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Abstract

In this paper we construct a structureR that is a “finite
version” of the semilattice of Turing degrees. Its elements
are strings (technically, sequences of strings) andx � y
means thatK(xjy) = (conditional Kolmogorov complexity
of x relative toy) is small.

We construct two elements inR that do not have greatest
lower bound. We give a series of examples that show how
natural algebraic constructions give two elements that have
lower bound0 (minimal element) but significant mutual in-
formation. (A first example of that kind was constructed by
Gács–K̈orner [4] using completely different technique.)

We define a notion of “complexity profile” of the pair of
elements ofR and give (exact) upper and lower bounds for
it in a particular case.

1. Introduction

Let� and� be two infinite binary sequences. We say that
� is Turing reducible to� if there exists a Turing machine
M that produces� on its output tape when� is provided on
input tape. Turing reducibility is reflexive and transitive, so
we get a preorder on the set of all infinite binary sequences
(this preorder is usually denoted by�T ). The equivalence
classes((x � y) , (x �T y) ^ (y �T x)) form an upper
semilattice whose elements are called Turing degrees. This
semilattice is well studied in recursion theory (see, e.g., [6])
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Now let us replace infinite sequences� and� by finite
binary stringsa and b. Of course, for anya and b there
exists a Turing machineM that producesa from b. So to
get a non-trivial relation we have to put some restrictions on
M . It is natural to require thatM is simple (its program is
short compared tox andy). Here the notion of Kolmogorov
complexity comes into play. By definition, the conditional
Kolmogorov complexityK(ajb) is the length of the shortest
program that producesa havingb as an input. Now we can
define the relationa �c b asK(ajb) � c (herea andb are
binary strings,c is a number).

If c is a constant, this relation does not have good prop-
erties (for example, it is not transitive). This relation also
depends on a specific programming language used in the
definition of Kolmogorov complexity. To overcome this dif-
ficulties, we use the standard trick and consider the asymp-
totic behavior of the complexity for sequences of strings.

Let x = x1; x2; : : : be a sequence of binary strings. We
call it regular if length ofxi is polynomially bounded, i.e.,
if jxij � cik for somec; k and for alli. LetR denote the set
of all regular sequences. We say that regular sequencex is
simpleconditional to a regular sequencey if

K(xijyi) = O(log i)

and writex � y. The�-relation is a preorder defined on
R. The relation(x � y) ^ (y � x) is an equivalence rela-
tion. Equivalence classes form a partially ordered set which
(for the same reasons as in the case of Turing degrees) is
an upper semilattice (any two elements have a least upper
bound).

We prove (section 2) that this set is not a lower semilat-
tice: there are two elements that do not have greatest lower



bound. Note that the set of Turing degrees is also not a
lower semilattice (see, e.g., [6]), but our proof goes in a
completely different way.

The semilatticeR is useful for analyzing the notion of
common information. This notion was introduced by G´acs
and Körner [4] in the context of Shannon information the-
ory. They also described a similar notion in the algorithmic
theory but do not give a precise definition. We give such a
definition in terms of the semilatticeR (section 3).

The main result of [4] is an example of two objects
whose “common information” is far less than their “mutual
information”; Gács and K¨orner provide such an example
in context of Shannon information theory and mention that
it could be reformulated for algorithmic information the-
ory. This example was analyzed in [1] where an alternative
proof for some special case of G´acs–Körner example was
provided.

A completely different example of two strings whose
common information is much less than their mutual infor-
mation was given in [2]; for details see [3].

In this paper we develop a third approach to the construc-
tion of such pairs of strings. It is based on the geometry of
finite fields. Several examples of this type are given in Sec-
tion 4.

The amount of common information does not determine
completely how much the stringsa andb have in common.
What reflects this better is the “complexity profile ofa and
b”, defined as the set of triples(u; v; w) such thatK(c) �
u, K(ajc) � v, andK(bjc) � w for some stringc. We
use the method of [3] to find exact upper and lower bounds
for complexity profile (Section 5). (Technically we have
to speak not about stringsa andb but about sequences of
stringsa0; a1; : : : andb0; b1; : : : such that complexity ofai
andbi is proportional toi; see Section 5 for details.)

2. The upper semi-latticeR

Let us recall the definition of conditional Kolmogorov
complexity. LetU be a computable function of two ar-
guments; arguments and values are binary strings. (In-
formally, U is an interpreter of some programming lan-
guage, the first argument is a program and the second
one is program’s input.) Let us defineKU (xjy) as
minfjpj : U(p; y) = xg; herejpj stands for the length ofp.
There exists an optimalU such thatKU � KV +O(1) for
any other computable functionV . We fix some optimalU
and callKU (xjy) theconditional complexityof x wheny is
known.

