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Abstract

This paper studies properties of almost periodic sequences (also known
as uniformly recursive).

A sequence is almost periodic if for every finite string that occurs
infinitely many times in the sequence there exists a number m such that
every segment of length m contains an occurrence of the word.

We study closure properties of the set of almost periodic sequences,
ways to generate such sequences (including a general way), computabil-
ity issues and Kolmogorov complexity of prefixes of almost periodic se-
quences.

Keywords: almost periodic sequence, uniformly recurrent sequence,
finite automaton, finite transducer, Kolmogorov complexity.

1 Introduction

Let Σ be a finite alphabet. We will talk of sequences in this alphabet, that is,
functions from N to Σ (here N = {0, 1, 2, . . .}).

Let i, j ∈ N, i ≤ j. Denote by [i, j] the set {i, i + 1, . . . , j}. Call this set
a segment. If α is a sequence in an alphabet Σ and [i, j] is a segment, then
the string α(i)α(i + 1) . . . α(j) is called a segment of α and written α[i, j]. A
segment [i, j] is called an occurrence of a string u in a sequence α if α[i, j] = u.

We imagine the sequences going horizontally from left to right, so we shall
use terms “to the right” or “to the left” to talk about greater and smaller indices
respectively.

Definition 1. A sequence α : N → Σ is called almost periodic if for any
string u there exists a number m such that one of the following is true:

(1) There is no occurrence of u in α to the right of m.

(2) Any α’s segment of length m contains at least one occurrence of u.

Let AP denote the class of all almost periodic sequences.
The notion of almost periodic sequences generalizes the notion of eventually

periodic sequences (the sequence α is eventually periodic if there exist N and
T such that α(n + T ) = α(n) for all n > N). We will prove further that there
exists a continuum set of almost periodic sequences in a two-character alphabet
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(some examples of such continuum sets can be found in [4] and [12]). Obviously,
the set of all eventually periodic sequences in any finite alphabet is countable.

Definition 2. A sequence α : N → Σ is called strongly almost periodic if
for any string u either u does not have any occurrence in α or there exists
a number m such that every segment of α of length m contains at least one
occurrence of u.

Strongly almost periodic sequences (under a different name) were studied
in the works of M. Morse, and G. A. Hedlund ([3], [4]). They have appeared
first in the field of symbolic dynamics, but then turned out to be interesting in
connection with computer science.

The notion of strong almost periodicity is not preserved even under the map-
pings given by the most simple algorithms, the finite automata. For example, a
stronly almost periodic (and even periodic) sequence 0000 . . . can be mapped by
a finite automaton to a non-almost periodic sequence 1000 . . . . Finite automata
map periodic sequences to eventually periodic, that is, becoming periodic after
deleting some prefix. The property of eventual periodicity is preserved under the
mappings done by finite automata. This leads to an idea to seek, for the notion
of strong almost periodicity, a corresponding notion of eventual almost period-
icity that would be preserved under the mappings done by finite automata. We
succeeded at finding such a notion, and it is formulated in Definition 1. For
brevity we called it simply almost periodicity (and not eventual almost period-
icity).

The class of almost periodic sequences is significantly richer than the class
of eventually periodic sequences and corresponds to a richer class of real-world
situations. In many cases, however, studying bidirectional sequences (functions
from Z to Σ) would be more adequate. We note that under a suitable definition
the theory of bidirectional almost periodic sequences can be reduced to the
theory of unidirectional almost periodic sequences, and study only unidirectional
sequences.

This work studies the class AP in four directions. In Section 3 we study
various closure properties of AP . In Section 4 we consider methods of generating
almost periodic sequences: block products (known from the paper [7]), dynamic
systems (an example: the sign of sin(nx)) and, finally, the universal method.
In Section 5 we present some interesting examples of almost periodic sequences.
Section 6 considers the Kolmogorov complexity of almost periodic sequences.
The Section 2 is auxiliary; it presents some equivalent definitions of almost
periodic sequences.

Some of this paper’s results are a developement of results published by one
of the authors in [10].

2 Equivalent definitions

Consider all strings of length l. These are of two types: ones that occur in α
only finitely many times and ones that have infinitely many occurrences. Let
us call them type I and type II respectively. For any l there is a prefix of α
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such that it contains all occurrences of all strings of type I. Then, every string
of length l occurring in the rest of α is of type II.

Consider a string u of type II. The above Definition 1 guarantees that gaps
between occurrences of u in α are bounded above by some constantm. This fact
can actually be taken as an equivalent definition of almost periodic sequences.
By the “gap” between two occurrences [i, j] and [k, l] we understand k − i, the
distance between the starting points of the occurrences.

Definition 3. A sequence α is almost periodic if for any l there exist
numbersm and k such that every segment of length not more than l occurring to
the right of k occurs infinitely many times in α and gaps between its occurrences
are bounded above by m.

We stress that it is necessary to have m depend on l. The following theorem
shows this:

Theorem 1. Let α be a sequence and m a number. Suppose that for every l
there exists a number k such that every l-character segment of α to the right
of k occurs infinitely many times in α and gaps between its occurrences do not
exceed m. Then α is eventually periodic.

Proof. Let us show that α is eventually periodic and the period is at
most m!. Consider k that corresponds to l = m! in the statement of this
theorem. We shall now prove that for every i > k, α(i) = α(i +m!). Let i be
greater than k and u be a string occurring in α in positions i through i+m!−1.
We are guaranteed that gaps between occurrences of u are no more than m. So,
there is an occurrence of u starting at position j where i < j ≤ i+m− 1. Since
in that case α[i, i+m! − 1] = α[j, j +m! − 1], we have

α(i) = α(j) = α(i+ (j − i)),

α(i+ (j − i)) = α(j + (j − i)) = α(i+ 2(j − i)),

. . .

Taking into account that j − i < m and thus (j − i) | m!, we get

α(i) = α(i+m!),

which proves the theorem. 2

Finally, let us give an effective variant of our main definition.
Definition 4. An almost periodic sequence α is called effectively almost

periodic if

• α is computable,

• m from Definition 1 is computable given u.

A parallel effective variant of Definition 3 is evidently equivalent to this one
(we can take all strings of length ≤ l in turn, and choose maximal m; conversely,
m+ k + l from the effective variant of Definition 3 fits any u of corresponding
length l).
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3 Closure properties of AP

Denote by Σ∗ the set of all strings in alphabet Σ including the empty string Λ.
Definition 5. A map h : Σ∗ → ∆∗ is called a homomorphism if h(uv) =

h(u)h(v) for all u, v ∈ Σ∗. (We write uv for concatenation of u and v).
Clearly, homomorphism h is fully determined by its values on one-character

strings. Let α be an infinite sequence of characters of Σ. By definition, put

h(α) = h(α(1))h(α(2)) . . . h(α(n)) . . . .

Evidently, if α is eventually periodic and h(α) is infinite, then h(α) is even-
tually periodic.

Theorem 2. Let h : Σ∗ → ∆∗ be a homomorphism, and α : N → Σ be such
a sequence that h(α) is infinite.

• If α is almost periodic, then so is h(α).

• If α is effectively almost periodic, then so is h(α).

Proof. Let us call a character a ∈ Σ non-empty if h(a) 6= Λ. Since h(α)
is infinite, there are infinitely many occurrences of non-empty characters in α.
Now, since α is almost periodic, there exists a number k such that every α’s
segment of length k contains at least one non-empty character.

Take a natural number l. Every string of length l in h(α) is contained in the
image of some string of length not more than kl in α.

Every single character in α maps into some segment of h(α) (which may
be empty). Mark all ends of these segments for all characters of α. The se-
quence h(α) becomes separated into blocks of characters. All characters within
such block map from a single character in α (and some blocks may be empty).
Since Σ is finite, there exists an upper bound S on lengths of such blocks.

So, we found out that the homomorphism h can neither shrink nor expand
the sequence “too much”. The image of any segment of length L is no longer
than LS and no shorter than L

k
− 1. This is the main idea that leads us to the

desired result. The following just fills in some technical details.
Let us take a prefix of α such that every string of length kl outside this prefix

is of type II, and let m be a natural number bounding above the gaps between
occurrences of these strings. Also let us take the corresponding prefix of h(α)
and call h̃ the rest of h(α).

Consider an occurrence of any string u of length l in h̃. It is contained in
the image of a string of length not more than kl. Let us denote this string by v
and the corresponding segment of α by [i, j]. We have |v| ≤ kl. By v denote the
string of length kl in α starting at i. Every α’s segment of length m contains a
start of at least one occurrence of v in α. Let us prove that every h(α)’s segment
of length (m+ 2)S contains a start of at least one occurrence of u.

Consider any segment of length (m+2)S in h(α). It contains the image of an

α’s segment of length not less than (m+2)S−2(S−1)
S

≥ m (because every character
in α maps to no more than S characters in h(α)). This segment has a start of
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some occurrence of v in α. The image of this occurrence contains an occurrence
of u in h(α). Therefore, the considered segment contains an occurrence of u.

To prove the second statement note that h(α) is computable and that (m+
2)S can be effectively computed. 2

Now let us study mappings done by finite automata.
Definition 6. A finite automaton with output is a tuple 〈Σ,∆, Q, q0, T 〉

where

• Σ is a finite set called input alphabet,

• ∆ is a finite set called output alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state, and

• T ⊂ Q× Σ × ∆ ×Q is a transition set.

If 〈q, σ, δ, q′〉 ∈ T , we say that the automaton in state q seeing the character σ
goes to state q′ and outputs the character δ.

Definition 7. If for any pair 〈q, σ〉 there exists a unique tuple 〈q, σ, δ, q′〉 ∈
T , the automaton is called deterministic.

Definition 8. Let α be a sequence and A an automaton. A sequence
(q0, δ0), . . . , (qn, δn), . . . is a run of A on α if the following two conditions hold:

• q0 is the initial state of A, and

• 〈qi, α(i), δi, qi+1〉 is a transition of A for every i ≥ 0.

Let us call δ0, . . . , δn, . . . the A’s output on this run.
If A is deterministic, then it has a unique run on every sequence. Denote

by A(α) its output on α. (For an introduction in the theory of finite automata
see, for example, [5].)

Theorem 3. Let A be a deterministic finite automaton and α an almost pe-
riodic sequence. Then A(α) is also almost periodic. Moreover, if α is effectively
almost periodic, then so is A(α).

Proof. We need to prove that if some string u of length l occurs in A(α)
infinitely many times then the gaps between its occurrences are bounded above
by a function in l. To prove this, it is sufficient to prove that for every occur-
rence [i, j] of u located sufficiently far to the right in A(α) there exists another
occurrence of u within a bounded segment to the left of i. Obviously this al-
ready holds for α: there exist two monotone functions k and m such that for
any l-character segment [i, j] starting to the right of k(l) there exists a “copy”
of it starting between i−m(l) and i− 1.

