
Non-reducible descriptions for conditional

Kolmogorov complexity

Andrej Muchnik∗ Alexander Shen†

Nikolai Vereshchagin‡ Michael Vyugin§

Abstract

Let a program p on input a output b. We are looking for a shorter
program p′ having the same property (p′(a) = b). In addition, we
want p′ to be simple conditional to p (this means that the conditional
Kolmogorov complexity K (p′|p) is negligible). In the present paper,
we prove that sometimes there is no such program p′, even in the
case when the complexity of p is much bigger than K (b|a). We give
three different constructions that use the game approach, probabilistic
arguments and algebraic (combinatorial) arguments, respectively.

1 Definitions and statements

Let a and b be binary strings. Consider programs p such that p(a) = b (the
program p on input a outputs b). What is the minimal length of such a
program? If the programming language is chosen appropriately, this length
is close to K (b|a), the conditional Kolmogorov complexity of b given a. [We

∗Institute of New Technologies; e-mail: muchnik@lpcs.math.msu.su. Work supported
by RFBR grant 04-01-00427.

†The work was supported by CNRS (LIF, Marseille, France; the laboratory at Moscow
Independent University), STINT foundation, Uppsala university (Sweden), Royal Hol-
loway College (UK), RFBR (grants 02-01-22001, 03-01-00475) and Scientific schools sup-
porting council (grant NSh-358.2003.1); e-mail: shen@mccme.ru.

‡Moscow State University, e-mail: ver@mccme.ru. The work was supported in part by
the RFBR grants 02-01-22001, 03-01-00475, NSh-358.2003.1.

§Moscow State University, e-mail: misha@vyugin.mccme.ru

1

Electronic Colloquium on Computational Complexity, Report No. 54 (2004)

ISSN 1433-8092

will ignore additive terms of order O(logn) where n is the maximum length
of the strings involved. With this precision all the versions of Kolmogorov
complexity (the plain one, the prefix one etc.) coincide.]

To avoid references to a specific programming language we will consider
“descriptions” instead of programs. A string p is called a conditional descrip-

tion of a string b given a if K (b|a, p) is negligible. Here K (b|a, p) stands for
the conditional complexity of b given the pair 〈a, p〉. We will specify what is
“negligible” in each case.

For given a and b consider all strings p such that K (b|a, p) ≈ 0. One can
easily verify that the length of any such p is at least K (b|a). This bound is
tight. (Both assertions are true with O(logn) precision; the same precision
is required in the equality K (b|a, p) ≈ 0.)

We say that a description p′ is a simplification of a description p if
K (p′|p) ≈ 0 with logarithmic precision. The relation K (p′|p) < ε is not
transitive for a fixed ε: K (p′|p) < ε and K (p′′|p′) < ε imply only K(p′′|p) <
2ε+O(logn). However, this relation resembles a preordering on strings and
we are interested in the structure of the set of all conditional descriptions
(for given a, b) with respect to this “pre-ordering”.

The string b itself is a conditional description of b given a. Muchnik [1]
has shown that (among all descriptions of b relative to a) there exists a
description of minimal length (≈ K (b|a)) that is a simplification of b. We
will prove that this is not true in the general case (for arbitrary description p
instead of b): for some a, b there is a description p of complexity much larger
than K (b|a) that has no simplifications of length ≈ K (b|a).

The exact statement is as follows:
Theorem. There are constants c1 < c2 < c3 < c4, c and ε > 0 such that

for all sufficiently large n there exist a, b, p of length at most c4n having the
following properties:

(a) K (b|a, p) 6 c logn (“the string p is a conditional description of b
given a, with logarithmic precision”);

(b) K (b|a) 6 c1n (“the conditional complexity of b given a is small . . . ”);
(c) K (p) > c3n (“. . . compared with the complexity of p”);
(d) there is no string p′ such that K (p′) 6 c2n, K (p′|p) 6 εn and

K (b|a, p′) 6 εn (“. . . but p has no simplifications of complexity c2n”).
Note that we are using linear upper bounds on K (p′|p) and K (b|a, p′)

instead of previously claimed bounds O(logn). This makes our statement
stronger: there exists p having no simplifications p′ even with linear upper
bounds on conditional complexities. Note also that complexities K(a), K(b)

2

of strings a, b provided by Theorem 1 are Θ(n) (and hence |a|, |b| = Θ(n)).
Indeed, if K(a) < δn where δ is less than both ε and c2 − c1, then p′ = b
is a counterexample to (d), since (a) and (b) imply K(b|p) 6 δn + O(logn)
and K(b) 6 (c1 + δ)n + O(logn), respectively. And if K(b) < δn (where
δ < ε), then the empty p′ is a counterexample to (d), since (a) implies
K(b|a) 6 δn+O(1).