The unconditionalKolmogorov complexity can be de-
fined asK(xj�) where� is an empty string. It turns out
(see, e.g., [5]) that conditional complexity can be expressed
in terms of unconditional complexity. Indeed, let us fix
some computable bijectionp; q 7! hp; qi between pairs of

strings and strings. Then

K(hp; qi) = K(p) +K(qjp) +O(log(jpj+ jqj))

A sequencex = x1; x2; : : : of binary strings is called
regular if there exist constantsc andk such thatjxij � cik

for all i. The set of all regular sequences is denoted byR.
We define a preorder onR saying thatx = x1; x2 : : : pre-
cedesy = y1; y2; : : : if there exists a constantc such that
K(xijyi) � c log i for all i. (Let us agree thatlogx means
log2(x+ 2) so logx is positive for allx � 0 and we do not
need to consider the casei = 1 separately.)

The O-term guarantees that the definition does not
change if we replace the optimal functionU used in the def-
inition of Kolmogorov complexity by another optimal func-
tion. Moreover, since we useO(log i) (and notO(1)), the
definition remains the same if we replace conditional Kol-
mogorov complexity defined as above by prefix complexity
(see [5] for the definition). Indeed, these complexities differ
only byO(logn) for strings of lengthn. Since elements of
R are regular, this difference is absorbed byO(log i)-term.

Two elementsx andy areequivalentif x � y andy �
x. The equivalence classes form a partially ordered set. We
denote this set byR.

Proposition 1 The setR is an upper semilattice: any two
elements have a least upper bound.

Proof. By definition, z 2 R is a least upper bound of
x;y 2 R if

� z is an upper bound forx andy, i.e.,x � z andy �
z;

� z � u for any other upper boundu of x andy.

Let x = x1; x2; : : : andy = y1; y2; : : : be any two ele-
ments ofR. Consider the sequencez = z1; z2; : : : where
zi = hxi; yii. (Herep; q 7! hp; qi denotes a computable
bijection between pairs of strings and strings.) It is easy to
see thatz is a least upper bound forx andy.
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Theorem 2 The setR is not a lower semilattice: there exist
two elementsx and y that do not have a greatest lower
bound.

Proof. To prove the theorem we have to construct two se-
quencesx andy that have no greatest lower bound. Assume
somen is fixed; let us explain hown-th terms ofx andy are
constructed. Consider2n binary strings of lengthn denoted
by

b01; b
0
2; : : : ; b

0
n; b

1
1; b

1
2; : : : ; b

1
n;

and one more string of lengthn denoted by

" = "1 : : : "n



("i are individual bits). We want all these strings to be ran-
dom and independent in the following sense: its concatena-
tion is a string of length2n2 + n which is incompressible
(its Kolmogorov complexity is equal to its length up toO(1)
additive term). Such strings do exist, see [5]. Now consider
two strings

x = b01b
0
2 : : : b

0
nb

1
1b

1
2 : : : b

1
n

and
y = b"11 b

"2
2 : : : b"nn

Stringsx andy aren-th terms of the sequencesx andy.
Let us mention that the pairhx; yi contains the same in-

formation as the concatenation string of length2n2 + n
mentioned above, so the complexity of the pairhx; yi is
2n2 + n+O(1).

In the sequel we use the following terminology. Strings
bei (for e = 0; 1 andi = 1; : : : ; n) are calledblocks. We
have2n blocks; each block has lengthn. All the blocksb"ii
that are included iny are calledselectedblocks; all other
blocksb1�"ii are calledomittedblocks. Our constructions
starts withn pairs of blocks and a string" that says which
block is selected in each pair. The stringx is a concatena-
tion of all 2n blocks; the stringy is a concatenation ofn
selected blocks.

Now the proof goes as follows. Each selected block is
simple relative to bothx andy since it is a substring of both
x andy and position and length information could be en-
coded byO(logn) bits. (When we say that a stringu is sim-
ple relative to a stringv we mean thatK(ujv) = O(logn).)

Therefore, ifz is the greatest lower bound ofx andy,
any selected block is simple relative toz. On the other hand,
any omitted block could not be simple relative toz. Indeed,
assume that some omitted blockb is simple relative toz.
Thenb is simple relative toy sincez is simple relative to
y by assumption. Then to restorex from y it is enough to
specify the string" andn� 1 omitted blocks different from
b, i.e.,n2 bits, and the complexity of pairhx; yi is at most
2n2+O(logn) (n2 bits iny andn2 bits to specifyx wheny
in known). This contradiction shows that no omitted block
is simple relative toz.

Now let us show thaty is simple relative tox. Indeed,
to find y whenx is known we need only to distinguish be-
tween omitted and selected blocks in each pair of blocks.
We may assume thatz is known since it is simple relative to
x. Then we may enumerate all the objects that have small
complexity relative toz until we findn blocks (we have the
list of all blocks since we knowx). Thesen blocks will be
(as shown above) exactly the selected blocks, and we are
done. Soy is simple relative tox. But this is impossible,
because in this case the pairhx; yi will have complexity at
most2n2 +O(logn) (instead of2n2 + n).

In the argument above we were quite vague aboutO-
notation, so let us repeat the same argument more formally.