Take an l-character string ũ in A(α) and its occurrence [i, j]. Suppose it is
located sufficiently far to the right (leaving the exact meaning of “sufficiency” to
a later discussion). Call u1 the corresponding string in α (actually u1 = α[i, j]).
Let A enter the segment [i, j] in state q1. For uniformity, denote i1 = i and l1 =
l.
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There exists an occurrence of u1 in α starting between i1−m(l1) and i1 −1.
Denote the start of this occurrence i2 and the corresponding A’s state q2. If q2 =
q1 then A outputs the string ũ starting at i2.

If q2 6= q1 consider the string u2 = α[i2, j]. Let l2 be its length. This string
has the following property. If A enters it in state q1, it outputs ũ on the first
segment of length l; if A enters it in state q2, it enters the last segment of length l
(which contains a copy of u1) in state q1 and, again, outputs ũ.

There exists another occurrence of the string u2 with a start between i2 −
m(l2) and i2 − 1. Let i3 be this start and q3 the corresponding A’s state.

If q3 = q2 or q3 = q1, then the automaton enters a copy of the string u2 in
state q2 or q1 and outputs ũ according to the formulated property. If q3 6= q2
and q3 6= q1, repeat the described procedure.

Namely, on the n’th step we have a string un of length ln with an occur-
rence [in, j] in α, and a set of states q1, . . . , qn. The property is that if A
enters un in one of the states q1, . . . , qn, its output contains ũ. Then, we find an
occurrence of un with a start between in −m(ln) and in − 1, call its start in+1

and the corresponding state qn+1. If qn+1 equals one of the states q1, . . . , qn,
then we have found an occurrence of ũ to the left of i. Otherwise, we have found
a string un+1 = α[in+1, j] with a similar property. Since un+1 starts with a copy
of un, if A enters un+1 in one of the states q1, . . . , qn, it outputs ũ somewhere
in this copy; if A enters un+1 in state qn+1, it outputs ũ at the end of un+1.

Since the set of A’s states is finite, we only need to do the procedure a finite
number of times, namely, |Q| (here |Q| is the cardinality of this set). After this
number of steps we will definitely find another occurrence of ũ.

Let us show that the gap between the found occurrence and the original
occurrence [i, j] is bounded from above. For the start of u2 we have i2 ≥
i1−m(l1). Thus l2 ≤ l1+m(l1). To be able to take this step, we need i1 > k(l1).

On the n’th step, we have

in+1 ≥ in −m(ln) ≥ i1 −m(l1) −m(l2) − . . .−m(ln),

and
ln+1 ≤ ln +m(ln) ≤ l1 +m(l1) +m(l2) + . . .+m(ln).

The n’th step can be performed if in > k(ln). To make this true, it is
sufficient to have i1 −m(l1) − . . .−m(ln−1) > k(ln). So this is true if

i1 > k(l1),
i1 > k(l2) +m(l1),
i1 > k(l3) +m(l1) +m(l2),
. . .
i1 > k(l|Q|+1) +m(l1) + . . .+m(l|Q|).

Let k′ be the maximum of right-hand sides of these inequalities. Let m̃ = l|Q|+1.
So, we proved that every string ũ that has an occurrence [i, j] in A(α) to

the right of k′ has another occurrence starting between i − m̃ and i − 1. This
suffices for A(α) to be almost periodic. Our next goal is effectiveness issues.
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Clearly, A(α) is computable. If the sequence α is effectively almost periodic,
then all mentioned numbers can be computed. We only need to be able to find
out whether a given string ũ occurs in α finitely or infinitely many times.

To do so, consider a set S of all strings of length m̃ that do not contain any
occurrence of ũ. There exist numbers k′′ and m̃′ such that every string in S
that has an occurrence [i′, j′] to the right of k′′ has another occurrence starting
between i′ − m̃′ and i′ − 1. Let K = max{k′, k′′}.

If there are infinitely many occurences of ũ, then every segment of length m̃
has an occurrence of ũ.

If, however, there are only finitely many occurrences of ũ, then there is an
occurrence of some string from S to the right of K. By shifting this occurrence
to the left, we can find an occurrence with a start on the segment [K,K+m̃′−1].

Note that if we found a segment of length m̃ that does not have any occur-
rence of ũ, then there is no occurrences to the right of it.

Now we can check the segment [K,K+m̃′+m̃−1] to see if it contains a sub-
segment of length m̃ without an occurrence of ũ. If we find such a subsegment,
then there are finitely many occurrences of ũ; otherwise, there are infinitely
many occurrences. 2

Now we modify the definition of a finite automaton, allowing it to out-
put any string (including the empty one) in the output alphabet when reading
one character from input. These devices are usually called finite transduc-
ers. Formally, a transducer’s transition set is a subset of Q × Σ × ∆∗ × Q.
The output sequence on the run 〈q0, v0〉, . . . , 〈qn, vn〉, . . . now is the concatena-
tion v0v1 . . . vn . . .. (See [6].)

Define the program of effectively almost periodic sequence α to be a pair of
two programs 〈p1, p2〉 where p1 is a program computing α(n) given n, and p2 is
a program computing m and k given l (as in Definition 3).

Corollary 4. Let A be a deterministic finite transducer with input alpha-
bet Σ and output alphabet ∆, and α : N → Σ∗ be a sequence such that the
output sequence A(α) is infinite. Then

1. if α is almost periodic, then so is A(α), and

2. if α is effectively almost periodic, then A(α) is effectively almost periodic,
and the program for A(α) can be effectively constructed given the program
for α.

Proof. The proof follows from Theorems 2 and 3. We decompose the
mapping done by the transducer into two: one will be a homomorphism and
the other done by a finite automaton.

Define f(α) as follows: the i’th character of f(α) is a pair 〈α(i), qi〉, where qi
is the state of A when it reads the i’th character in α. Obviously, f can be done
by a deterministic finite automaton. Then, define g(〈σ, q〉) as the string that A
outputs when it reads σ in state q. Obviously, g is a homomorphism.

It is also clear that g(f(α)) = A(α). The effectiveness statement immedi-
ately follows from the mentioned theorems.
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We also need to show that the programs for A(α) can be effectively computed
from the program for α. To do this, note that the proofs of Theorems 2 and 3
actually describe effective procedures. 2

Let α and β be two sequences α : N → Σ and β : N → ∆. Define a cross
product α × β to be a sequence α × β : N → Σ × ∆ such that (α × β)(i) =
〈α(i), β(i)〉.

We will show later that a cross product of two almost periodic sequences is
not always almost periodic. On the other hand, a cross product of two eventually
periodic sequences is eventually periodic.

Corollary 5. A cross product of an almost periodic sequence and an even-
tually periodic sequence is almost periodic.

Proof. The proof immediately follows from Theorem 3 since the cross prod-
uct can be easily obtained as an output of a finite automaton reading the almost
periodic sequence. 2

Now we turn to nondeterministic transducers. Denote by A[α] the set of all
A’s infinite output sequences on the input sequence α.

Theorem 6. (Theorem of uniformization.) Let A be a transducer and α
an almost periodic sequence.

1. If A[α] 6= ∅ then there exists a deterministic transducer B such than B(α) ∈
A[α] (so, A[α] contains an almost periodic sequence).

2. If α is effectively almost periodic then given A and the program for α one
can effectively compute if A[α] is empty, and if it is not, effectively find B.

Note that if α is not almost periodic then the uniformization could be im-
possible:

Let α be a sequence α = 01002000200000001 . . . (1s and 2s come in random
order, and the number of separating zeroes increases infinitely). Let β be a
sequence β = 11222222211111111 . . . (every zero in a group is substituted by
the character following that group). Then there exists a nondeterministic trans-
ducer A such that A[α] = {β}, but there is no deterministic transducer B such
that B(α) = β.

Proof. Let us fix for the following the sequence α and introduce some terms.
Any pair 〈i, q〉 where i is an integer and q is a state of A, we call a point. We
say that a point 〈i2, q2〉 is reachable from the point 〈i1, q1〉 if the transducer A
can go from the state q1 to the state q2 reading α[i1, i2], namely, there exists a
sequence

〈si1 , ui1〉, 〈si1+1, ui1+1〉, . . . , 〈si2−1, ui2−1〉, si2

such that si1 = q1, si2 = q2, and for all i ∈ [i1, i2−1] the tuple 〈si, α(i), ui, si+1〉
is a valid A’s transition. The sequence 〈si1 , ui1〉, . . . , 〈si2−1, ui2−1〉, si2 is called
a path from 〈i1, q1〉 to 〈i2, q2〉, and the string ui1ui1+1 . . . ui2−1 is called the
output string of this path. If there exists a path from 〈i1, q1〉 to 〈i2, q2〉 with a
nonempty output string, we say that 〈i2, q2〉 is strongly reachable from 〈i1, q1〉.
We say that a point is strongly reachable from a set of points if it is strongly
reachable from some point in that set. Denote by Tj(i, q) a set of points 〈j, q′〉
reachable from 〈i, q〉. Define Qj(i, q) = {q′ | 〈j, q′〉 ∈ Tj(i, q)}.
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Let 〈r0, s0〉 be some point. We say that a sequence j0 = r0 < j1 < . . . <
jn < . . . is correct with respect to 〈r0, s0〉 if for every n ≥ 1 there exists a
point 〈rn, sn〉 such that jn−1 < rn ≤ jn, 〈rn, sn〉 is strongly reachable from
Tjn−1

(r0, s0), and Qjn
(r0, s0) = Qjn

(rn, sn).

r0 jn−1
rn jn

We sketch this on a figure. The dots represent points, the circle marked jn
represents Qjn

(rn, sn) = Qjn
(r0, s0), the wavy lines in the center of the “tube”

picture paths, and straight lines picture paths with a nonempty output string.
Say the point 〈0, the initial state of A〉 is an initial point. A sequence is

called correct if it is correct with respect to some point reachable from the
initial point.

Introduce an equivalence relation “∼” on a set of all points:

〈i1, q1〉 ∼ 〈i2, q2〉 iff ∃i ≥ i1, i2 : Qi(i1, q1) = Qi(i2, q2).

This relation is obviously reflexive and symmetric. The transitivity prop-
erty follows from the fact that if Qi(i1, q1) = Qi(i2, q2) then for all j > i
Qj(i1, q1) = Qj(i2, q2). This relation has another interesting property. If
〈i3, q3〉 is reachable from 〈i2, q2〉, 〈i2, q2〉 is reachable from 〈i1, q1〉, and 〈i1, q1〉 ∼
〈i3, q3〉 then 〈i1, q1〉 ∼ 〈i2, q2〉 ∼ 〈i3, q3〉. This is so because for all i ≥ i3 we
have Qi(i3, q3) ⊂ Qi(i2, q2) ⊂ Qi(i1, q1).

