{1}^{\prime}, y^{\prime}\right)$ and $\left(x_{1}, x\right)$ is less than $\frac{\varepsilon}{\operatorname{const} \rho\left(x_{1}, x\right)}$. Traversing x_{1}^{\prime} to become y^{\prime} and further, as above, we find a point in the orbit that is closer than ε to x. We just added a new line to the cull. This procedure increases the dimension of the cull, so it can be performed only finitely many times.

Now we prove that all points of the orbit that are not contained in the cull are not closer to the cull than some a positive distance.

Assume for any $\varepsilon>0$ there exists a point $x(\varepsilon)$ in the orbit that is closer than ε to the cull but is not contained in it. Take $\varepsilon>0$. Take $x(\varepsilon)$ and a point y in the orbit and in
the cull such that y is close to the orthogonal projection of $x(\varepsilon)$. Traverse x and y along the orbit until y becomes some point y^{\prime} close to a. Then x becomes x^{\prime} such that $\left(y^{\prime}, x^{\prime}\right)$ is almost orthogonal to the cull. Hence (a, x^{\prime}) is almost orthogonal to the cull. As $\varepsilon \rightarrow 0$ we have $x^{\prime} \rightarrow a$, and (a, x^{\prime}) tend to be perpendicular to the cull. So, we found a new limit line, contradiction.

Now every point of the orbit is contained in an affine subspace of the same dimension (since every one of them can be obtained from another by a shift; this also shows that all are parallel). Consider an orthogonal complement to these subspaces and project them to this complement. Every subspace projects into a point. The distance between any two of these points is more than some positive number. So, there are only a finite number of these affine subspaces.

Note that if W is one of the affine subspaces such that $W \cap T^{s} \subset V_{1}$, then also $\phi(W) \subset$ V_{1}. This follows from the proof of Lemma 21.

We want to find these affine subspaces given f and x_{0}. Without loss of generality we can assume that $x_{0}=0$ since we always can shift the origin of the torus to x_{0}. Let the translation vector v have coordinates $\left(t_{1}, \ldots, t_{s}\right)$.

Let $d^{\prime}=\operatorname{dim}_{\mathbb{Q}}\left\{t_{1}, \ldots, t_{s}, 1\right\}-1$. We prove that the dimension of the affine subspaces d equals d^{\prime}.

Proof. Recall that $d^{\prime}+1$ is the cardinality of the minimal subset of coordinates t_{i} such that all the coordinates can be rationally expressed in terms of these coordinates and 1.

First, we prove that $d \leq d^{\prime}$. Without loss of generality, we assume that the first $k-$ $1=s-d^{\prime}$ coordinates t_{1}, \ldots, t_{k-1} can be expressed in terms of the last $d^{\prime}: t_{k} \ldots t_{s}$. Write these expressions:

$$
\begin{aligned}
t_{1} & =\alpha_{k}^{1} t_{k}+\ldots+\alpha_{s}^{1} t_{s}+\alpha_{0}^{1} \cdot 1 \\
& \cdots \\
t_{k-1} & =\alpha_{k}^{k-1} t_{k}+\ldots+\alpha_{s}^{k-1} t_{s}+\alpha_{0}^{k-1} \cdot 1
\end{aligned}
$$

Consider these relations in f^{n}, a shift by a vector $v n$. We see that $t_{i}^{\prime}=n t_{i}-k_{i} \cdot 1$. So the relations are the same except the coefficients α_{0}^{i} differ. If we make the denominator of all fractions α_{a}^{b} the same, we will see that the denominator of α_{0}^{i} remains the same when going from f to f^{n}. Since all the t_{i} are less than 1 , the absolute values of coefficients α_{0}^{i} are bounded above. Hence there are only a finite number of possible values for α_{0}^{i}. So, for any n the vector $v n$ that is equal to $f^{n}\left(x_{0}\right)$ (since $x_{0}=0$) lies in one of the finite number of affine subspaces of dimension d^{\prime}. So, $d \leq d^{\prime}$.

Now we prove that $d \geq d^{\prime}$. Project the whole picture onto the last d^{\prime} coordinates k, \ldots, s. If $d<d^{\prime}$ then each affine subspace of V_{1} projects into subspace of dimension not more than d, so they all cannot cover the whole coordinate subspace. Let us prove that the projection of V_{1} covers all the coordinate subspace k, \ldots, s.

More precisely, we prove the following: if we project the whole picture onto a coordinate subspace of dimension $l \leq d^{\prime}$, the image will cover all the mentioned subspace. We do this by induction on l. The induction base is $l=0$. This case is obvious. Assume we proved the statement with some value of l. Let us prove it with $l+1$. Project the picture onto last l coordinates. According to the induction hypothesis, the image has the dimension l. So, the projection on the last $l+1$ coordinates has a dimension
of either $l+1$ or l. We need to prove that it is $l+1$. Assume, for the contrary, that the dimension is l, that is, the projection of V_{1} is a union of parallel affine subspaces of dimension l. They are not parallel to any coordinate axis (because if they were, we could project the picture along this axis, and the spaces would project into spaces of dimension at most $l-1$, which cannot be true due to the induction hypothesis). The subspaces intersect i 'th coordinate axis by a point. The distances between adjacent points are the same. Since the coordinate axis can be regarded as a circle (because we are in the torus!), this distance is rational. Write the equation of j 'th subspace

$$
t_{i}=\alpha_{k} t_{k}+\ldots+\alpha_{s} t_{s}+\alpha_{0}^{j}
$$

Since for different j the difference between α_{0}^{j} is rational, and the point 0 is contained in one of them, then all α_{0}^{j} is rational.