The construction described above is performed for eachn;
to indicate the dependence onn let us writex(n) instead of
x, b0i (n) instead ofb0i , etc. Assume thatz = z(0); z(1); : : :
is a common lower bound ofx andy. The first step in the
proof is the following

Lemma 1 There exists some constantc such that

K(bjz(n)) � c logn

for anyn and for any blockb that was selected atn-th step
of the construction.(There weren selected blocks atn-th
step; each of them has lengthn.)

Indeed, consider all the blocksb that were selected atn-
th step; letb(n) be one of them for which the complexity
K(bjz(n)) is maximal. The sequenceb = b(1); b(2); : : :
belongs toR. It is easy to see thatb � x and thatb � y,
becauseb(n) is a substring of bothx(n) andy(n). There-
fore,b � z, sincez is the greatest lower bound ofx andy.
By definition,

K(b(n)jz(n)) � c logn

for some constantc; the same inequality is valid for all other
selected blocksb sinceb(n) has maximal complexity (rela-
tive toz(n)) among them. Lemma 1 is proved.

Lemma 2 There exists some constantc such that

K(bjy(n)) � n� c logn

for anyn and for any blockb that was omitted atn-th step
of the construction.

Proof. As we have said, the stringx(n) can be recon-
structed from the stringy(n), the string"(n), some omitted
blockb, its number and the concatenation of all other omit-
ted blocks. Here all the information exceptb has bit size
n2 + n+ (n2 � n) +O(logn) = 2n2 +O(logn), and this
information includesy(n). Therefore, the complexity of
hx(n); y(n)i does not exceedK(bjy(n))+2n2+O(logn).
On the other hand, the complexity ofhx(n); y(n)i is 2n2 +
n + O(1). Comparing the two inequalities, we see that
K(bjy(n)) � n�O(logn). Lemma 2 is proved.

Lemma 3 There exists some constantc such that

K(bjz(n)) � n� c logn

for anyn and for any blockb that was omitted atn-th step
of the construction.

Indeed, recall thatK(z(n)jy(n)) = O(logn) by our
assumption; note also thatK(bjy(n)) � K(bjz(n)) +
K(z(n)jy(n)) + O(logn). Hence, n � O(logn) �
K(bjy(n)) � K(bjz(n)) + K(z(n)jy(n)) + O(logn) =
K(bjz(n)) +O(logn). Lemma 3 is proved.



Lemma 4

K("(n)jx(n)) = O(log n):

Proof. Lemma 1 implies that for bign the value
K(bjz(n)) is less thann=2 for any selected blockb;
Lemma 3 implies that for bign the valueK(bjz(n)) is big-
ger thann=2 for any omitted blockb. Therefore, knowing
x(n) andz(n) we can reconstruct the list of selected blocks
just enumerating the stringss such thatK(sjz(n)) < n=2
until n blocks fromx(n) appear. SinceK(z(n)jx(n)) =
O(logn) by assumption, we need onlyO(logn) additional
bits to reconstruct"(n) from x(n). Lemma 4 is proved.

Sincey(n) is determined byx(n) and"(n), we conclude
that K(hx(n); y(n)i) is 2n2 + O(log n) but it should be
2n2 + n+ O(1). The contradiction shows thatx andy do
not have a greater lower bound.
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Let us mention some other properties of the semilattice
R.

1. The operations “infinum” and “supremum” do not sat-
isfy the distributive law even when they are defined. Indeed,
consider sequencesa andbwherean andbn are random in-
dependent strings of lengthn. Let cn = an � bn (bitwise
addition modulo2). Then

sup(inf(a; b); c) 6= inf(sup(a; c); sup(b; c);

sinceinf(a; b) = � (where� is the minimal element of
the semilattice), so the left-hand side is equal toc while the
right-hand side is equal tosup(a; b).

Moreover,

inf(sup(a; b); c) 6= sup(inf(a; c); inf(b; c);

since left-hand side is equal toc and right-hand side is equal
to�.

2. For any two elementsx and y in R there exists
their difference, i.e., a sequencez such thatsup(y; z) =
sup(y;x) andinf(y; z) = �. (Indeed, letzn be a shortest
program that computesxn givenyn.)

Difference is not defined uniquely; for instance, ifxn
andyn be random independent strings of lengthn, bothxn
andxn � yn are differences ofxn andyn.

The semilatticeR is only one of the possible refinements
of the intuitive notion “x is simple relative toy”. Here is an-
other possibility. Let us fix a functionf(n) = o(n); assume
thatx andy are sequences of strings such thatjxnj = O(n),
jynj = O(n). Definex �f y asK(xnjyn) = O(f(n)).
One can show that this definition gives a semilattice with
similar property (no greatest lower bound; however, the
proof is more difficult and is omitted).

3. Common and mutual information

The semilatticeR is a useful tool to analyze the amount
of common information shared by two strings.

Let x and y be two strings. Bymutual information
in x and y we mean the valueI(x : y) = K(x) +
K(y) � K(hx; yi). (SometimesI(x : y) is defined as
K(y)�K(yjx), but these quantities differ only byO(logn)
for strings of length at mostn, see [5].)