An amazing fact is that there can only be a finite set of equivalence classes,
namely, not more than 2N where N is the number of A’s states. If there
were 2N +1 pairwise nonequivalent points {t1, . . . , t2N+1} then for a sufficiently
large i we would have 2N +1 pairwise different sets Qi(t1), Qi(t2),. . . , Qi(t2N+1),
and that is impossible.

Now we are ready to prove the important
Lemma 7. A[α] 6= ∅ iff there exists a correct sequence.
Proof. If there is a correct sequence then surely A[α] 6= ∅: on the figure we

see the path with a infinite output string drawn in the center of the “tube”.
Now, suppose A[α] 6= ∅. Fix some run 〈q0, u0〉, . . . , 〈qn, un〉, . . . of A on α

that has infinite output sequence u0u1 . . . un . . .. Consider the sequence of
points 〈0, q0〉, 〈1, q1〉, . . . , 〈n, qn〉, . . . where each point is reachable from the pre-
vious. Then these points separate into a finite set of equivalence classes:

{〈i, qi〉 | 0 ≤ i ≤ i1},
{〈i, qi〉 | i1 < i ≤ i2},

. . .
{〈i, qi〉 | im < i}.
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We see that all points 〈i, qi〉 where i > im are equivalent. Now we can con-
struct a correct sequence. Let r0 = im + 1, s0 = qr0

. We will construct two
sequences jn and 〈rn, sn〉 such that jn−1 < rn ≤ jn, Qjn

(rn, sn) = Qjn
(r0, s0),

and the point 〈rn, sn〉 is strongly reachable from Tjn−1
(r0, s0). The state sn

will always be equal to qrn
. Suppose we already found rn−1 and jn−1. Let rn

be any number such that rn > jn−1 and the point 〈rn, qrn
〉 is strongly reach-

able from Tjn−1
(r0, s0). We can find such a point because the output sequence

of the path 〈i, qi〉 is infinite. Since 〈r0, s0〉 ∼ 〈rn, qrn
〉, there exists a jn such

that Qjn
(rn, qrn

) = Qjn
(r0, s0). By induction, we now construct a correct se-

quence with respect to 〈r0, qr0
〉. Since that point is reachable from the initial

point, we have constructed a correct sequence. The proof of the lemma is com-
plete. 2

Lemma 8. (a) If α is almost periodic and A[α] 6= ∅ then there exists a
correct sequence j0, j1, . . . , jn, . . . such that ∃µ ∀n (jn+1 − jn) < µ.

(b) If α is effectively almost periodic then given A and the program for α one
can find out if A[α] is empty. If A[α] 6= ∅, one can find µ and a point 〈r0, s0〉
reachable from the initial point such that there exists a correct sequence jn
with (jn+1 − jn) < µ.

Proof. Let us construct an auxiliary deterministic finite automaton C with
the output alphabet {0, 1}. Among its states we will have a state s̄ for every
state s of A.

We will need the following property of C. Denote by C〈r,s〉(α) the output
sequence of C if we run it on α starting at time r in the state s̄ (this sequence
starts at index r; one can imagine its first r positions filled with zeroes). The
property is that if there exists a correct sequence (for A and α) with respect to
the point 〈r, s〉 then C〈r,s〉(α) is a characteristic sequence of one such sequence.
Otherwise, C〈r,s〉(α) contains only a finite number of 1s. By characteristic se-
quence of a sequence j0 < j1 < . . . < jn < . . . we understand the sequence {ai}
where

ai =

{
1, if ∃n i = jn,
0, otherwise.

We describe the automaton C informally (omitting details regarding its states
and transitions).

At the time r the automaton remembers s and print 1. At the time i (i > r)
the automaton remembers the following (we denote by j the last time less than i
when C printed 1):

1. Qi(r, s),

2. the set of states q ∈ Qi(r, s) such that the point 〈i, q〉 is strongly reachable
from Tj(r, s), and

3. the class of all sets Qi(l, q) where l ≤ i and the point 〈l, q〉 is strongly
reachable from Tj(r, s).

The automaton prints 1 if it sees that one of the sets from the third item
equals to the set in the first item. Otherwise, it prints 0. It is obvious that the
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information remembered by the automaton is finite, and is bounded above by a
function in the number of states of A.

The needed property of C immediately follows from the fact that if there
exists a correct sequence with respect to the point 〈r, s〉 then for all i ≥ r there
exists a point that is strongly reachable from Ti(r, s) and equivalent to 〈r, s〉.

Now we are ready to prove the statement (a) of the Lemma. Suppose A[α] 6=
∅. According to Lemma 7 there exists a correct sequence with respect to some
point 〈r0, s0〉 reachable from the initial point. Then C〈r0,s0〉(α) is a characteristic
sequence of some correct sequence j0 < j1 < . . .. If α is almost periodic then
so is C〈r0,s0〉(α) according to Theorem 3. It follows that there exists µ such
that ∀n (jn+1 − jn) < µ.

Now we turn to the statement (b). To prove it, we build another auxiliary
deterministic finite automaton D. We describe D informally, too. The idea is to
find a point 〈r, s〉 such that there exists a correct sequence with respect to that
point. To do this, the automaton D at time i runs a copy of the automaton C
starting in every point 〈i, s〉 reachable from the initial point. It is impossible
for a finite automaton to remember all these copies. But not all of these copies
are different. Namely, at some time it can turn out that two copies are in the
same state. Then these two copies are considered “united” and D may forget
one of them. We will make it forget the one that was started later. So, at any
time, D remembers a finite list of different states corresponding to remembered
copies of C. The later the copy was started the bigger its number in the list.
Let D print a message “I am forgetting the copy number ν” when D forgets a
copy. If some copy, say number ν, should print 1, let D print a message “The
copy number ν prints 1”. For convenience, let D print a message “I remember λ
copies” every time.

If α is effectively almost periodic, then so is D(α), so given A and the
program for α we can compute the program for D(α).

Every started copy will either be forgotten at some time or will survive
infinitely. In the latter case its number in the list will stop decreasing some-
time. Let γ be the number of such “survivors”; suppose they are started in
points t1, . . . , tγ . Let i0 be the time when the numbers of “survivors” stop de-
creasing (and thus became equal 1, . . . , γ). Every later copy will eventually be
forgotten, i.e. will unite with one of the “survivors”. So, A[α] 6= ∅ iff one of
the “survivors” prints infinitely many 1s. In other words, iff for some κ ≤ γ the
automaton D prints infinitely many messages “The copy number κ prints 1”.

If we know the program for D(α), we can find the number γ (it is less by
one than the smallest ν such that D prints “I am forgetting the copy number ν”
infinitely many times), and know if there exists i ≤ γ with the required property.
So, we can know whether A[α] = ∅. If A[α] 6= ∅, we can find i and the point ti.
Then there exists a correct sequence with respect to ti and we can find µ (given
a program for D(α)) such that the copy number i prints 1 on every segment
of length µ, that is, there exists a correct sequence jn such that for every n
(jn+1 − jn) < µ. This completes the proof of the Lemma. 2

Now we finish the proof of Theorem 6. Suppose A[α] 6= ∅ and α is almost
periodic. We should build a deterministic finite transducer B for that B(α) ∈

11



A[α]. According to Lemma 8 we find a point 〈r0, s0〉 and a number µ such that
there exists a correct (w.r.t. the point 〈r0, s0〉) sequence jn such that for every n
(jn+1 − jn) < µ. (When α is effectively almost periodic, this can be effectively
found given A and the program for α).

Let B work as follows. Up to the time r0 the transducer B prints an empty
string. At the time r0 the transducer prints an output string of any path from
the initial point to the point 〈r0, s0〉. Then, B “marks” numbers jn, rn and
states sn such that

1. jn−1 < rn ≤ jn,

2. 〈rn, sn〉 is strongly reachable from Tjn−1
(r0, s0), and

3. Qjn
(rn, sn) = Qjn

(r0, s0).

To do this, the transducer remembers at the time i ≥ r0 (here we denote by
r and j the last positions marked as such):

1. α(i), α(i − 1), . . . , α(i− 2µ),

2. the last marked state s and a pair of numbers (µ1, µ2) such that i−µ1 = j
and i− µ2 = r,

3. Qi−µ1
(r0, s0), Qi(r0, s0).

If i − µ1 < i − µ2, then the transducer searches for the next “j”, so when
it turns out that Qi(r0, s0) = Qi(i − µ2, s), it marks i as the new “j”. If i −
µ1 ≥ i − µ2, then the transducer searches for the next “r”. To do this, it
searches Ti(r0, s0) for a point strongly reachable from Ti−µ1

(r0, s0), and, when
it finds, marks the corresponding i as the new “r” and the corresponding state
at the time i as the new “s”. In this case, besides, the transducer prints the
nonempty output string of some path from the last marked point 〈r, s〉 to the
newly marked point. In all other cases B prints an empty string.

Since jn−rn−1 < 2µ, the remembered 2µ characters of α will suffice to know
if the current i should be marked as “r” or “j”, and to find the needed output
string.

The output sequence of B is a concatenation of an infinite set of nonempty
strings u0u1 . . . un . . . such that u0 is an output string of a path from the ini-
tial point to 〈r0, s0〉, and for every n > 0 un is an output string of a path
from 〈rn−1, sn−1〉 to 〈rn, sn〉. It follows that B(α) ∈ A[α].

Since B can be effectively constructed, the proof is complete. 2

4 Generating almost periodic sequences.

The universal method

In the paper [7] an interesting method of generating infinite 0-1-sequences is
presented. It is based on “block algebra”.
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4.1 Block product

Let u, v be strings in the alphabet {0, 1} (we will use the symbol B for this
alphabet from this point onwards, and also write B-sequences in place of 0-1-
sequences). The block product u⊗ v is defined by induction on the length of v
as follows:

u⊗ Λ = Λ
u⊗ v0 = (u⊗ v)u
u⊗ v1 = (u ⊗ v)ū,

where ū is a string obtained from u by changing every 0 to 1 and vice versa.
It is easy to check that block product is associative and right-distributive with
respect to concatenation (that is, u ⊗ (v ⊗ w) = (u ⊗ v) ⊗ w, and u ⊗ (vw) =
(u⊗ v)(u ⊗ w), but not always (uv) ⊗ w = (u⊗ w)(v ⊗ w)).

Define the infinite block product. Let un, n = 0, 1, . . . be a sequence of
nonempty strings in the alphabet B such that for n ≥ 1 un starts with 0.