Consider the subspace containing 0 and its intersection with a two-dimensional coordinate subspace of coordinates i and q. Its equation is $t_{i}=\alpha_{q} t_{q}$. Consider a vector in this subspace (but outside the torus) with q-coordinate of 1 . Denote its i-coordinate by x_{i}. We have

$$
x_{i}=\alpha_{q} \cdot 1
$$

The equivalent vector in the torus has q-coordinate of 0 , and i-coordinate of $x_{i}-n$ for some integer n. It is contained in some affine subspace number j, so

$$
x_{i}-n=\alpha_{q} \cdot 0+\alpha_{0}^{j}
$$

Since α_{0}^{j} is rational, then the number

$$
\alpha_{q}=\alpha_{0}^{j}+n
$$

is rational too. So, all the coefficients α_{k} is rational. This contradicts the fact that $\left\{t_{i}\right\}$ are linearly independent over \mathbb{Q}.

Now, we are ready to prove that the conditions (b) and (d) of Lemma 20 hold in our case.

First, find a primitive element γ in the field $\mathbb{Q}\left[t_{1}, \ldots, t_{s},\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{s}\right]$, represent all coordinates of the vectors v and x_{0} as polynomials in γ and find $d=d^{\prime}$ and the coefficients of all equations of affine subspaces-except for the coefficients α_{0}^{i}. We can find all possible values for α_{0}^{i}, but we still need to know which give us the needed subspaces of V_{1}. To find these, we find x_{0}, x_{1}, \ldots until we have a ε-net in every subspace that has at least one point of the orbit. Then we can say that we have all the subspaces. Suppose we then jump (at n 'th step) from a known subspace to a not yet known. There was a point x_{m} of the ε-net near to x_{n}. Then there is a point x_{m+1} near to x_{n+1}. But x_{n+1} is in the new subspace, and $\rho\left(x_{m+1}, x_{n+1}\right)=\rho\left(x_{m}, x_{n}\right)<\varepsilon$, so x_{m+1} is also in the new subspace (remember that subspaces are separated by a positive distance), so really this subspace is not new, but old.

Hence we can find the closure of the orbit and thus build a ε-net in it. So, the condition (b) is met. Knowing V_{1}, we can also meet the condition (d). Suppose we have a string u and want to know if it occurs anywhere in α. We construct the set

$$
B_{u}=\left\{\phi(y) \mid y \in T^{s}, \phi(y) \in A_{u(1)}, \ldots \phi(y+(|u|-1) v) \in A_{u(|u|)}\right\}
$$

This set is representable since A_{i} is semi-algebraic sets and v has algebraic coordinates. We can, given u, v and A_{i}, find a formula $\psi(x)$ that is true iff $x \in B_{u}$. Then, we can construct a formula stating that there is a point y in the closure of the orbit such that $y \in$ B_{u}. Then, we use the Tarski theorem to find out if there exists such point. So, the condition (d) is also met, and this, finally, proves the Theorem 17.

5 Interesting examples

Theorem 22. For any $m \in \mathbb{N}$ there exists a set A of $m+1$ effectively almost periodic \mathbb{B} sequences such that the cross product of any m sequences from A is effectively almost periodic, and the cross product of all $m+1$ sequences is not almost periodic.

Theorem 23. For any $m \in \mathbb{N}$ there exists a set A of $m+1$ effectively almost periodic \mathbb{B}-sequences such that the cross product of any m sequences from A is effectively almost periodic, and the cross product of all $m+1$ sequences almost periodic but not effectively almost periodic.

A homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ is called a collapse if for any character $\sigma \in \Sigma$ $|h(\sigma)|=1$ and $|\Delta|<|\Sigma|$.

Theorem 24. For any $m \in \mathbb{N}$ there exists a computable sequence $\alpha: \mathbb{N} \rightarrow\{1, \ldots, m\}$ such that for any collapse h the sequence $h(\alpha)$ is effectively almost periodic. However,
(a) α is not almost periodic,
(b) α is almost periodic, but not effectively almost periodic.

Proof. (of Theorems 22, 23 and 24) We say that $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ is pseudoscheme if for any collapse $h\left\langle l_{n}, h\left(A_{n}\right), h\left(B_{n}\right)\right\rangle$ is a scheme. We start by proving Theorem 24(a). To do this, we construct a pseudoscheme $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ and a non-almost periodic sequence α such that for any collapse $h h(\alpha)$ is generated by $\left\langle l_{n}, h\left(A_{n}\right), h\left(B_{n}\right)\right\rangle$.

Let Σ_{m} be the alphabet $\{1, \ldots, m\}$. We will identify permutations over Σ_{m} with strings of length m in the alphabet Σ_{m} without equal characters.

Define a sequence l_{n} and auxiliary sets $R_{n}^{u} \subset \Sigma_{m}^{l_{n}}\left(\right.$ where $u \in \mathbb{B}^{n+1}$). The sets R_{n}^{u} for different $u \in \mathbb{B}^{n+1}$ are pairwise disjoint and have equal cardinalities.

We let R_{0}^{0} be the set of even permutations over Σ_{m}, and R_{0}^{1} be the set of add permutations over Σ_{m}.