Theorem 3 Let x = x1; x2; : : : and y = y1; y2; : : : be
elements ofR.

(a) If z = z1; z2; : : : is a lower bound ofx andy then

K(zn) � I(xn : yn) +O(logn): (1)

(b) If z = z1; z2; : : : is a lower bound ofx andy and

K(zn) = I(xn : yn) +O(logn): (2)

thenz is the greatest lower bound ofx andy in R.

Proof. (a) Sincez � x,

K(hxn; zni) = K(xn) +K(znjxn) = K(xn) +O(log n):

So

K(xn) = K(hxn; zni) +O(logn) =

= K(zn) +K(xnjzn) +O(logn): (3)

Similarly

K(yn) = K(hyn; zni) +O(logn) =

K(zn) +K(ynjzn) +O(logn): (4)

On the other hand,

K(hxn; yni) � K(zn) +K(xnjzn) +
+K(ynjzn) +O(logn): (5)

since we can reconstruct the pairhxn; yni from zn and pro-
grams that transformzn intoxn andyn. Combining the last
three inequalities [(3)+(4)�(5)], we get the statement (a).

Let us prove the part (b) now. Assume thatz is a lower
bound forx andy and the inequality (1) turns into equality
(2). Letz0 be any other lower bound forx andy. Consider
the sequencez00 defined asz00n = hzn; z0ni. It is the least
upper bound ofz andz0 (Proposition 1). Thereforez00 � x

andz00 � y. Applying (a) toz00 we see that

K(z00n) = K(hzn; z0ni) � I(xn : yn) +O(log n)

By assumption,I(xn : yn) = K(zn) + O(logn), so
K(hzn; z0ni) � K(zn) + O(logn). On the other hand,
K(hzn; z0ni) = K(zn) + K(z0njzn) + O(logn), therefore
K(z0njzn) � O(logn) andz0 � z in R.

2

If two sequencesx = x1; x2; : : : andy = y1; y2; : : :
have the greatest lower boundz = z1; z2; : : : , one may
call K(zn) “the amount of common information in strings
xn andyn”. However, this is not a good definition since
the good one should use only stringsxn andyn but not the
whole sequencesx andy.



4. Examples where common information is less
than mutual information

Informally speaking, stringsa andb haveu-bit common
informationc if K(c) = u, K(cja) � 0, andK(cjb) � 0.
We know (Theorem 3(a)) that the amount of common in-
formation in two strings is not larger than the mutual in-
formation of this strings. A natural related question is the
following one: can common information be far less than
mutual information?

This question was positively answered by G´acs and
Körner [4]. They found out that there are pairs of strings
a andb such thatI(a : b) is big but nevertheless any string
c that is simple relative to botha andb (bothK(cja) and
K(cjb) are small) is simple (has smallK(c)).

Their construction uses ideas from Shannon information
theory. Another construction was suggested in [2] (see [3]
for details). Here we present a third way to construct exam-
ples of that kind.

Consider a finite fieldFn of cardinalityd close to2n.
(Any field of size 2n+O(1) will work, so we may use
the field of cardinality2n or the fieldZ=qZ where q is
a prime number between2n and 2n+1.) Consider three-
dimensional vector space overFn. Any non-zero vector
(f1; f2; f3) generates a line (by “line” we mean a line go-
ing through0, i.e., one-dimensional subspace). Two lines
generated by(f1; f2; f3) and(g1; g2; g3) are called orthog-
onal if f1g1 + f2g2 + f3g3 = 0. Now consider two random
orthogonal linesa andb (i.e. pair of two orthogonal lines
ha; bi which has the greatest possible complexity. We claim
thatI(a : b) is significant but there is no stringc which is
simple relative to botha andb (unlessc is simple).

More precisely, consider the setO = fha; bi :
a andb are orthogonal linesg. This set containsd3 + o(d3)
elements (there ared2+o(d2) lines and each line is orthog-
onal tod + o(d) lines). Therefore,O contains a pairha; bi
whose complexity islog(d3) + O(1) = 3n + O(1). (We
assume that elements ofFn are encoded by binary strings
of lengthn + O(1), so we can speak about complexities.)
Note thatK(a) � 2n + O(log n) since there are about
22n lines; moreover,K(bja) � n + O(logn) sinceb is
one of 2n lines orthogonal toA. Recalling the inequal-
ity K(ha; bi) � K(a) +K(bja) + O(log n), we conclude
thatK(a) = 2n + O(log n) andK(bja) = n + O(logn).
For similar reasonsK(b) = 2n + O(log n) andK(ajb) =
n+O(logn). Therefore,I(a : b) = n+O(log n).

Theorem 4 Let han; bni be a random pair of orthogonal
lines in the three-dimensional space overFn. For any se-
quence of stringscn

K(cn) � 2K(cnjan) + 2K(cnjbn) +O(log n)

assuming thatcn has polynomial(in n) length. [The con-
stant inO(logn)-notation does not depend onn.]