Then the product
∞⊗

n=0
un is defined as the limit of the sequence of strings u0,

u0⊗u1,. . . ,u0⊗u1 . . .⊗un, . . .. Since for every n ≥ 1 un starts with 0, it follows
that every string in this sequence is a prefix of the next string, so the sequence
converges to some infinite B-sequence.

In the paper [12] it is proved that for any sequence {un} of strings that

start with 0 and contain at least two characters their block product
∞⊗

n=0
un is

strongly almost periodic. This fact allows us to prove that the cardinality of AP
is continuum:

For a B-sequence ω define αω =
∞⊗

n=0
(0ω(n)). Now the mapping ω 7→ αω is

an injection of continuum into AP .

4.2 The universal method

Let Σ be a finite alphabet.
Definition 9. A sequence of tuples 〈ln, An, Bn〉 where ln is an increas-

ing sequence of natural numbers, and An and Bn are non-empty finite sets of
non-empty strings in the alphabet Σ, is called Σ-scheme if the following four
conditions hold:

(C1) all strings in An have length ln,

(C2) any string in Bn has the form v1v2 where v1, v2 ∈ An, and every string
from An is used as vi in some string in Bn,

(C3) every string u in An+1 has the form v1v2 . . . vk where for each i < k
vivi+1 ∈ Bn (and thus vi, vi+1 ∈ An) and for all w ∈ Bn ∃i < k w = vivi+1,
and

(C4) every string u from Bn+1 should have the following property: if u =
v1 . . . vkw1 . . . wk (vi, wi ∈ An), then vkw1 ∈ Bn

13



Note that since all strings in An have equal lengths, the representation u =
v1 . . . vk of a string u ∈ An+1 is unique, and so is the representation w = v1v2
of a string w ∈ Bn. Also note that ln | ln+1. A Σ-scheme is computable if the
sequence 〈ln, An, Bn〉 is computable.

Definition 10. We say that the sequence α : N → Σ is generated by a
Σ-scheme 〈ln, An, Bn〉 if for all n ∈ N there exists kn such that for all i ∈ N
α[kn + iln, kn +(i+2)ln−1] ∈ Bn, that is, a concatenation of any two successive
strings in the sequence

α[kn, kn + ln − 1], α[kn + ln, kn + 2ln − 1], . . .

is in Bn.
The sequence is perfectly generated by the scheme if ln | kn.
The sequence is effectively generated if the sequence kn is computable.
Proposition 9. Any scheme perfectly generates some sequence.
Proof. Let 〈ln, An, Bn〉 be any scheme. Consider an infinite tree of strings.

Its nodes at n’th level are strings of length ln, and the string x is the string’s y
parent if x is a prefix of y.

At n’th level mark the nodes x for which the following condition holds:

∀i < n∀j x[jli, (j + 2)li − 1] ∈ Bi.

(I.e. the strings that can be prefixes of a sequence perfectly generated by the
considered scheme.) Let us show that if some node is marked, then all its pre-
decessors are marked, too. This follows, by induction, from the properties (C3)
and (C4).

There are infinitely many marked nodes, because every string in An is
marked. Hence, due to the compactness of Cantor space, there exists an in-
finite path in the tree with all its nodes marked. Consider a limit sequence of
this path. It is perfectly generated by the scheme. 2

Theorem 10. (a) Either of the next two properties of a sequence α : N → Σ
is equivalent to the almost periodicity of α:

• α is generated by some Σ-scheme,

• α is perfectly generated by some Σ-scheme.

(b) Either of the next two properties of a computable sequence α : N → Σ is
equivalent to the effective almost periodicity of α:

• α is effectively generated by some computable Σ-scheme,

• α is effectively and perfectly generated by some computable Σ-scheme.

Proof. We start with proving (a). Suppose α is generated by some Σ-
scheme 〈ln, An, Bn〉. Let us prove that α is almost periodic. Take a string u ∈ Σ∗

such that u has infinitely many occurrences in α. We prove that for some N
every α’s segment of length N has an occurrence of u. Denote the length of u
by |u|. Take n such that ln ≥ |u|. Let us prove that every string in An+1
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contains u as a substring. Take kn from the Definition 10. Since u has infinitely
many occurrences in α, there exists an occurrence of u to the right of kn, starting,
say, on a segment [kn+iln, kn+(i+1)ln−1]. Since |u| ≤ ln, the whole occurrence
is contained in the segment [kn + iln, kn + (i+ 2)ln − 1]. According to the same
Definition, this segment of α is in Bn. So, some string in Bn contains u. It
follows that every string in An+1 contains u since every string in An+1 contains
all strings from Bn (see (C3)).

Now, due to the definition of generation and to (C2), (C3), there exists kn+1

such that for every i

α[kn+1 + iln+1, kn+1 + (i+ 1)ln+1 − 1] ∈ An+1,

and thus every α’s segment of length 3ln+1 to the right of kn+1 contains at least
one occurrence of some string from An+1, and thus, an occurrence of u.

Now suppose α is almost periodic. We construct a scheme 〈ln, An, Bn〉 that
perfectly generates α. Say that the occurrence [i, i+ |u| − 1] of the string u ∈
An ∪Bn in α is good if ln | i. Let

An = {u ∈ Σln | u has infinitely many good occurrences in α},
Bn = {u ∈ Σ2ln | u has infinitely many good occurrences in α}.

We still need to define ln. We do this by induction. Let l0 = 1. To find an
appropriate value for ln+1 having ln, we prove the following

Lemma 11. There exists a number l′ such that every α’s segment of length l′

contains a good occurrence of every string in Bn.
Proof. Let string x in the alphabet {1, 2, . . . , ln} be 1, 2, . . . , ln, 1, 2, . . . , ln,

and a sequence β in the same alphabet to be an infinite concatenation xxx . . ..
Define the cross product of string of equal lengths similarly to the cross product
of infinite sequences. Then u is in Bn iff u× x has infinitely many occurrences
in α × β. According to Corollary 5, the sequence α × β is almost periodic, so
there exists l′ such that every segment of length l′ has an occurrence of u × x
for every u ∈ Bn. So, every segment of α of length l′ has a good occurrence of
every u ∈ Bn. This completes the proof of the Lemma. 2

Let ln+1 be a number such that ln | ln+1 and every α’s segment of length ln+1

has a good occurrence of every string from Bn.
Let us prove that 〈ln, An, Bn〉 is a scheme. Condition (C1) is obviously

met. The first part of condition (C2) says that every string in Bn consists
of two strings from An. This is surely true since every good occurrence of
the string v1v2 has a good occurrence of each of the strings v1 and v2. The
second part states that every string from An is used as part of Bn. If v1 ∈ An,
then v1 has infinitely many occurrences. Consider all strings of length ln that
immediately follow these occurrences. There are finitely many types of these
strings, so at least one of them, say, v2, occurs infinitely many times. Then the
string v1v2 has infinitely many good occurrenes, and thus is in Bn.

To check condition (C3), it is sufficient to prove that if u ∈ An+1, u =

v1v2 . . . vk where |vi| = ln, k = ln+1

ln
, then for each i < k vivi+1 ∈ Bn and for

every string w ∈ Bn there exists i < k such that w = vivi+1.

15



Since u ∈ An+1, u has infinitely many good occurrences in α. Hence,
for all i < k vivi+1 has infinitely many occurrences in α with a start of the
form cln+1 + (i − 1)|vi|. But this expression is a multiple of ln, so vivi+1 has
infinitely many good occurrences in α, so vivi+1 ∈ Bn for all i < k.

Now suppose w ∈ Bn. The string u has a good occurrence in α (even
infinitely many ones). Let one of these be [j, j + ln+1 − 1]. According to the
choice of ln+1, the segment [j, j+ln+1−1] has a good occurrence of the string w,
so for some i we have vivi+1 = w.

Is remains to check condition (C4). Suppose u = v1 . . . vkw1 . . . wk ∈ Bn.
Then u has infinitely many good occurrences in α. It follows that vkw1 has
infinitely many occurrences starting at position which is multiple of ln−1 and
thus vkw1 ∈ Bn−1.

Now we prove that α is perfectly generated by the constructed scheme. For
every n we let kn be the multiple of ln such that every string u × x that has
only finite number of occurrences in α × β, does not have any occurrences to
the right of kn.

(b) It is easy to check that the proof in both directions is effective. 2

Now we describe the universal method of generating strongly almost pe-
riodic sequences. Say that 〈ln, An〉 is a strong Σ-scheme if for ln and An

the property (C1) holds, and for every n every string u ∈ An+1 is of the
form u = v1v2 . . . vk where vi ∈ An and for every w ∈ An there exists i < k such
that w = vi. Also, we say that α is generated by a strong scheme if for every i
and n α[iln, (i+ 1)ln − 1] ∈ An.

The theorem analogous to the Theorem 10 is as follows:
Theorem 12. The sequence α is strongly almost periodic iff it is generated

by some strong Σ-scheme.
The proof of this Theorem is analogous to the proof of Theorem 10, although

more simple, and is omitted here.
Now we prove that the block product is strongly almost periodic.
Proposition 13. Let un be a sequence of B-strings each starting with 0

and containing at least two characters. Then the sequence
∞⊗

n=0
un is generated

by some strong B-scheme.

Proof. Let α =
∞⊗

n=0
un. Consider two cases.

(a) Starting from some n all the strings un do not contain 1. Then α has the
form vvv . . . for some v and thus is periodic. The scheme can be constructed
trivially.

(b) For an infinitely many n’s the string un contains at least one 1. Then α

can be represented as
∞⊗

n=0
wn where each wn starts with 0 and contains 1. We

prove this by using the associative property of the block product. The product

u0 ⊗ u1 ⊗ . . .⊗ un ⊗ . . .

can be divided into groups

(u0 ⊗ u1 ⊗ . . .⊗ un1−1) ⊗ (un1
⊗ . . .⊗ un2−1) ⊗ . . .
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so that each group contains and least one term that contains 1. Letting wi be
the block product of the i’th group, we get wi start with 0 and contain at least
one 1.

Now we define the strong B-scheme generating α =
∞⊗

n=0
wn. Let xn =

n⊗
i=0

wi,

ln = |xn|, and An = {xn, x̄n}. Since for every n the string wn contains both 0
and 1, 〈ln, An〉 is a strong B-scheme. It is obvious that α is generated by this
scheme.