Suppose l_{n} and the sets R_{n}^{u} are already defined so that the sets R_{n}^{u} are pairwise disjoint and have equal cardinalities. Denote $O_{n}^{v}=R_{n}^{\nu 0} \cup R_{n}^{v 1}$ for all $v \in \mathbb{B}^{n}$. We say that the string u is a complete concatenation of strings for a finite set M if $u=v_{1} v_{2} \ldots v_{k}$ of strings from M such that every string from M is used and for every two strings $w_{1}, w_{2} \in$ M there exists an index $i<k$ such that $w_{1}=v_{i}$ and $w_{2}=v_{i+1}$. Let k_{n+1} be a minimal k such that there exists a complete concatenation of strings from O_{n}^{u} (since O_{n}^{u} have equal cardinalities, k_{n} does not depend on $\left.u\right)$. Let $l_{n+1}=l_{n}\left(k_{n+1}+2\right)$.

For $u \in \mathbb{B}^{n+2}$ we define R_{n+1}^{u} as follows. Let ε, δ be the last two characters of u so that $u=u^{\prime} \varepsilon \delta$. Let

$$
\begin{aligned}
R_{n+1}^{u}=\{ & v_{1} \ldots v_{k_{n+1}} w_{1} w_{2} \mid \\
& \left.v_{1} \ldots v_{k_{n+1}} \text { is a complete concatenation from } O_{n}^{u^{\prime}}, w_{1} \in R_{n}^{u^{\prime} \varepsilon}, w_{2} \in R_{n}^{u^{\prime} \delta}\right\}
\end{aligned}
$$

It is obvious that R_{n+1}^{u} is pairwise disjoint and have equal cardinalities. We will name O_{n}^{u} zones of rank n and R_{n}^{u} regions of rank n. So, $R_{n}^{u \varepsilon}$ is a region of zone O_{n}^{u} when $\varepsilon \in \mathbb{B}$. We thus have 2^{n} pairwise disjoint zones of rank n, each being a disjoint union of two regions of rank n.

Let $\tau=u_{0}, u_{1}, \ldots$ is a sequence of \mathbb{B}-strings such that $\left|u_{n}\right|=n$. Let $A_{n}^{\tau}=O_{n}^{u_{n}}$, and let B_{n}^{τ} be $A_{n}^{\tau} A_{n}^{\tau}$, a pairwise concatenation of strings in A_{n}^{τ}. We prove that $\left\langle l_{n}, A_{n}^{\tau}, B_{n}^{\tau}\right\rangle$ is a pseudoscheme.

Lemma 25. For any collapse h, for any n and any string u_{1}, u_{2} of length $n+1$ there exists a bijection $\phi: R_{n}^{u_{1}} \rightarrow R_{n}^{u_{2}}$ such that $\forall x \in R_{n}^{u_{1}} h(x)=h(\phi(x))$ (in particular, $\left.h\left(R_{n}^{u_{1}}\right)=h\left(R_{n}^{u_{2}}\right)\right)$.

Proof. We use induction over n.
Let $n=0$. If $u_{1}=u_{2}$, let ϕ be an identity function. If $u_{1}=0, u_{2}=1$, we take $i, j \in$ Σ_{m} such that $h(i)=h(j)$ (such i and j do exist because h is a collapse). Define ϕ by the equalities $\phi(i)=j, \phi(j)=i$, and $\phi(k)=k$ for $k \neq i, j$.

Suppose the statement for n is already proved. Then for any $u_{1}, u_{2} \in \mathbb{B}^{n}$ there exists a bijection $\phi: O_{n}^{u_{1}} \rightarrow O_{n}^{u_{2}}$ that preserves h. We construct a bijection for any two regions of rank $n+1$. Let $u_{1} \varepsilon_{1} \delta_{1}$ and $u_{2} \varepsilon_{2} \delta_{2}$ be any two strings of length $n+$ 2, where $\left|u_{i}\right|=n, \varepsilon_{i}, \delta_{i} \in \mathbb{B}$. Then every string in $R_{n+1}^{u_{1} \varepsilon_{1} \delta_{1}}$ can be represented as $x=$ $v_{1} \ldots v_{k_{n+1}} w_{1} w_{2}$ where $v_{i} \in O_{n}^{u_{1}}, w_{1} \in R_{n}^{u_{1} \varepsilon_{1}}, w_{2} \in R_{n}^{u_{1} \delta_{1}}$. By the induction hypothesis, there exist bijections $\phi_{1}: O_{n}^{u_{1}} \rightarrow O_{n}^{u_{2}}, \phi_{2}: R_{n}^{u_{1} \varepsilon_{1}} \rightarrow R_{n}^{u_{2} \varepsilon_{2}}$, and $\phi_{3}: R_{n}^{u_{1} \delta_{1}} \rightarrow R_{n}^{u_{2} \delta_{2}}$, that preserve h. Let

$$
\phi(x)=\phi_{1}\left(v_{1}\right) \phi_{1}\left(v_{2}\right) \ldots \phi_{1}\left(v_{k_{n+1}}\right) \phi_{2}\left(w_{1}\right) \phi_{3}\left(w_{2}\right) .
$$

Then $\phi_{1}\left(v_{1}\right) \ldots \phi_{1}\left(v_{k_{n+1}}\right)$ is a complete concatenation of strings in $O_{n}^{u_{2}}$, thus $\phi(x) \in$ $R_{n+1}^{u_{2} \varepsilon_{2} \delta_{2}}$. Obviously, ϕ is a bijection from $R_{n+1}^{u_{1} \varepsilon_{1} \delta_{1}}$ to $R_{n+1}^{u_{2} \varepsilon_{2} \delta_{2}}$.

Since ϕ_{1}, ϕ_{2} and ϕ_{3} preserve h, so does ϕ.
It follows from this Lemma that the images of all zones under any collapse h coincide, i.e. $h\left(O_{n}^{u_{1}}\right)=h\left(O_{n}^{u_{2}}\right)$. It is now obvious that $\left\langle l_{n}, h\left(A_{n}^{\tau}\right), h\left(B_{n}^{\tau}\right)\right\rangle$ is a scheme for any τ and h.