This theorem implies that sequencesa = a1; a2; : : :
andb = b1; b2; : : : have� = �;�; : : : as their greatest
lower bound. (Here� denotes an empty string.) Indeed, if
K(cnjan) = O(logn) andK(cnjbn) = O(logn) for some
sequencec = c1; c2; : : : , thenK(cn) = O(logn) accord-
ing to Theorem 4.

Proof. The proof of Theorem 4 is based on a simple com-
binatorial observation.

Lemma 5 Consider a bipartite graph withk vertices
1; : : : ; k on the left andl vertices1; : : : ; l on the right. As-
sume that this graph does not contain cycles of length4.
Then the following bound for the number of edgesjEj is
valid (we assume thatk � l):

� k �
p
l) jEj � 2l;

� k � p
l) jEj � 2k

p
l:

Indeed, for each elementv on the left consider the setNv

of its neighbors on the right; letnv be the cardinality ofNv.
The intersectionNv \ Nw (for v 6= w) contains at most1
element, otherwise we get a cycle of length4. Assume that
k � p

l. Consider the union of allNv; it has at least

n1 + n2 + : : :+ nk �
X
i<j

jNi \Nj j

elements. The number of pairshi; ji is less thatk2 � l and
the union has at mostl elements, therefore

jEj = n1 + n2 + : : :+ nk < 2l

The first statement is proved. It implies that fork =
p
l

the average number of neighbors for vertices on the left is
at most2

p
l. We use this observation to prove the second

part of the lemma.
Let k � p

l. Consider
p
l vertices on the left having

maximal neighborhoods and delete all other vertices on the
left; this makes the average number of neighbors bigger.
But we know that it does not exceed2

p
l. The same is true

for the initial graph, thereforejEj � k � 2pl. Lemma 5 is
proved.

This lemma will be applied to a bipartite graph whose
vertices (both on the left and on the right) are lines; edges
connect pairs of orthogonal lines. It is easy to see that this
graph does not contain cycles of length4 (if a ? b ?
c ? d ? a thena; c andb; d generate two orthogonal2-
dimensional subspaces in a3-dimensional space).

Now we are ready to prove Theorem 4. As we know,
K(a) = K(b) = 2n andK(ha; bi) = 3n (from now we
omit O(logn)-terms for brevity). LetK(cja) = p and
K(cjb) = q; we may assume thatp � q. We want to get an



upper bound form = K(c). First, let us computeK(ajc)
andK(bjc):

K(ajc) = K(ha; ci)�K(c) =

= K(a) +K(cja)�K(c) = 2n+ p�m:

Similarly,K(bjc) = 2n+ q �m. Consider the setP of all
lines whose complexity relative toc does not exceed2n +
p�m; this set contains linea and has cardinality22n+p�m

(up to a polynomial inn factor). Similarly we get a set
Q that contains lines whose complexity relative toc does
not exceed2n + q �m; this set has cardinality22n+q�m.
Consider a bipartite graph whose edges connect orthogonal
lines fromP andQ. This graph does not have4-cycles, so
the number of edgesjEj does not exceed

22n+q�m if (2n+ p�m) � 2n+ q �m

2
;

22n+p�m �
p
22n+q�m if (2n+ p�m) � 2n+ q �m

2
:

On the other hand, the pairha; bi represents one of the edges
of that graph. Ifc is known, we can enumerateP ,Q andE,
so the pairha; bi may be described by its number inE and
3n = K(ha; bi) � K(c) + log jEj. Therefore, the two
bounds forjEj imply

3n � m+ (2n+ q �m)) n � q

(the first one) and

3n � m+(2n+ p�m) +
1

2
(2n+ q�m)) m � 2p+ q

(the second one). We have to prove thatm � 2p+2q (recall
that logarithmic terms are omitted). In the second case it
is evident; in the first case one should note thatK(c) �
K(cja) +K(a) � p+ 2n � p+ 2q � 2p+ 2q.

2

Remark. The same example may be reformulated
in several ways. Replacing lineb by the orthogonal
plane b?, we may say thatha; bi is a random pair
hline a; planeb going throughai. We may also switch from
projective plane to affine plane and say thatha; bi is a
random pairhpointa on the affine plane, lineb that goes
throughai, etc.

There are several other examples of pairs having no com-
mon information. Here are two of them:

Theorem 5 (a) Let han; bni be a random pair of orthogo-
nal lines in four-dimensional space overFn. For any se-
quence of stringscn

K(cn) � 3K(cnjan) + 3K(cnjbn) +O(log n)

assuming thatcn has polynomial(in n) length.
(b) The same is true ifhan; bni is a random pair of in-

tersecting affine lines (one-dimensional affine subspaces) in
three-dimensional affine space overFn.

Here the same argument (using Lemma 5) cannot be applied
directly, because now graph may have4-cycles. However,
the counting argument can be applied after an appropriate
modification, because the intersectionNv \ Nw is small
(only few lines are orthogonal to both linesv andw; only
few affine lines intersect two given affine lines). (We omit
the details.)