The proposition is proved. 2

4.3 Dynamic systems

Let V be a topological space, A1, . . . , Ak be pairwise disjoint open subsets of V ,
f : V → V be a continuous function, and x0 ∈ V be a point such that its

orbit {fn(x0) | n ∈ N} lies inside
k⋃

j=0

Aj . Define the sequence α : N → {1, . . . , k}

by the condition fn(x0) ∈ Aα(n). We will show here two conditions yielding
that α is strongly almost periodic and one yielding that α is effectively and
strongly almost periodic. (We say that α is effectively and strongly almost
periodic if it is computable and given u we can compute n such that either u
does not occur in α or every α’s segment of length n has an occurrence of u.)
We will first formulate the three corresponding theorems and then prove them
altogether.

Theorem 14. If V is compact and the orbit of any point of V is dense in V ,
then α is strongly almost periodic.

Theorem 15. If V is a compact metric space and f is isometric, then α is
strongly almost periodic.

It follows from the Theorem 15 that if x/π is irrational, then the sequence
{the sign of sinnx} is strongly almost periodic: to prove this, one can take a
circle for the V and a rotation with the angle x for the f .

Before we formulate the third theorem, fix some definitions. The set T s =
[0, 1)s is called s-dimensional torus. Fix the following metric on T s. Let the
mapping φ : Rs → T s be defined by equality φ(x1, . . . , xs) = ({x1}, . . . , {xs})
where {x} denotes the fractional part of x. Then ρ(a, b) = min{|a′−b′| : φ(a′) =
a, φ(b′) = b}.

A set A ⊂ Rs is called algebraic if it is a solution set of some system of
polynomial inequalities (either strict or not) with integer coefficients. A set
is called semi-algebraic if it is a union of a finite class of algebraic sets. A
set A ⊂ T s is called semi-algebraic if there exists a semi-algebraic B ⊂ Rs such
that A = B ∩ T s.

Suppose v ∈ Rs. The mapping fv : T s → T s defined by the equality fv(x) =
φ(x+ v) is called a shift by the vector v. This mapping is surely isometric.

Theorem 16. Let V be s-dimensional torus, the point x0 have algebraic
coordinates, f a shift by a vector with algebraic coordinates, and Ai open semi-
algebraic sets. Then α is effectively and strongly almost periodic.
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Proof. (of Theorems 14, 15 and 16) We start with proving Theorem 14.
We need to show that if a string u ∈ {1, . . . , k}∗ has an occurrence in α then u
is contained in any sufficiently long segment of α. Let u be of length l and have
an occurrence in α, say, u = α[i0, i0 + l − 1]. Denote by Bu the open set

{x ∈ V | x ∈ Au(1), f(x) ∈ Au(2), . . . , f
l−1(x) ∈ Au(l)}.

Then f i0(x0) ∈ Bu, so Bu is not empty. Since every orbit is dense in V ,

we have ∀x ∈ V ∃i ∈ N f i(x) ∈ Bu. This means V ⊂
∞⋃

i=0

f−i(Bu). Since

each set f−i(Bu) is open and V is compact, there exists m ∈ N such that

V ⊂
m⋃

i=0

f−i(Bu). That is, ∀x ∈ V ∃i ≤ mf i(x) ∈ Bu. In particular, ∀n ∃i ≤

mfn+i(x0) ∈ Bu, so any α’s segment of length m+ l+1 contains an occurrence
of u.

Let us prove Theorem 15 by reduction to Theorem 14. Let V1 be a closure
of the orbit of x0. Then V1 is also compact. Denote the metric of V by ρ.

Lemma 17. f(V1) ⊂ V1.
Proof. Suppose x ∈ V1. We prove that f(x) ∈ V1. Let ε > 0. There exists

k ∈ N such that ρ(fk(x0), x) < ε. Hence ρ(fk+1(x0), f(x)) < ε because f is
isometric. Since this holds for every ε > 0, f(x) ∈ V1. 2

Lemma 18. For all x ∈ V1 the orbit of x is dense in V1.
Proof. Let x ∈ V1, y ∈ V1, ε > 0. We need to show that there exists n

such that ρ(fn(x), y) < ε. There exist k and l such that ρ(fk(x0), x) < ε/3,
ρ(f l(x0), y) < ε/3 (since x, y ∈ V1). We have two cases.

Case 1: l ≥ k. Take n = l− k. We have

ρ(f l−k(x), y) ≤ ρ(f l−k(x), f l(x0)) + ρ(f l(x0), y) =

ρ(x, fk(x0)) + ρ(f l(x0), y) < ε/3 + ε/3 < ε.

Case 2: l < k. First we prove that there exists a number l′ ≥ k such that
ρ(f l′(x0), f

l(x0)) < ε/3. Then ρ(f l′(x0), y) < 2ε/3 and we can reason as in
case 1.

Since V is compact, for any δ > 0 there exists N such that among any N
point there exist two with a distance less than δ. Take N corresponding
to δ = ε

3k
. Among the points f(x0), f

2(x0), . . . , f
N(x0) there are two with

a distance less than ε
3k

. Let these be f i0(x0) and f i0+r(x0) (where r > 0).
Then ρ(f i0(x0), f

i0+r(x0)) <
ε
3k

, and since f is isometric, for any i we have
ρ(f i(x0), f

i+r(x0)) <
ε
3k

. In particular,

ρ(f l(x0), f
l+r(x0)) <

ε
3k
,

ρ(f l+r(x0), f
l+2r(x0)) <

ε
3k
,

. . .
ρ(f l+(k−1)r(x0), f

l+kr(x0)) <
ε
3k
,

and hence ρ(f l(x0), f
l+kr(x0)) < ε/3. Now we can take l′ = l + kr ≥ k. The

proof of the lemma is complete. 2
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Now we can prove Theorem 15. For the space V1, the function f1 = f |V1
,

the point x0 and the sets A′
i = Ai∩V1 all conditions of Theorem 14 hold. Hence

α is strongly almost periodic and the Theorem 15 is proved.
Let us switch to proving Theorem 16. Since T s is a compact metric space

and the shift is isometric, the resulting sequence is almost periodic according to
Theorem 15. Our goal is effectiveness issues.

Lemma 19. If V is a compact metric space, f is isometric, Ai are open
subsets of V , and the following conditions hold (here when we talk of a point
in the orbit, it is meant to be represented by its number):

(a) Given a point of the orbit in one of the sets Ai, one can calculate the
number i of the set containing this point and a positive rational number ε
such that all the point’s ε-neighborhood lies in the set Ai.

(b) Given ε, one can effectively find an ε-net1 in the the orbit of x0.

(c) Given two points in the x0’s orbit, one can approximate the distance
between them.

(d) Given u one can compute if u occurs anywhere in α.

Then, α is effectively and strongly almost periodic.
Proof. Denote xn = fn(x0).
We are given u and we should find such m that every α’s segment of length m

contains an occurrence of u. Suppose u occurs in α, say, u = α[p, q] (we can
find out if it occurs anywhere using (d), and if it does, find the needed index
by trying them in turn). Find the points xp, . . . , xq and for each point xk find
a number εk such that all the εk-neighborhood of this point is included in the
set Aα(k) (we can do this using (a)). Let ε = min{εk} and let δ = ε/4.

Construct δ-net in the orbit of x0 using (b). Starting at x0, start calculating
points of the orbit until every point of δ-net is approximated with an error <
δ (here we use (c)). Suppose we needed to calculate l points of the orbit.
Then m = 2l. Let us prove this.

Suppose we have some segment of α of lengthm starting at index r. Consider
the corresponding points in the orbit, xr , . . . , xr+m−1. Take the middle point
of this segment, xr+l, and find the point y of δ-net that is closer than δ to it.
Find the point in the starting segment of α that is closer than δ to y. Suppose
it has the number n < l. Then the point xr+l−n is closer than 2δ to x0.

Now perform a similar operation with a point xp (the starting point of a
known occurrence of u). Namely, find a point z in the δ-net that is closer than δ
to xp and find a point in the starting segment of α that is closer than δ to z.
Suppose it has the number s < l. The point xs is closer than 2δ to xp.

Remember that the point xr+l−n is closer than 2δ to x0. Thus we have that
the point xr+l−n+s is closer than 4δ to xp. Since 4δ = ε, the point xr+l−n+s is
closer than ε to xp, so there is an occurrence of u starting at index r+ l−n+ s.

1Here under ε-net in the set A we mean a finite set of points ai ∈ A such that every point

of A is closer than ε to at least one point ai.
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The lemma is proved. 2

Now we need to show that in the situation of Theorem 16 the conditions (a)–
(d) of Lemma 19 hold.

One major construct that is used heavily in the following proof is the Tarski
Theorem [11]. It states that if we have a first order formula ψ(x1, . . . , xσ) in the
signature {+,×, <} and representations of algebraic numbers a1, . . . , aσ, we can
find out if ψ(a1, . . . , aσ) is true in the ordered field of real numbers. Call a set A
representable if there exists a first order formula ψ(x) that is true iff x ∈ A.
Surely any semi-algebraic set in the torus is representable.

Also, we need some properties of algebraic numbers. The representation
of an algebraic number γ is 〈Q, a, b〉 where Q is a polynomial with integer co-
efficients such that Q(γ) = 0 and a < b is rational numbers such that the
interval (a, b) contains γ and does not contain any other root of Q. With this
representation, one can effectively add, subtract, multiply and divide algebraic
numbers. (It can easily be done using the Tarski theorem.) Also, given a repre-
sentation of γ one can effectively find a prime polynomial P such that P (γ) = 0.
The proof of this fact is weel known. Following is the sketch, for details see, for
example, [14].

First, note that if P = QR (where P , Q and R are all polynomials with
rational coefficients), then the common denominator of Q’s coefficients is less
than the common denominator of P ’s coefficients, and the same holds for R.
Then, since the coefficients of a polymonial are symmetric polynomials in its
roots, and the set of roots of Q is a subset of the set of roots of P (same for R),
the Q’s coefficients are bounded in absolute value by some computable functions
of the P ’s coefficients. So, we have only a finite set of possible values for the
Q’s coefficients. Trying all the possible variants, we understand if there exists
a polynomial Q that divides P .

Let us check the conditions.
(a) Given a point with algebraic coordinates (all points in the orbit have

algebraic coordinates since both x0 and the shift vector have algebraic coordi-
nates) we can write a formula ψi(γ) stating that any point at a distance less
than γ is in Ai. Then, enumerating all rational numbers, we can estimate from
below the needed neighborhood radius.

(c) All points involved will have algebraic coordinates, so the distance will
be algebraic, and thus it can be approximated.

Checking (b) and (d) is harder. We will do this after studying the structure
of V1 (the closure of x0’s orbit) more thoroughly.

Lemma 20. V1 is a union of a finite number of affine subspaces of equal
dimensions.

Proof. Take a point a ∈ V1. If there exists a neighborhood of a that does
not contain any other points of V1, then the orbit is finite.