Now we construct a sequence of \mathbb{B}-strings $\tau=u_{0}, u_{1}, \ldots$ and non-almost periodic sequence α such that for any collapse h the scheme $\left\langle l_{n}, h\left(A_{n}^{\tau}\right), h\left(B_{n}^{\tau}\right)\right\rangle$ generates $h(\alpha)$. Let

$$
u_{n}=\left\{\begin{array}{l}
0^{l}, \text { if } n \text { is even, } \\
10^{l_{n}-1}, \text { if } n \text { is odd. }
\end{array}\right.
$$

For every $n \in \mathbb{N}$ choose a string x_{n} from $A_{n}^{\tau}=O_{n}^{u_{n}}$ and let

$$
\alpha=\underbrace{x_{0} x_{0} \ldots x_{0}}_{\frac{l_{1}}{l_{0}} \text { times }} \underbrace{x_{1} x_{1} \ldots x_{1}}_{\frac{l_{2}}{l_{1}}-1 \text { times }} \cdots \underbrace{x_{n} x_{n} \ldots x_{n}}_{\frac{l_{n+1}}{l_{n}}-1 \text { times }} \cdots
$$

Let us prove that α is not almost periodic. As we can see from the definition, any string in $O_{n}^{10 \ldots 0}$ where $n \geq 2$ contains every complete concatenation $t_{1} \ldots t_{k_{2}}$ of strings from O_{1}^{1}. So every complete concatenation $t_{1} \ldots t_{k_{2}}$ of strings from O_{1}^{1} occurs in α infinitely many times. Fix one such complete concatenation

$$
y=v_{1}^{1} \ldots v_{k_{1}}^{1} w_{1}^{1} w_{2}^{1} v_{1}^{2} \ldots v_{k_{1}}^{2} w_{1}^{2} w_{2}^{2} \ldots v_{1}^{k_{2}} \ldots v_{k_{1}}^{k_{2}} w_{1}^{k_{2}} w_{2}^{k_{2}},
$$

where $v_{j}^{i} \in O_{0}^{\Lambda}, w_{1}^{i} \in R_{0}^{1}, w_{2}^{i} \in R_{0}^{0} \cup R_{0}^{1}=O_{0}^{\Lambda}$.
Assume α is almost periodic. Then the string y should occur in every sufficiently long α 's segment. Hence y is contained in x_{n} for a sufficiently large n.

Let us prove that x does not contain y for even n. It is easy to check that for every $\varepsilon \in \mathbb{B}$ every string in $O_{n+1}^{u \varepsilon}$ is a concatenation of strings from O_{n}^{u}. So for even n x_{n} is a concatenation of strings from O_{1}^{0}. This means that x_{n} is a concatenation of strings of the form $v_{1} \ldots v_{k_{1}} w_{1} w_{2}$ where $v_{i}, w_{2} \in O_{0}^{\Lambda}$, and $w_{1} \in R_{0}^{0}$, so w_{1} is an even permutation.

We have x_{n} built from blocks each having the length of m characters, and blocks with numbers that are equal to $k_{1}+1$ modulo $k_{1}+2$ are even permutations. Suppose y is a substring of x_{n}, say, $y=x_{n}[i, i+|y|-1]$. (We start numbering characters in the block with 0 .) Let us prove that $m \mid i$, so that the blocks in y are the blocks in x_{n}, too. Assume that i is not multiple of $m: i=m q+r$ where $0<r<m$. For a string v denote the sets of characters that occur in this string by M_{v}. Denote by t_{i} the $(q+i-1)$ 'th block of x_{n}, and by r_{i} the i 'th block of y. Then

$$
t_{i}[r, m-1]=r_{i}[0, m-r-1], \quad t_{i}[0, r-1]=r_{i-1}[m-r, m-1] .
$$

But since $M_{t_{i}[r, m-1]} \cup M_{t_{i}[0, r-1]}$ equals Σ_{m}, it follows that $M_{r_{i}[0, m-r-1]} \cup M_{r_{i-1}[m-r, m-1]}$ also equals Σ_{m}. But since $M_{r_{i-1}[m-r, m-1]} \cup M_{r_{i-1}[0, m-r-1]}$ equals Σ_{m}, too, we have for any $i M_{r_{i-1}[0, m-r-1]}=M_{r_{i}[0, m-r-1]}$, so the first $m-r$ characters in all blocks of y are the same; this contradicts the assumption that y is a complete concatenation. So, $i=m q$ for some $q \in \mathbb{N}$.

Every block of x_{n} with a number equal to $k_{1}+1$ modulo $k_{1}+2$ is an even permutation. Hence there exists i (and $1 \leq i \leq k_{1}+2$) such that r_{j} is an even permutation for all $j \equiv i\left(\bmod k_{1}+2\right)$. If $i=k_{1}+1$, this contradicts the fact that $r_{k_{1}+1}$ is an odd permutation: we have $r_{k_{1}+1}=w_{1}^{1}$ (see the definition of y). If $i \neq k_{1}+1$, this contradict the fact that y is a complete concatenation. Part (a) of Theorem 24 is proved.