Let us note that in these examples somecn still have
more information aboutan andbn than one could expect.
For example, if in (b) we consider the intersection point
pn of an and bn, thenK(pn) � 3n, K(anjp) � 2n,
K(bnjpn) � 2n. There are somea0n andb0n with the same
complexities (K(a0n) � 4n, K(b0n) � 4n, K(ha0n; b0ni) �
7n) for which there is nopn with similar properties.

Remarks. (1) Instead of intersection point we could con-
sider two-dimensional affine subspace that contains both
lines.

(2) For (a) one also can findp that contain more in-
formation aboutan and bn than one could expect. (The
way to construct such apn was pointed by Finkelberg and
Bezrukawnikov.)

This effect (somec contains more information abouta
andb than one could expect) is analyzed in the next section.

5. More about common information

Let us reformulate our informal definition of common
information. We say that stringsx andy haveu-bit com-
mon informationz if K(z) � u, K(xjz) � K(x) � u,
andK(yjz) � K(y) � u. (It is easy to see that all three
inequalities in fact are equalities in that case.)

The question whether suchz exists is a special case of
a more general question: we may ask for givenu; v; w
whether there is a stringz such thatK(z) � u,K(xjz) � v,
andK(yjz) � w. The set of all tripleshu; v; wi for which
such ac exists could be considered as “complexity profile”
of the pairx; y.

Technically speaking, we should consider sequences of
strings instead of individual strings. Letx = x1; x2; : : :
andy = y1; y2; : : : be two sequences such thatjxnj =
O(n) and jynj = O(n). (Only sequences satisfying these
conditions will be considered in this section.) A triple of
reals(u; v; w) is calledx;y-admissible, if there exists a se-
quencez = z1; z2; : : : such that

K(zn) � un+O(logn);

K(xnjzn) � vn+O(logn); (6)

K(ynjzn) � wn+O(logn):

The set of allx;y-admissible triples is denoted byMx;y .
The larger isMx;y the more informationx andy share.

Here is a trivial example: assume thatxn is a random



string of lengthn andyn = xn. Then

Mx;y = f(u; v; w) : u+ v � 1; u+ w � 1g:
If xn; yn are random independent strings of lengthn, then
Mx;y is much smaller:

Mx;y = f(u; v; w) j u+v � 1; u+w � 1; u+v+w � 2g:
As we shall see, the values ofK(xn), K(yn) andI(xn :
yn) do not determine the setMx;y completely.

For simplicity we restrict ourselves to one special case:
we assume that

K(xn) = 2n+O(log n);

K(yn) = 2n+O(log n); (7)

I(xn : yn) = 3n+O(log n):

Consider the following two sets of triples. The first one,
calledMmax, is defined by the inequalities

u+ v + w � 3; u+ v � 2; u+ w � 2: (8)

The second one, calledMmin, contains all the triples from
Mmax satisfyingat least oneof the inequalities

u+ v + w � 4; u+ v � 3; u+ w � 3: (9)

Theorem 6 (a)For any sequencesx;y satisfying(7)

Mmin �Mx;y �Mmax:

(b) There exist sequencesx;y satisfying(7) such that
Mx;y = Mmin:

(c) There exist sequencesx;y satisfying(7) such that
Mx;y = Mmax:

Proof.
(a) Using the inequalitiesK(hxn; yni) � K(zn) +

K(xnjzn)+K(ynjzn)+O(logn) andK(xn) � K(zn) +
K(xnjzn) + O(logn) it is easy to show that for allx;y-
admissible triples it holds

u+ v + w � 3; u+ v � 2; u+ w � 2: (10)

Thus, for everyx;y the setMx;y is included in the set
Mmax, defined by the inequalities (10).

Let us prove thatMmin � Mx;y. Let (u; v; w) be in
Mmin. Then the triple(u; v; w) satisfies the inequalities (8)
and at least one of the inequalities (9). So consider three
cases.

1) u+ v +w � 4. If v; w � 2 let z be the concatenation
of the first(2�v)n bits ofx and the first(2�w)n bits ofy.
Sinceu+v+w � 4, we havejzj = (2�v)n+(2�w)n �
un. To obtainx givenz we need the remainingvn bits of
x and the numbersn; vn; wn, soK(xjz) � vn+O(logn).
Analogously,K(yjz) � wn+O(log n).

Otherwise, if sayv > 2, let z consist of the first
minf2; ug bits of y. ThenK(yjz) � (2 �minf2; ug)n+
O(logn) � wn + O(logn), as the triple(u; v; w) satis-
fies (10). AndK(xjz) � K(x) � 2n + O(log n) �
vn+O(logn).

2) u + v � 3. If u � 2 let z consist of the firstun bits
of y. To find x given z is suffices to know the remaining
(2� u)n bits ofy and the minimum program to computex
giveny (havingn bits). So the total number of bits needed
to findx givenu is (2�u)n+n+O(logn) � vn+O(logn).
AndK(yjz) � (2� u)n+O(logn) � wn+O(log n).