Otherwise, there are points in the orbit at deliberately small distances from a.
Consider straight lines going through a and these points, and the directions of
these lines (in other words, the points where these lines meet a unit sphere cen-
tered at a). Since sphere is compact, there is a nonempty set of limit directions.
(Such directions w that for every ε > 0 and δ > 0 there exist infinitely many
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points in the orbit such that they are closer than ε to a and the corresponding
directions are closer than δ to w.) Consider the corresponding straight lines.
We prove that their affine cull is contained in V1. Further we will intermix
references to V1 and the corresponding object in Rs because their connection is
trivial and it is generally evident what object is meant.

First, we prove that every limit line is contained in V1. Take a point x ∈ Rs

on the line. There exists a point y in the orbit such that ρ(a, y) < ε/4 and the
angle between the vectors (a, x) and (a, y) is less than ε

const‖x−a‖ . Also, there

exists a point z in the orbit such that ρ(a, z) < ε
constρ(a, y). Then, the angle

between (a, x) and (z, y) is still very small (less than ε
const‖x−a‖).

We need to make sure that z is earlier in the orbit than y. If z is later, we
change y as follows. Find a point y′ in the orbit later than z such that ρ(y′, y) <

ε
constρ(z, y), so the angle changes little, and the line (z, y′) is still close to (a, x).
Let the new y be this y′.

Now we have that the angle between (z, y) and (a, x) is less than ε
const‖x−a‖ ,

and ρ(z, y) < ε/2. Let us traverse z along the orbit until it becomes y. In the
same number of steps y becomes another y1 such that y1− y = y− z. So, y1 lies
on the line (z, y). Repeating the operation, we get to the neighborhood of x.
The nearest to x point of the sequence yn is at distance not more than the sum
of the distance between x and the line (z, y) (which is less than ε/2 according to
our construction) and the distance between two points in the sequence (which
is ρ(z, y) < ε/2). So, we have approximated x by the point in the orbit with
error not more than ε. This proves that x ∈ V1.

Up to this point, we know that every limit line is contained in V1. Our next
goal is to prove that their affine cull is contained in V1. Suppose we proved
that a cull of some of the lines is contained in V1. Take a new limit line that is
linearly independent of the considered cull (say, (a, b)) and prove that the new
cull is still contained in V1. Consider a point x ∈ Rs in the new cull and project
it along (a, b) to the previous cull. Denote the projection x1. Using the same
technique as above, find two points z and y in the orbit that are close to a, and
such that the angle between (z, y) and (a, b) is less than ε

const‖x−x1‖
. Also, we

need z to be earlier in the orbit than y. Find a point x′1 in the orbit that is
later in the orbit than z and is closer to x1 than ε/2. Traverse z along the orbit
until it becomes x′1. Then y becomes y′. We have ρ(y′, x′1) < ε/2, and the angle
between (x′1, y

′) and (x1, x) is less than ε
const‖x−x1‖

. Traversing x′1 to become y′

and further, as above, we find a point in the orbit that is closer than ε to x.
We just added a new line to the cull. This procedure increases the dimension
of the cull, so it can be performed only finitely many times.

Now we prove that all points of the orbit that are not contained in the cull
are not closer to the cull than some a positive distance.

Assume for any ε > 0 there exists a point x(ε) in the orbit that is closer than ε
to the cull but is not contained in it. Take ε > 0. Take x(ε) and a point y in the
orbit and in the cull such that y is close to the orthogonal projection of x(ε).
Traverse x and y along the orbit until y becomes some point y′ close to a. Then x
becomes x′ such that (y′, x′) is almost orthogonal to the cull. Hence (a, x′) is
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almost orthogonal to the cull. As ε→ 0 we have x′ → a, and (a, x′) tend to be
perpendicular to the cull. So, we found a new limit line, contradiction.

Now every point of the orbit is contained in an affine subspace of the same
dimension d (since every one of them can be obtained from another by a shift;
this also shows that all subspaces are parallel). Consider an orthogonal comple-
ment to these subspaces and project them to this complement. Every subspace
projects into a point. The distance between any two of these points is more
than some positive number. So, there is only a finite number of these affine
subspaces. 2

Note that if W is one of the affine subspaces such that W ∩ T s 6= ∅ and
W ∩ T s ⊂ V1, then also φ(W ) ⊂ V1. This follows from the proof of Lemma 20.

We want to find these affine subspaces given f and x0. Without loss of
generality we can assume that x0 = 0 since we always can shift the origin of the
torus to x0. Let the translation vector v have coordinates (t1, . . . , ts).

Lemma 21. Let d′ = dimQ{t1, . . . , ts, 1} − 1. Then the dimension d of the
affine subspaces equals d′.

Proof. Recall that d′ is the cardinality of the minimal subset of coordi-
nates ti such that all the coordinates can be rationally expressed in terms of
these coordinates and 1.

First, we prove that d ≤ d′. Without loss of generality, we assume that the
first k − 1 = s − d′ coordinates t1, . . . , tk−1 can be expressed in terms of the
last d′: tk . . . ts. Write these expressions:

t1 = α1
ktk + . . .+ α1

sts + α1
0 · 1,

. . .

tk−1 = αk−1
k tk + . . .+ αk−1

s ts + αk−1
0 · 1.

Consider these relations for the components of the vector vn. We see
that t′i = nti −mi · 1. So the relations are the same except the coefficients αi

0

differ. If we make the denominator of all fractions αi
j the same, we will see

that the denominator of αi
0 remains the same when going from f to fn (this

is because mi are integers). Since all the t′i are less than 1, the absolute val-
ues of coefficients αi

0 are bounded above. Hence there is only a finite number
of possible values for αi

0. So, for any n the vector vn that is equal to fn(x0)
(since x0 = 0) lies in one of the finite number of affine subspaces of dimension d′:

T1 = α1
kTk + . . .+ α1

sTs + β1
j

. . .

Tk−1 = αk−1
k Tk + . . .+ αk−1

s Ts + βk−1
j

(here Ti are coordinates and βi
j is the j’th possible value for αi

0). Hence d ≤ d′.
Now we prove that d ≥ d′. Project the whole picture onto the last d′

coordinates k, . . . , s. If d < d′ then each affine subspace of V1 projects into
subspace of dimension not more than d, so they all cannot cover the whole
coordinate subspace. Let us prove that the projection of V1 covers all the
subspace generated by the coordinates k, . . . , s.
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More precisely, we prove the following: if we project the whole picture onto a
coordinate subspace of dimension l ≤ d′, the image will cover all the mentioned
subspace. We do this by induction on l. The induction base is l = 0. This
case is obvious. Assume we proved the statement with some value of l. Let
us prove it with l + 1. Project the picture onto last l coordinates. According
to the induction hypothesis, the image has the dimension l. So, the projection
onto the last l + 1 coordinates has a dimension of either l + 1 or l. We need to
prove that it is l + 1. Assume, for the contrary, that the dimension is l, that
is, the projection of V1 is a union of parallel affine subspaces of dimension l.
They are not parallel to any coordinate axis (because if they were, we could
project the picture along this axis, and the spaces would project into spaces
of dimension l − 1, which cannot be true due to the induction hypothesis).
The subspaces intersect s’th coordinate axis by a point. The distances between
adjacent points are the same. Since the coordinate axis can be regarded as a
circle (because we are in the torus!), this distance is rational. Write the equation
of j’th subspace

ts = α′
s−lts−l + . . .+ α′

s−1ts−1 + β′
j .

Since for different j the difference between β′
j is rational, and the point 0 is

contained in one of them, then all β′
j are rational.

Consider the subspace containing 0 and its intersection with a two-dimen-
sional coordinate subspace of coordinates s and q (where q ≥ s− l). Its equation
is ts = α′

qtq. Consider a vector in this subspace (but outside the torus) with
q-coordinate of 1. Denote its s-coordinate by xs. We have

xs = α′
q · 1.

The equivalent vector in the torus has q-coordinate of 0, and s-coordinate of xs−
m for some integer m. It is contained in some affine subspace number j, so

xs −m = α′
q · 0 + β′

j .

Since β′
j is rational, then the number

α′
q = β′

j +m

is rational too. So, all the coefficients α′
q are rational. This contradicts the fact

that {tk, . . . , ts, 1} are linearly independent over Q. 2

Now we are ready to prove that the conditions (b) and (d) of Lemma 19
hold in our case.

First, find a primitive element γ in the field Q[t1, . . . , ts, (x0)1, . . . , (x0)s],
represent all coordinates of the vectors v and x0 as polynomials in γ and
find d = d′ and the coefficients of all equations of affine subspaces—except
for the coefficients βi

j (remember the beginning of the proof of Lemma 21). We

can find all possible values for βi
j , but we still need to know which give us the

needed subspaces of V1. To find these, we compute x0, x1, . . . , xN (note that we
write xn for fn(x0)). The number N is chosen such that these points constitute
a ε-net (for some sufficiently small ε) in every subspace that has at least one
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point of x0, . . . , xN+1. Then we can say that we have all the subspaces. Sup-
pose we then jump (at n’th step) from a known subspace to a not yet known.
There was a point xm of the ε-net near to xn. Then there is a point xm+1 near
to xn+1. But xn+1 is in the new subspace, and ρ(xm+1, xn+1) = ρ(xm, xn) < ε,
so xm+1 is also in the new subspace (remember that subspaces are separated by
a positive distance), so really this subspace is not new, but old.

Hence we can find the closure of the orbit and thus build a ε-net in it. So, the
condition (b) is met. Knowing V1, we can also meet the condition (d). Suppose
we have a string u and want to know if it occurs anywhere in the sequence α.
We construct the set

Bu = {y | y ∈ T s, φ(y) ∈ Au(1), . . . , φ(y + (|u| − 1)v) ∈ Au(|u|)}

This set is representable since Ai is semi-algebraic sets and v has algebraic
coordinates. We can, given u, v and Ai, find a formula ψ(x) that is true iff x ∈
Bu. Then, we can construct a formula stating that there is a point y in the
closure of the orbit such that y ∈ Bu. Then, we use the Tarski theorem to find
out if there exists such point. So, the condition (d) is also met, and this, finally,
proves the Theorem 16. 2

5 Interesting examples

Theorem 22. For any m ∈ N there exists a set A of m+ 1 effectively almost
periodic B-sequences such that the cross product of any m sequences from A is
effectively almost periodic, and the cross product of all m+ 1 sequences is not
almost periodic.

Theorem 23. For any m ∈ N there exists a set A of m+1 effectively almost
periodic B-sequences such that the cross product of any m sequences from A is
effectively almost periodic, and the cross product of all m+ 1 sequences almost
periodic but not effectively almost periodic.

A homomorphism h : Σ∗ → ∆∗ is called a collapse if for any character σ ∈ Σ
|h(σ)| = 1 and |∆| < |Σ|.