Now turn to the part (b). Fix some enumerable, but undecidable set $E \subset \mathbb{N}$. Define a sequence of \mathbb{B}-strings u_{n} as follows. Let $\left|u_{n}\right|=n$ and let $u_{n}(i)=1$ if the number i is generated in less than n steps of enumerating E. Then u_{n} is a computable sequence having the following property: for every i there exists Δ such that for all $n \geq \Delta u_{n}(i)=$ $E(i)$, but Δ cannot be computed given i. Let $A_{n}=O_{n}^{u_{n}}$, and $B_{n}=A_{n} A_{n}$. Then, as it was shown above, $\left\langle l_{n}, A_{n}, B_{n}\right\rangle$ is a pseudoscheme. Let (as above)

$$
\alpha=\underbrace{x_{0} x_{0} \ldots x_{0}}_{\frac{l_{1}}{l_{0} \text { times }}} \underbrace{x_{1} x_{1} \ldots x_{1}}_{\frac{l_{2}}{l_{1}}-1 \text { times }} \ldots \underbrace{x_{n} x_{n} \ldots x_{n}}_{\frac{l_{n+1}}{l_{n}}-1 \text { times }} \cdots,
$$

where x_{n} is lexicographically first string in A_{n}. It is clear that α is computable. For any collapse $h h(\alpha)$ is effectively generated by $\left\langle l_{n}, h\left(A_{n}\right), h\left(B_{n}\right)\right\rangle$, so $h(\alpha)$ is effectively almost periodic.

Let us show that α is almost periodic. Let v_{n} be n 'th prefix of a characteristic sequence of E, that is, $\left|v_{n}\right|=n$, and $v_{n}(i)=E(i)$. Take $C_{n}=O_{n}^{v_{n}}$ and $D_{n}=C_{n} C_{n}$. Then $\left\langle l_{n}, C_{n}, D_{n}\right\rangle$ is a scheme because $v_{n+1}=v_{n} E(n)$ and every string in $O_{n+1}^{v_{n} E(n)}$ is a complete concatenation of strings from $O_{n}^{v_{n}}$. Let us prove that α is generated by the scheme $\left\langle l_{n}, C_{n}, D_{n}\right\rangle$. Take $n \in \mathbb{N}$. We need to find $m \in \mathbb{N}$ such that for all $j \in \mathbb{N}$
$\alpha\left[m+j l_{n}, m+(j+2) l_{n}-1\right] \in D_{n}$. There exists $\Delta \geq n$ such that for all $i \geq \Delta u_{i}$ starts with v_{n}. Hence x_{i} is a concatenation of strings from $C_{n}=O_{n}^{v_{n}}$. It follows that for all $j \in$ \mathbb{N} we have $\alpha\left[l_{\Delta}+j l_{n}, l_{\Delta}+(j+1) l_{n}-1\right] \in C_{n}$, and $\alpha\left[l_{\Delta}+j l_{n}, l_{\Delta}+(j+2) l_{n}-1\right] \in D_{n}$.

Let us prove that α is not effectively almost periodic. Assume α is effectively almost periodic. We will obtain that E is decidable then. This will easily follow from this property of $\alpha: v_{n}$ is a unique string such that every complete concatenation of strings from $O_{n}^{v_{n}}$ occurs infinitely many times in α. Let us prove this property.

For a sufficiently large i the string u_{i} starts with v_{i}, so x_{i} contains every complete concatenation of k_{n+1} strings from $O_{n}^{v_{n}}$, and α has infinitely many occurrences of these concatenations. If $u \neq v_{n}$, denote by j the number of the first characters where they differ. Then for a sufficiently large i the string u_{i} starts with $v_{n}[0, j]$, and x_{i} is a concatenation of strings from $O_{j+1}^{v_{n}}[0, j]$. Using the same technique we used for proving the part (a), one can prove that a complete concatenation of strings from $O_{j+1}^{u[0, j]}$ cannot be a substring of a concatenation of strings from $O_{j+1}^{\nu_{n}}[0, j]$. Hence, α contains only a finite number of complete concatenations of O_{n}^{u}.

The Theorems 22 and 23 follow from the Theorem 24.
Let us construct a sequence α in the alphabet \mathbb{B}^{m+1} that is not almost periodic, but becomes almost periodic under every collapse. Let α_{i} be i 'th projection in the cross product $\mathbb{B} \times \mathbb{B} \times \ldots \times \mathbb{B}$, having $\alpha=\alpha_{1} \times \ldots \times \alpha_{m+1}$. Then the cross product of every m sequences from the set $\left\{\alpha_{1}, \ldots, \alpha_{m+1}\right\}$ results from a collapse of α, and is almost periodic.

Theorem 23 is proved in a similar way.

6 Almost periodic sequences and Kolmogorov complexity

Let u be a string in \mathbb{B}^{*}. Consider all programs on a Turing machine that print u (i.e. they halt with u on the tape). Of all these programs there is the shortest one (in some fixed coding system).

Definition 10. The length of the shortest program outputting u is called u 's Kolmogorov complexity and written as $K(u)$.

Let α be an almost periodic sequence and α_{n} its prefix of length n. We shall study $K\left(\alpha_{n}\right)$ as a function of n.

Consider the following simple example: divide a circle into k arcs with k points (having computable coordinates). Take a real number ϕ such that $\frac{\phi}{2 \pi}$ is irrational. Define $\alpha(i)$ as the number of arc containing the point $n \phi$. The constructed sequence α is almost periodic according to Theorem 16.

Theorem 26. For the constructed sequence α,

$$
K\left(\alpha_{n}\right) \leq \mathscr{O}(\log n)
$$

Proof. Denote the division points by x_{1}, \ldots, x_{k}. For the n 'th prefix mark every point on the circle with the number of arc it will go to after being multiplied by n. We will
have $n k$ arcs corresponding to the k arcs of initial picture. Call them n-arcs. To tell what arc will contain $n \phi$ it is sufficient to know what n-arc contains ϕ.