Otherwise (ifu > 2) let z be the concatenation ofy
and the firstminfu� 2; 1gn bits of minimum programp to
computex giveny. To obtainx givenz it suffices to have
the remainingn� (u� 2)n � vn bits ofp.

3) u+ w � 3. Similar to 2).
(b) Let xn = hp; qi, yn = hp; ri, wherep; q; r are ran-

dom independent strings of lengthn. It is easy to show that
that the set ofx;y-admissible triples is equal toMmax. This
fact agrees with our intuition thatx andy have as much
common information as possible (under restriction (7)).

(c) This is the most interesting part of the theorem; the
proof uses methods from [3].

Lemma 6 There arex;y satisfying (7) such that for anyn
there is noz satisfying the inequalities

K(zn) +K(xnjzn) +K(ynjzn) � 4n (11)

K(zn) +K(xnjzn) � 3n (12)

K(zn) +K(ynjzn) � 3n: (13)

Proof. Let us fix naturaln. As usually we will omit the
subscriptn in xn, yn, etc.

Let U be the set of all strings of length2n + C logn,
where constantC will be chosen later. Let

U1 = fu 2 U j K(u) < 2ng
V = f(x; y) j x; y 2 U; K(hx; yi) < 3ng
V1 = f(x; y) j x; y 2 U; there isc satisfying

the inequalities (11), (12), and (13)g:
We will show that the set(U�U)n [(U1�U1)[V [V1]

is non-empty. Any pair(x; y) in this set will satisfy the fol-
lowing:
1) K(x);K(y) = 2n + O(logn) (as bothx andy are in
U n U1),
2)K(hx; yi) � 3n (ashx; yi 62 V ), and
3) there is noz satisfying the inequalities (11), (12),
and (13) (ashx; yi 62 V1).

Thus, to prove the lemma it suffices to show that there is
(x; y) in (U � U) n [(U1 �U1) [ V [ V1] of complexity at
most3n+O(logn).

The non-emptiness of(U � U) n [(U1 � U1) [ V [ V1]
is proved by counting arguments. We havejU j = 24nnC ,



jU1j < 22n, jV j < 23n. To obtain an upper bound forjV1j
let us count the number of pairs(x; y) for which there isz
satisfying the inequality (11). For anyk; l;m there are at
most2k2l2m pairsx; y such that there isz with K(z) =
k, K(xjz) = l, K(yjz) = m. And the number of triples
k; l;m satisfying the inequalityk + l +m � 4n is at most
(4n+ 1)3. Therefore,jV1j � (4n+ 1)324n. It follows that
if C is big enough, thenjU j = 24nnC > 22(2n) + 23n +
(4n+ 1)324n � jU1 � U1j + jV j+ jV1j, and therefore the
set(U � U) n [(U1 � U1) [ V [ V2] is non-empty.

Let (x; y) be the lexicographically first pair in(U �U)n
[(U1 � U1) [ V [ V2].

Lemma 7 K(hx; yi) � 3n+O(log n).

Proof. To identifyx; y it suffices to known and the setsU1,
V andV1.

Let �0 be the universal conditional description method.
For anyk + l � 3n let Wk;l be the set of all(p; q) such
that jpj = k, jqj = l and both�0(p; �) andG(�0(p; �); q)
are defined. To identifyV1 it suffices to known and the sets
Wk;l for all k; l such thatk + l � 3n.

Therefore,x; y can be retrieved fromn and the setsU1,
V andWk;l, k + l � 3n.

The elements of all the setsU1, V andWk;l can be
enumerated givenn, therefore to get the lists of all these
sets it suffices to known and the numberm = jU1j +
jV j +Pk+l�3n jWk;lj (givenn we enumerate elements in
all these sets untilm elements are enumerated). We have

jU1j � 22n; jV j � 23n; jWk;lj � 2k2l � 23n:

Therefore

jU1j+ jV j+
X

k+l�3n

jWk;lj � (3n+ 3)23n;

and

K(hx; yi) � log(jU1j+ jV j+
X

k+l�3n

jWk;lj) +

+2 logn+ C � 3n+O(log n):

2

This finishes the proof of Lemma 6.
2

We claim thatMx;y =Mmin for any sequence satisfying
Lemma 6. Assume for the contrary that the setMx;ynMmin

is not empty, that is there is a triple(u; v; w) satisfying the
inequalities

u+ v + w < 4; u+ v < 3; u+ w < 3;

for which there exists a sequencez satisfying (6). Then for
n large enough we get

K(zn) +K(xnjzn) +K(ynjzn) � un+ vn+ wn+

+O(logn) < 4n;

K(zn) +K(xnjzn) � un+ vn+

+O(logn) < 3n;

K(zn) +K(ynjzn) � un+ wn+

+O(logn) < 3n:

The contradiction shows thatMx;y = Mmin.
2

The proof of Theorem 6(c) is non-constructive, it gives
no “example” of the pair(x;y) with Mmin = Mx;y. An
example would be a setAn of low complexity (O(logn))
such that any random pair(xn; yn) in this set satisfies The-
orem 6(c). We do not know whether such a proof exists.