Theorem 24. For any m ∈ N there exists a computable sequence α : N →
{1, . . . ,m} such that for any collapse h the sequence h(α) is effectively almost
periodic. Such sequence can be constructed to conform to one of the two con-
ditions:

(a) α is not almost periodic,

(b) α is almost periodic, but not effectively almost periodic.

Proof. (of Theorems 22, 23 and 24) We say that 〈ln, An, Bn〉 is pseu-
doscheme if for any collapse h the tuple 〈ln, h(An), h(Bn)〉 is a scheme. We start
by proving Theorem 24(a). To do this, we construct a pseudoscheme 〈ln, An, Bn〉
and a non-almost periodic sequence α such that for any collapse h h(α) is effec-
tively generated by 〈ln, h(An), h(Bn)〉.
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Let Σm be the alphabet {1, . . . ,m}. We will identify permutations over Σm

with strings of length m in the alphabet Σm without equal characters.
Define a sequence ln and auxiliary sets Ru

n ⊂ Σln
m (where u ∈ Bn+1). The

sets Ru
n for different u ∈ Bn+1 should be pairwise disjoint and have equal cardi-

nalities.
We let l0 be m, R0

0 be the set of even permutations over Σm, and R1
0 be the

set of odd permutations over Σm.
Suppose ln and the sets Ru

n are already defined so that the sets Ru
n are

pairwise disjoint and have equal cardinalities. Denote Ov
n = Rv0

n ∪ Rv1
n for

all v ∈ Bn. We say that the string u is a complete concatenation of strings for
a finite set M if u = v1v2 . . . vk is a concatenation of strings from M such that
for every two strings w1, w2 ∈M there exists an index i < k such that w1 = vi

and w2 = vi+1. Let kn+1 be a minimal k such that there exists a complete
concatenation of strings from Ov

n (since Ov
n have equal cardinalities, kn does

not depend on u). Let ln+1 = ln(kn+1 + 2).
For u ∈ Bn+2 we define Ru

n+1 as follows. Let ε, δ be the last two characters
of u so that u = u′εδ. Let

Ru
n+1 = {v1 . . . vkn+1

w1w2 |

v1 . . . vkn+1
is a complete concatenation from Ou′

n , w1 ∈ Ru′ε
n , w2 ∈ Ru′δ

n }

It is obvious that Ru
n+1 are pairwise disjoint and have equal cardinalities.

We will name Ov
n zones of rank n and Ru

n regions of rank n. So, Rvε
n is a region

of zone Ov
n when ε ∈ B. We thus have 2n pairwise disjoint zones of rank n, each

being a disjoint union of two regions of rank n.
Let τ = v0, v1, . . . be a sequence of B-strings such that |un| = n. Let Aτ

n =
Ovn

n , and let Bτ
n be Aτ

nA
τ
n, a set of pairwise concatenations of strings from Aτ

n.
We prove that 〈ln, A

τ
n, B

τ
n〉 is a pseudoscheme.

Lemma 25. For any collapse h, for any n and any string u1, u2 of length n+
1 there exists a bijection φ : Ru1

n → Ru2
n such that ∀x ∈ Ru1

n h(x) = h(φ(x)) (in
particular, h(Ru1

n ) = h(Ru2
n )).

Proof. We use induction over n.
Let n = 0. If u1 = u2, let φ be an identity function. If u1 = 0, u2 = 1,

we take i, j ∈ Σm such that h(i) = h(j) (such i and j do exist because h is
a collapse). Define φ by the equalities φ(i) = j, φ(j) = i, and φ(k) = k for
k 6= i, j.

Suppose the statement for n is already proved. Then for any u1, u2 ∈ Bn

there exists a bijection φ : Ou1
n → Ou2

n that preserves h. We construct a bijection
for any two regions of rank n+ 1. Let u1ε1δ1 and u2ε2δ2 be any two strings of
length n + 2, where |ui| = n, εi, δi ∈ B. Then every string in Ru1ε1δ1

n+1 can be
represented as x = v1 . . . vkn+1

w1w2 where vi ∈ Ou1
n , w1 ∈ Ru1ε1

n , w2 ∈ Ru1δ1
n .

By the induction hypothesis, there exist bijections φ1 : Ou1
n → Ou2

n , φ2 : Ru1ε1
n →

Ru2ε2
n , and φ3 : Ru1δ1

n → Ru2δ2
n , that preserve h. Let

φ(x) = φ1(v1)φ1(v2) . . . φ1(vkn+1
)φ2(w1)φ3(w2).
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Then φ1(v1) . . . φ1(vkn+1
) is a complete concatenation of strings in Ou2

n , thus

φ(x) ∈ Ru2ε2δ2

n+1 . Obviously, φ is a bijection from Ru1ε1δ1

n+1 to Ru2ε2δ2

n+1 .
Since φ1, φ2 and φ3 preserve h, so does φ. 2

It follows from this Lemma that the images of all zones under any collapse h
coincide, i.e. h(Ou1

n ) = h(Ou2
n ). It is now obvious that 〈ln, h(Aτ

n), h(Bτ
n)〉 is a

scheme for any τ and h.
Now we construct a sequence of B-strings τ = v0, v1, . . . and non-almost

periodic sequence α such that for any collapse h the scheme 〈ln, h(Aτ
n), h(Bτ

n)〉
effectively generates h(α). Let

vn =

{
0n, if n is even,
10n−1, if n is odd.

For every n ∈ N choose a string xn from Aτ
n = Ovn

n and let

α = x0x1 . . . xn . . . .

Denote the starting index of xn by sn (so, xn = α[sn, sn + ln − 1]).
Let us prove that α is not almost periodic. Suppose it is almost periodic.
It is easy to check that for every ε ∈ B every string in Ouε

n+1 is a concate-
nation of strings from Ou

n. So, for every n the string xn can be regarded as a
concatenation of strings from either O00...0

n′ or O10...0
n′ for any n′ < n (the choice

depends on the evenness of n).
Every string in O10...0

n is a concatenation of strings from O1
1 (let us call them

blocks). For n ≥ 2 every string from O10...0
n contains every string from O1

1 among
its blocks. So, every string from O1

1 has infinitely many occurrences in α.
Consider one of these occurrences, say, [i, j]. Call this occurrence nice if i ≡

s1 (mod l1). We can see that every occurrence of a string from O1
1 as a block

in some xn is always nice. So, every string from O1
1 has infinitely many nice

occurrences. Fix one such string y. It has the form

y = v1 . . . vk1
w1w2

where vj ∈ OΛ
0 , w1 ∈ R1

0, w2 ∈ R0
0 ∪ R1

0 = OΛ
0 . Using an argument analogous

to that in the proof of Lemma 11, we can show that y has a nice occurrence
on every sufficiently long segment of α. So, the string y has a nice occurrence
within every xn for a sufficiently large n, that is, there is a block in xn equal
to y. Let us show that y cannot be a block of xn for even n. Since for even n
the string xn is in O00...0

n , all the blocks are from O0
1 , that is, they have the form

t11 . . . t
1
k1
r11r

1
2

where tj ∈ OΛ
0 , r1 ∈ R0

0, r2 ∈ R0
0 ∪ R1

0 = OΛ
0 . Hence we have w1 = r1 which

obviously is a contradiction since w1 is an odd permutation and r1 is an even
one.

Part (a) of Theorem 24 is proved.
Now turn to the part (b). Fix some enumerable, but undecidable set E ⊂ N.

Define a sequence of B-strings vn as follows. Let |vn| = n and let vn(i) = 1 if
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the number i is generated in less than n steps of enumerating E. Then vn is a
computable sequence having the following property: for every i there exists L
such that for all n ≥ L vn(i) = E(i), but L cannot be computed given i.
Let An = Ovn

n , and Bn = AnAn. Then, as it was shown above, 〈ln, An, Bn〉 is
a pseudoscheme. Let (as above)

α = x0x1 . . . xn . . .

where xn is lexicographically first string in An. It is clear that α is computable.
For any collapse h h(α) is effectively generated by 〈ln, h(An), h(Bn)〉, so h(α) is
effectively almost periodic.

Let us show that α is almost periodic. Let en be n’th prefix of a characteristic
sequence of E, that is, |en| = n, and en(i) = E(i). Take Cn = Oen

n and Dn =
CnCn. Then 〈ln, Cn, Dn〉 is a scheme because en+1 = enE(n) and every string

in O
enE(n)
n+1 is a complete concatenation of strings from Oen

n . Let us prove that α
is generated by the scheme 〈ln, Cn, Dn〉. Take n ∈ N. We need to find m ∈ N
such that for all j ∈ N α[m+ jln,m+ (j + 2)ln − 1] ∈ Dn. There exists M ≥ n
such that for all i ≥M vi starts with en. Hence xi is a concatenation of strings
fromOen

n = Cn. It follows that for all j ∈ N we have α[m+jln,m+(j+1)ln−1] ∈
Cn, and α[m+ jln,m+ (j + 2)ln − 1] ∈ Dn for some m.

Let us prove that α is not effectively almost periodic. Assume α is effectively
almost periodic. We will obtain that E is decidable then. This will easily follow
from this property of α: en is a unique string such that every string from Oen

n

has infinitely many nice occurrences in α. (Here the word “nice” means that
the start position of the occurrence is equal to sn modulo ln.) Let us prove this
property.

For a sufficiently large i the string vi starts with en, so xi contains every
string from Oen

n , and so α has infinitely many nice occurrences of these strings.
If some w 6= en, denote by j the number of the first character where they
differ. Then for a sufficiently large i the string vi starts with en[0, j], and xi is

a concatenation of strings from O
en[0,j]
j+1 . Using the same technique we used for

proving the part (a), one can prove that a string from O
w[0,j]
j+1 cannot be a nice

substring of a concatenation of strings from O
en[0,j]
j+1 . Hence, α contains only a

finite number of nice occurrences of strings from Ow
n .

The Theorems 22 and 23 follow from the Theorem 24.
Let us construct a sequence α in the alphabet Bm+1 that is not almost

periodic, but becomes effectively almost periodic under every collapse. Let αi

be i’th projection in the cross product B×B×. . .×B, having α = α1×. . .×αm+1.
Then the cross product of everym sequences from the set {α1, . . . , αm+1} results
from a collapse of α, and is effectively almost periodic.

Theorem 23 is proved in a similar way. 2
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6 Almost periodic sequences and Kolmogorov

complexity

In this section we study the connection between almost periodicity and Kol-
mogorov complexity. For the definition see [15]. Here we consider simple com-
plexity K(x).

Let α be an almost periodic sequence and αn its prefix of length n. We shall
study K(αn) as a function of n.