Now to describe the n 'th prefix of α we can use the numbers of m-arcs containing ϕ for all $m \leq n$. To know all these numbers mark the boundaries of all m-arcs for all $m \leq$ n. There are $\frac{n(n-1)}{2} k$ boundaries. They divide the circle in $\frac{n(n-1)}{2} k$ pieces. We need to know the piece containing ϕ. To write its number, we need $\mathscr{O}\left(\log \left(\frac{n(n-1)}{2} k\right)\right)$ bits. Thus we will have the following program to print α_{n}. It will incorporate n and the number of the piece containing ϕ. These are the values depending on n. The program will also have an invariant section (that does not depend on n). It will contain the points x_{1}, \ldots, x_{k} and the code of the program itself. When the program is executed, it will take n, calculate the boundaries of all the m-arcs for every $m \leq n$, and thus the boundaries of all pieces. Then it will take the piece containing ϕ and thus know what m-arc contains ϕ for every $m \leq n$. Now it will be able to calculate α_{n}.

The length of this program is $\mathscr{O}\left(\log \left(\frac{n(n-1)}{2} k\right)\right)+\mathscr{O}(1)$ (the last term is the length of the invariant section). Since $\log \left(\frac{n(n-1)}{2} k\right) \leq 2 \log n+\log k$, we have

$$
K\left(\alpha_{n}\right) \leq \mathscr{O}(\log n)
$$

The proof is complete.
For simplicity, we will stick to the alphabet \mathbb{B}. It is evident that $K\left(\alpha_{n}\right) \leq n+\mathscr{O}(1)$ (we can incorporate α_{n} itself in the program). The following theorem shows that this bound cannot be reached for an almost periodic sequence.

Theorem 27. For any almost periodic sequence α there exists a positive ε such that

$$
K\left(\alpha_{n}\right)<(1-\varepsilon) n
$$

Proof. First, prove that there exists a string of type I (occurring in α only finitely many times). Either the string 1 or the string 0 belongs to type II. We assume, without loss of generality, that this is the string 0 . There exist numbers p and l such that every substring of α of length l to the right of p contains at least one zero. Thus, a string consisting of $l+11$'s occurs only finitely many times. Let u be a string of minimal length that occurs in α only finitely many times.

If $|u|=1$ (which implies that α consists entirely of ones or zeroes), then $K\left(\alpha_{n}\right) \leq$ $\mathscr{O}(\log n)$, because α_{n} is determined only by n, and we can incorporate n in the program using $\mathscr{O}(\log n)$ bits.

In the following we consider only the p 'th suffix of α.
Let u^{\prime} be a string resulting when we omit the last character in u. Assume w.l.o.g. that we omitted 0 , so $u=u^{\prime} 0$. We know that every occurrence of u^{\prime} is followed by 1 . The string $u^{\prime} 1$ occurs infinitely many times in α (because if it had only finitely many occurrences, u^{\prime} would have had only finitely many occurrences, which contradicts the assumption that u is the shortest string occurring only finitely many times). Hence there exist m and k such that every α 's substring of length m to the right of k contains at least one instance of $u^{\prime} 1$. Let $q=\max \{k, p\}$.

Let us show a "compression" algorithm that will encode α_{n} using $(1-\varepsilon) n$ bits. Divide α_{n} into blocks in the following way: first block has length q and is written
directly; the others has length m and are encoded. The encoding procedure finds the first occurrence of $u^{\prime} 1$ in the block and write the block replacing this occurrence of $u^{\prime} 1$ with u^{\prime}.

Now we need to show that this encoding does not lose information (i.e. the original string can be reconstructed knowing u^{\prime}) and that we can build a program using this encoding that outputs α_{n} and has length less than $(1-\varepsilon) n$.

The decoding procedure is obvious. The first block of length q is just left as it is. For every other block (it has length $m-1$ because exactly one occurrence of $u^{\prime} 1$ was replaced with u^{\prime}) we find the first occurrence of u^{\prime} and insert a 1 after it.

Now let us calculate the length of the program to output α_{n}. Its invariant section will contain the string u, the numbers q and m, and the first block of the encoded string. The part which depends on n will contain the other blocks. The length of invariant part is constant. In the other part for every m characters in α we write only $m-1$ bits. So, for $n-q$ characters we will need $(n-q) \frac{m-1}{m}$ bits. Thus

$$
K\left(\alpha_{n}\right) \leq(n-q) \frac{m-1}{m}+\mathscr{O}(1) \leq n\left(1-\frac{1}{m}\right)+\mathscr{O}(1) \leq n(1-\varepsilon)
$$

for appropriate ε. This proves the theorem.
We will show that there exists a strongly almost periodic sequence α such that $K\left(\alpha_{n}\right)>n(1-\varepsilon)$. This result is proved in the remaining part of this section.

6.1 The construction

Let us build a scheme $\left\langle l_{n}, A_{n}\right\rangle$ that will generate our sequence.
Define some set A_{0} of strings of length l_{0}. Let

$$
A_{n}=\left\{v_{1} \ldots v_{k_{n}} \mid v_{i} \in A_{n-1}, \quad \forall a \in A_{n-1} \exists i: a=v_{i}\right\}
$$

where $k_{n}=\frac{l_{n}}{l_{n-1}}$. The values for k_{n} (and for l_{n}, respectively) as well as for A_{0} and l_{0}, will be chosen later.