In Section 4 we presented several examples of sequences
x;y whose common information is less than mutual infor-
mation. It would be interesting to find the complexity pro-
file for these examples. Unfortunately, we know only few
things. We present here known facts about random orthogo-
nal lines in three-dimensional space. Letx;y be sequences
mentioned in Theorem 4. LetfM be the setMx;y. Let cM
be the set

fhu; v; wi : u+ v=2 +maxfw; v=2g � 3;
u+ w=2 +maxfv; w=2g � 3g \ Mmax:

Note that both inclusionsMmin � cM � Mmax are proper
(for instance, the triple(1:5; 1; 1) is in cM nMmin and the
triple (1; 1; 1) is inMmax n cM)

Theorem 7 fM � cM .

Proof. Consider the following bipartite graphG =
(V 0; V 00; E). LetV 0 [V 00] be the set of all lines having com-
plexity at mostK(xjz) [K(yjz)] conditional toz. Put an
edge between̂x 2 V 0 andŷ 2 V 00 if x̂ is orthogonal tôy.
As (x; y) is inE and the elements inE can be enumerated
givenq andz, we get

3n � K(hx; yi) � log jEj+K(z) +O(logn):

If
pjV 00j � jV 0j Lemma 5 get

23n�K(z)�O(logn) � jEj � 2jV 0j
p
jV 00j;

and if
pjV 00j � jV 0j Lemma 5 get

23n�K(z)�O(logn) � jEj � 2jV 00j:
Thus, anyway we have

23n � 2K(z)+O(logn) � 3
p
jV 00jmaxf

p
jV 00j; jV 0jg:



The number of elements inV 0 andV 00 is at most2K(xjz)+1

and2K(yjz)+1, respectively, andK(z) � un + O(logn),
K(xjz) � vn+O(logn),K(yjz) � wn+O(log n). There-
fore,

3n � un+ 0:5wn+maxf0:5w; vgn+O(log n);

thus3 � u+ 0:5w +maxf0:5w; vg.
In the similar way we can prove that3 � u + 0:5v +

maxf0:5v; wg.
2

Theorem 7 is true for any choice of the fieldFn (see The-
orem 4). However, the setfM may depend onFn. The fol-
lowing theorem assumes that the fieldFn has sizep2 where
p is a prime number; we don’t know whether it is true for
other fields.

Theorem 8 Assume that all fieldsFn are of sizep2n where
pn are primes. ThenfM contains the triple(1:5; 1; 1), and,
therefore,fM 6= Mmin.

Proof. Suppose thatq is a square,q = p2 (for all n). Then
we claim that the setMx;y has the point(1:5; 1; 1), which
is on the border ofM̂ .

Let � 2 Fq be a primitive element ofFq overFp. Thus
any element inFq can be represented in the formt + s�
for somet; s 2 Fp. We can choose� in such a way that,
moreover, any element inFq can be represented in the form
t+ s�2 for somet; s 2 Fp. Why? The multiplicative group
of the fieldFq is cyclic (see [7, page 184]), therefore the
square of any its generator does not belong toFp. Let us
take as� any such generator. Then�2 = e + f�, where
e; f 2 Fp andf 6= 0. Thus� is a linear combination of
1; �2 with coefficients fromFp, and we are done.

Let us findz of complexity1:5n + O(logn) such that
K(xjz) = n + O(log n), K(yjz) = n + O(log n). Let
(a; b; c) be the leading vector ofx (defined up to a multi-
plicative constant). We may assume thatc 6= 0, since the
number of lines for whichc = 0 is equal toq + 1, there-
fore the complexity of any such line is at mostlog(q+1)+
O(logn) � n + O(logn). So letc = 1. By the same rea-
son we may assume that the leading vector of the liney is
(a0; 1; c0). As y is orthogonal tox, we getc0 = �(aa0 + b).

We havea = z1 + r�, a0 = z2 + t�, wherez1; z2; r; t 2
Fp. Findz3; s 2 Fp such thatb = �z2r�+ z3 + s�2. This
is possible by our assumption on�. Let z = hz1; z2; z3i.
Obviously,K(z) � 3 log p+O(log n) = 1:5n+O(logn).
Givenz, r ands we can findx, thereforeK(xjz) � K(r)+
K(s) +O(logn) � 2 log p+O(log n) � n+O(log n).

Let us prove thatK(yjz) � n + O(logn). It is easy to
see that

c0 = �(z1z2 + z1t�+ rt�2 + z3 + s�2) =
= �(z1z2 + z1t�+ z3 + (rt + s)�2):

Therefore, givenz, t and rt + s we can findy. Hence
K(yjz) � K(t) + K(rt + s) + O(logn) � 2 log p +
O(logn) � n+O(logn).

So, if we let for instance,qn = 22[n=2] we result with
x;y for which the set ~M has the point(1:5; 1; 1). And we
do not know whether this is the case for (say)q = 22[n=2]+1.

2
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