Consider the following simple example: divide a circle into k arcs with k
points (with computable coordinates). Take a real number φ such that φ

2π
is

irrational. Define α(i) as the number of arc containing the point iφ. (Note
that iφ can be one of the delimiting points. However, this can happen only
a finite number of times. So, we can think that this does not happen at all.)
Then, the constructed sequence α is almost periodic according to Theorem 15.

Theorem 26. For the constructed sequence α,

K(αn) ≤ O(log n)

Proof. Denote the division points by x1, . . . , xk. For every n mark every
point on the circle with the number of arc it will go to after being multiplied
by n. We will have nk arcs corresponding to the k arcs of initial picture. Call
them n-arcs. To tell what arc will contain nφ it is sufficient to know what n-arc
contains φ.

Now to describe the n’th prefix of α we can use the numbers of m-arcs
containing φ for all m ≤ n. To know all these numbers mark the boundaries

of all m-arcs for all m ≤ n. There are n(n+1)
2 k boundaries. They divide the

circle in n(n+1)
2 k pieces. We need to know the piece containing φ. To write its

number, we need O(log(n(n+1)
2 k)) bits.

The program that prints αn incorporates this number and the number n.
Let us describe how it works. It needs to calculate the picture of the bound-
aries. Since the coordinates x1, . . . , xk are computable, we can only estimate
the boundaries, and not calculate them precisely. So, for any two boundaries
the program estimates them (with higher and higher precision) until it under-
stands that one of them is larger than another. The only problem is that some
boundaries can be equal — in this case the algorithm will never stop. So, we
need to include the description of these cases in the algorithm. The collision
between xi1 and xi2 happens if for some integers a1, a2 and a3 we have

a1xi1 = a2xi2 + a3π.

For any i1 and i2 the triples (a1, a2, a3) form a subgroup in Z3. This subgroup
is generated by at most three vectors (for proof see [14]). So, the program will
also incorporate these vectors for all pairs (i1, i2). When it needs to know if
two particular boundaries coincide, it uses the corresponding vectors and gets
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the answer since the first-order theory of 〈Z,+〉 is decidable. The length of the
descriptions for the vectors is constant in n.

The length of the program is logn+ O(log(n(n+1)
2 k)) + O(1) (the last term

is the length of the invariant section). Since log(n(n+1)
2 k) ≤ 2 logn + log k, we

have
K(αn) ≤ O(log n).

The proof is complete. 2

For simplicity, we will stick to the alphabet B. It is evident that K(αn) ≤
n+O(1) (we can incorporate αn itself in the program). The following theorem
shows that this bound cannot be reached for an almost periodic sequence.

Theorem 27. For any almost periodic sequence α there exists a positive ε
such that

K(αn) < (1 − ε)n+ O(1)

Proof. First, prove that there exists a string of type I (occurring in α only
finitely many times). Either the string 1 or the string 0 belongs to type II.
We assume, without loss of generality, that this is the string 0. There exists a
number l such that every substring of α of length l contains at least one zero.
Thus, a string consisting of l+1 1’s occurs only finitely many times. Let u be a
string of minimal length that occurs in α only finitely many times. Choose an
index q such that there is no occurrence of u to the right of q. From now on,
we will consider only the portion of α to the right of q.

If |u| = 1 (which implies that α consists entirely of ones or zeroes), then
K(αn) ≤ O(log n), because αn is effectively determined only by n, and we can
incorporate n in the program using O(log n) bits.

Let u′ be a string resulting when we omit the last character in u. Assume
w.l.o.g. that we omitted 0, so u = u′0. We know that every occurrence of u′ is
followed by 1. The string u′1 occurs infinitely many times in α (because if it
had only finitely many occurrences, u′ would have had only finitely many occur-
rences, which contradicts the assumption that u is the shortest string occurring
only finitely many times). Hence there exists m such that every α’s substring
of length m contains at least one instance of u′1.

Let us show a “compression” algorithm that will encode αn using (1− ε)n+
O(1) bits. Divide αn into blocks in the following way: first block has length q
and is written directly; following blocks have lengthsm and are encoded; the last
block of length m′ less than m is also written directly. The encoding procedure
finds the first occurrence of u′1 in the block and writes the block replacing this
occurrence of u′1 with u′.

Now we need to show that this encoding does not lose information (i.e. the
original string can be effectively reconstructed) and that we can build a program
that outputs αn and has length less than (1 − ε)n+ O(1).

The decoding procedure is obvious. The first block of length q is just left
as it is. For every encoded block (it has length m − 1 because exactly one
occurrence of u′1 was replaced with u′) we find the first occurrence of u′ and
insert a 1 after it. Finally, the last incomplete block is also left as it is.
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Now let us calculate the length of the program to output αn. It will contain
the first and the last blocks of the encoded string, the string u, the number m,
and the encoded blocks. The length of the program excluding the encoded
blocks is bounded from above by a constant. In the remaining part for every m
characters in α we write only m− 1 bits. So, for n− q −m′ characters we will
need (n− q −m′)m−1

m
bits. Thus

K(αn) ≤ (n− q −m′)
m− 1

m
+ O(1) ≤ n

(
1 −

1

m

)
+ O(1).

This proves the theorem. 2

We will show that for every ε > 0 there exists a strongly almost periodic
sequence α such that K(αn) > n(1 − ε). This result is proved in the remaining
part of this section, namely,

Theorem 28. For any ε > 0 there exists a strongly almost periodic se-
quence α such that

K(αn) ≥ (1 − ε)n+ O(1)

for all n.
Actually, it is sufficient to prove this with O(log n) additional term. Indeed,

if we have done this, then by decreasing ε we get also O(1), since δn > C logn
for large n.

6.1 The construction

Let us build a scheme 〈ln, An〉 that will generate our sequence.
Define A0 to be the set of all strings of length l0. Let

An = {v1 . . . vkn
| vi ∈ An−1, ∀a ∈ An−1 ∃i : a = vi} ,

where kn = ln
ln−1

. The values for kn (and for ln, respectively) as well as for l0,

will be chosen later.
First, we prove the following Lemma:
Lemma 29. Let A be an alphabet. Denote by B the set of all strings of

length k that contain all characters in A. Then for any ε > 0, and sufficiently
large k the following holds:

|B| ≥ (1 − ε)|A|k.

Proof. Let us take a random k-character string in the alphabet A and
calculate the probability of it containing not all characters of A. It is composed
of |A| − 1 different characters, and

Pr(the string does not contain i’th character) =

(|A| − 1)k

|A|k
=

(
1 −

1

|A|

)|A| k
|A|

≤ 2e−
k

|A| .
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Making k very large, we easily obtain

Pr(the string does not contain i’th character) ≤
ε

|A|
,

and
Pr(the string contains not all characters) ≤ ε.

Hence, at least a (1− ε) fraction of strings in Ak are in B, so |B| ≥ (1− ε)|A|k.
2

The scheme is built in a way such that

|An| ≥ (1 − εn)|An−1|
kn .

We can achieve this due to the last Lemma for any values for εn. We will
determine these values later.

The sequence α that is generated by this scheme is constructed in the fol-
lowing way. Consider a set F of all sequences α such that

α[iln, (i+ 1)ln] ∈ An (1)

for all i, n.
Consider also a probabilistic distribution p on the space of all sequences in

the alphabet A that is uniformly distributed over the set F . The sequence that
has complex prefixes is chosen randomly with respect to p. According to the
Levin-Schnorr theorem (see [13]), if α is random with respect to p, then

KM(α[0, n]) ≥ − log p(Γα[0,n]) + O(1),

where Γα[0,n] is a cone at α[0, n], i.e. a set of all sequences β such that β[0, n] =
α[0, n], andKM is a Kolmogorov monotone complexity (see [15]). SinceKM(x) ≤
K(x)+O(log |x|), this gives us the desired result if we prove that − log p(Γα[0,n]) ≥
(1 − ε)n.

To prove this, we consider a sequence of distributions p0, p1, . . .. Let p0 be
a uniform distribution. Let pj be a distribution that is uniform over the set of
sequences satisfying the condition (1) for all i and all n ≤ j. Obviously pj → p
as j → ∞. First, let us consider the transition from pj−1 to pj .

We need to compute the change in probability of Γα[0,n]. To do so, we first
take n = lj and look at Γα[0,lj] under pj−1. Consider the sets Γx for |x| =
n. Some of them (those that correspond to x’s which do not conform to the
condition in (1)) have zero probability, while others’ probabilities are equal.
Under pj some of the sets Γx lose their probability due to the fact that their
x’s do not conform to the new condition, and the others’ probabilities increase
(but they are still equal among the sets with non-zero probabilities). Namely,
there were |Aj−1|kj strings that conformed to the conditions of step j − 1, and
only |Aj | strings that conform to the conditions of step j. Since

|Aj | ≥ (1 − εj)|Aj−1|
kj ,
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the amount of increase in probability is not more than 1
1−εj

.

If lj | n, then obviously the probability increases that amount for each block

of length lj , so the total amount is
(

1
1−εj

) n
lj .

Now consider the case when lj - n. Denote by t the least multiple of lj
larger than n. For any x the set Γx contains Γx′ for each x′ that continues x
and has the length of t. Under pj some of these sets lose their probability and

some increase, but not more than
(

1
1−εj

) t
lj times. So, the amount of increase

in probability of Γx is not more than

(
1

1 − εj

) t
lj

=

(
1

1 − εj

)l n
lj

m
.

Combining the results, and taking the product over j = 0, . . ., we obtain

p∞(Γα[0,n]) ≤ p0(Γα[0,n])

(
1

1 − ε1

)l n
l1

m
. . .

(
1

1 − εj

)l n
lj

m
. . . .

Since
⌈

n
lj

⌉
≤ n

lj
+ 1, the bound can be rewritten as

(
1

1 − ε1

)
. . .

(
1

1 − εj

)
. . .

︸ ︷︷ ︸
C

×

((
1

1 − ε1

) 1
l1

. . .

(
1

1 − εi

) 1
lj

. . .

)n

︸ ︷︷ ︸
Dn

,

where C and D are constant factors. Here, C can be made deliberately close
to 1 by choosing values for εj , and D ≤ C since 1

1−εj
> 1 and 1

lj
< 1. So,

p∞(Γα[0,n]) ≤ p0(Γα[0,n])C
n+1 = 2−nCn+1 = 2−n+(n+1) log C ,

and thus

− log p∞(Γα[0,n]) ≥ n− (n+ 1) logC ≥ n(1 − 2 logC).

Since C can be made deliberately close to 1, logC can be made deliberately
small, and we finally obtain

KM(α[0, n]) ≥ − log p∞(Γα[0,n]) + O(1) ≥ n(1 − ε)

for any ε > 0, which is exactly what we wanted.
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