First, we prove the following Lemma:
Lemma 28. Let A be an alphabet and A^{\prime} its subset. Denote by B the set of all strings of length k that contain all characters in A^{\prime}. Then for a sufficiently large $|A|$ and for $k>2|A| \ln |A|$ the following holds:

$$
|B| \geq \frac{1}{2}|A|^{k} .
$$

Proof. We will prove this for $A^{\prime}=A$, then for any A^{\prime} it will be true too.
Let us take a random k-character string in the alphabet A and calculate the probability of its containing not all characters of A. It is composed of $|A|-1$ different characters, and
$\operatorname{Pr}($ the string does not contain i 'th character $)=$

$$
\frac{(|A|-1)^{k}}{|A|^{k}}=\left(1-\frac{1}{|A|}\right)^{|A| \left\lvert\, \frac{k}{|A|}\right.} \leq 2 e^{-\frac{k}{|A|}}
$$

for sufficiently large $|A|$. If $k>|A| \ln 4|A|$, then

$$
\operatorname{Pr}\left(\text { the string does not contain } i^{\prime} \text { th character }\right)=2 e^{-\frac{k}{|A|}} \leq 2 e^{-\ln 4|A|}=\frac{1}{2|A|}
$$

Thus the probability of a random string not to be in B is less than

$$
|A| \operatorname{Pr}\left(\text { the string does not contain } i^{\prime} \text { th character }\right) \leq \frac{1}{2}
$$

so at least half of the k-character strings are in B, and

$$
\frac{1}{2}|A|^{k} \leq|B| \leq|A|^{k}
$$

which proves the lemma (the bound on k in the statement is weaker, but more useful).
The sequence α is generated by the built scheme in the following way. For the step 0 take a string $\alpha_{l_{0}}$ in A_{0}. For the n 'th step take a string $\alpha_{l_{n}}$ in A_{n} such that its l_{n-1}-prefix equals to the string $\alpha_{l_{n-1}}$ chosen on the previous step. We will get a sequence α such that all its prefixes of length l_{n} are strings from A_{n}.

Our next goal is to prove that we can choose strings on each step in a way that gives us the desired bound on Kolmogorov complexity. In doing this, we will impose restrictions on (yet undefined) values for k_{n}, l_{0} and A_{0}.

Defining

$$
\begin{equation*}
k_{n}>4\left|A_{n-1}\right| \log \left|A_{n-1}\right| \tag{1}
\end{equation*}
$$

we assure that from the Lemma 28 it follows that

$$
\left|A_{n}\right| \geq \frac{1}{2}\left|A_{n-1}\right|^{k_{n-1}}
$$

This assignment makes the following Lemma true:
Lemma 29. If $A_{0}=\mathbb{B}^{l_{0}}$ and $l_{0} \geq \frac{8}{\varepsilon}$, then

$$
\frac{\log \left|A_{n}\right|}{l_{n}} \geq(1-\varepsilon / 4)
$$

Proof. Observe the transition from n to $n+1$. We have

$$
\frac{\log \left|A_{n}\right|}{l_{n}} \geq \frac{\log \frac{1}{2}\left|A_{n-1}\right|^{k_{n-1}}}{l_{n}} \geq \frac{k_{n-1} \log \left|A_{n-1}\right|-1}{l_{n}}=\frac{\log \left|A_{n-1}\right|}{l_{n-1}}-\frac{1}{l_{n}} .
$$

Repeating these calculations, we get

$$
\frac{\log \left|A_{n}\right|}{l_{n}} \geq \frac{\log \left|A_{0}\right|}{l_{0}}-\sum_{i=1}^{n} \frac{1}{l_{n}} .
$$

Since $k_{n}>2, \frac{1}{l_{n}}<\frac{1}{2^{n} l_{0}}$ and thus the sum is less than its doubled first term. Now letting l_{0} be greater than $\frac{8}{\varepsilon}$ and $A_{0}=\mathbb{B}^{l_{0}}$ we get (since $l_{1}>l_{0}$)

$$
\frac{\log \left|A_{n}\right|}{l_{n}} \geq \frac{\log \left|A_{0}\right|}{l_{0}}-\frac{2}{l_{1}} \geq 1-\varepsilon / 4
$$

that proves the Lemma.
Let us prove that for the step n we can choose such string from A_{n} that the complexity of every its m-prefix is greater than $m(1-\varepsilon)$. Then, by the compactness theorem, it will follow that there exists an infinite sequence α such that every its l_{n}-prefix is in A_{n} and every m-prefix has the Kolmogorov complexity greater than $m(1-\varepsilon)$.

For the step $n+1$ we will calculate the fraction in A_{n+1} of all strings w with the following property: there exists a number $m\left(l_{n}<m \leq l_{n+1}\right)$ such that $K\left(w_{m}\right) \leq m-\varepsilon m$.

For a fixed m the number of simple (with complexity less than $m-\varepsilon m$) strings of length m is less than $2^{m-\varepsilon m}$. We will calculate the number of strings in A_{n+1} whose m 'th prefix equals to the fixed simple string w of length m.

Every string in A_{n+1} consists of k_{n+1} blocks, every block is a string from A_{n}. Assume that the position m is in j 'th block, i.e. $(j-1) l_{n}<m \leq j l_{n}$. In j 'th block $m-(j-1) l_{n}$ characters are fixed, and $j l_{n}-m$ are free, so there are no more than $2^{j l_{n}-m}$ strings of length $j l_{n}$ starting with w. There are still $k_{n+1}-j$ blocks free. We can choose each of them to be any block from A_{n}, getting $\left|A_{n}\right|^{k_{n+1}-j}$ ways to construct a string in A_{n+1}. Some of the resulting strings are not in A_{n+1} (because they do not contain all blocks from A_{n}), but we seek an upper bound, so this does not matter. Thus there are no more than

$$
2^{j l_{n}-m}\left|A_{n}\right|^{k_{n+1}-j}
$$

strings in A_{n+1} that start with w, and no more than

$$
2^{m-\varepsilon m} 2^{j l_{n}-m}\left|A_{n}\right|^{k_{n+1}-j}
$$

strings that start with any simple string of length m. For the fraction f_{m} of those strings in A_{n+1} we have

$$
f_{m}=\left.\frac{1}{\left|A_{m+1}\right|}\right|^{j l_{n}-\varepsilon m}\left|A_{n}\right|^{k_{n+1}-j} \leq \frac{2^{1+j l_{n}-\varepsilon m}\left|A_{n}\right|^{k_{n+1}-j}}{\left|A_{n}\right|^{k_{n+1}}}
$$

(because $\left|A_{n+1}\right| \geq \frac{1}{2}\left|A_{n}\right|^{k_{n+1}}$),

$$
f_{m} \leq \frac{2^{1+j l_{n}-\varepsilon m}}{\left|A_{n}\right|^{j}} \leq 2^{1+j l_{n}-\varepsilon m-j l_{n}(1-\varepsilon / 4)}
$$

(because $\frac{\log \left|A_{n}\right|}{l_{n}} \geq 1-\varepsilon / 4$). Taking logarithm, we get

$$
\log f_{m} \leq 1+j l_{n}-\varepsilon m-j l_{n}(1-\varepsilon / 4) \leq 1-\varepsilon m+j l_{n} \varepsilon / 4
$$

(because $m>(j-1) l_{n}$)

$$
\log f_{m} \leq 1-l_{n} \varepsilon\left(\frac{3}{4} j-1\right)
$$

Let us sum these fraction over all m. Each one depends only on j, so the sum is actually over j :

$$
\begin{aligned}
& \sum_{m=l_{n}}^{l_{n+1}} f_{m}=\sum_{j=2}^{k_{n+1}} l_{n} f_{m} \leq l_{n} \sum_{j=2}^{k_{n+1}} 2^{1-l_{n} \varepsilon\left(\frac{3}{4} j-1\right)}=l_{n} 2^{1+l_{n} \varepsilon} \sum_{j=2}^{k_{n+1}} 2^{-\frac{3}{4} j l_{n} \varepsilon} \leq \\
& l_{n} 2^{1+l_{n} \varepsilon} \frac{2^{-\frac{3}{2} l_{n} \varepsilon}}{1-2^{-\frac{3}{4} l_{n} \varepsilon}} \leq l_{n} 2^{1-\frac{1}{2} l_{n} \varepsilon} \frac{1}{1-2^{-\frac{3}{4} l_{n} \varepsilon}} \leq 2^{-\frac{1}{4} l_{n} \varepsilon}
\end{aligned}
$$

for a sufficiently large l_{n} (since the denominator tends to 1).
We have proved that there is only a small fraction of strings in A_{n+1} having simple prefixes of lengths $l_{n}+1$ through l_{n+1}. Let us compute the fraction in A_{n+1} of strings with simple prefixes of lengths $l_{n-1}+1$ through l_{n}. We already know the fraction these strings constitute in A_{n}. Every string from A_{n} can be made into a string in A_{n+1} in the same number of ways. So the fraction in A_{n+1} of the considered strings is the same as in A_{n}. The same argument works for smaller lengths of simple prefixes. So, the bound on fraction in A_{n+1} of strings having a simple prefix of arbitrary length can be obtained by summing the above bound over all $l_{i} \leq l_{n}$:

$$
\sum_{i=0}^{n} 2^{-\frac{1}{4} l_{i} \varepsilon} \leq \frac{2^{-\frac{1}{4} l_{0} \varepsilon}}{1-2^{-\frac{1}{4} \varepsilon}} \leq 1
$$

for a sufficiently large l_{0}. Since the fraction is less than 1 , we have proved that for any n there exists a string in A_{n} such that all its i-prefixes have Kolmogorov complexity more than $i(1-\varepsilon)$.

Recalling the compactness argument, we prove the following Theorem:
Theorem 30. For any positive real number ε there exists an almost periodic sequence $\alpha \in \mathbb{B}^{*}$ such that

$$
K\left(\alpha_{n}\right)>n(1-\varepsilon) .
$$

References

[Ershov] Yu.L.Ershov. Decidability problems and the constructive models. // Moscow, Nauka, 1980.
[Kakutani] S.Kakutani. Ergodic theory of shift transformations // Proc. V. Berkely Simp. Prob. Stat., vol. II, part 2, 1967, p.407-414.
[Keane] M.Keane. Generalized Morse sequences // Z. Wahrseheinlichkeitstheorie verw. Geb., 1968, Bd 22, S. 335-353.
[Loos] R.Loos. Computing in Algebraic Extensions // Compting, 1982, Suppl.4, p.173-187
[Morse] M.Morse. Recurrent geodesies on a surface of negative curvature // Trans.Amer.Math.Soc. 1921, v.22, p. 84-100.
[Rabin] ??? ... // .: . III. .- .: , 1982.
FIXME
[Tarski] A.Tarski. A decision method for elementary algebra and geometry. Berkly and Los-Angeles, 1951.
[Jacobs] K.Jacobs. Maschinenerzeugte 0-1-Folgen // Selecta Mathematica II. Springer Verlag: Berlin, Heidelberg, New York. 1970.