Let us mention also that for all our examples of strings a, b (except for
the last example in Section 4 where random points and lines are used) the
inequality (b) holds in a stronger form: K (b) 6 c1n.

In what follows we give three different proofs of the theorem, using three
methods of constructing objects with given complexity properties (games,
probabilistic arguments and combinatorial estimates).

In fact, our theorem is stated in a simple, but not the strongest, form.
For example, our proof shows that for all c1 < c2 < c3 < c4 there exist c and
ε satisfying the statement (we need only that ε is much less than differences
c2 − c1 and c3 − c2).

Recently M. Ustinov has shown that for all a and b (except for trivial cases
K (a) ≈ 0 and K (b|a) ≈ 0) there exists a program p that transforms a to b
and cannot be simplified. This result was further improved by An. Muchnik
(see [2]).

The authors are grateful to all participants of Kolmogorov seminar of the
Department of Mathematics (Matematical Logic and Theory of Algorithms
Division) at Moscow University.

2 Game approach

Consider the following game we play against an adversary.
Let P , P ′, A and B be finite sets (as we see later, they correspond to

strings p, p′, a, b respectively). On our moves we construct a partial function
ξ : P × A → B. At the start of the game the function ξ is empty, and on
each move we may define the value of ξ at one point (once defined values
cannot be changed later). Or we may skip the move, that is, we may leave ξ
unchanged.

The adversary on his moves constructs multi-valued functions ϕ : P → P ′

and ψ : P ′ × A → B. That is, the values of ϕ are subsets of P ′, and the
values of ψ are subsets of B. Initially ϕ and ψ are empty (all their values are
empty). At each move the adversary may add one new value to ϕ (adding a

3

new element to ϕ(p) for some p) or ψ (adding a new element to ψ(p′, a) for
some p′, a). The existing elements cannot be removed. The adversary also
may skip the move.

The adversary must obey the following rules: the function ϕ takes on
every argument at most α values (i.e., #ϕ(p) 6 α for any p ∈ P) and the
function ψ takes on every argument at most β values (#ψ(p′, a) 6 β for any
p′, a).

Players’ moves alternate. Obviously, each player can make only finite
number of non-trivial moves (moves that change the functions). Thus after
a certain move all the three functions remain unchanged. The result of the
game is defined as follows: we win if there exist p ∈ P , a ∈ A and b ∈ B such
that ξ(p, a) = b and p, a, b are not “covered” by the adversary: the latter
means that there is no p′ ∈ ϕ(p) such that b ∈ ψ(p′, a).

So the game is determined by the sets A, B, P and P ′ (actually, only
their cardinalities matter) and the parameters α and β. We represent the
function ξ as a table with #P rows and #A columns. The cells of this table
initially are empty; they are filled by elements of B (each cell may contain
at most one element).

The adversary fills the table for function ψ. It has #P ′ rows of the same
length #A as in our table. Each cell may contain up to β elements of B. The
adversary also constructs the function ϕ. It is convenient to represent this
function by arrows going from row p of our table to all rows of adversary’s
table that belong to ϕ(p). The outdegree is bounded by α. We win if our
table has a non-covered cell. A cell (p, a) is covered if its row is connected
by an arrow to a row of adversary’s table that has in the same column the
same element of B (and, may be, some other elements). See Fig. 1.

The proof is based on the following simple observation:
Lemma. If α · β < #B and α · #P + β · #A · #P ′ < #A · #P then we

have a winning strategy in the game.
Proof of the lemma. The first inequality guarantees that if ξ is not

yet defined on a pair p, a, then we can choose a value b = ξ(p, a) so that the
cell (p, a) is not covered (at the current step). Indeed, for each of at most α
values p′ ∈ ϕ(a) there exist at most β values b ∈ ψ(p′, a), so there exists b
that is different from all those values.

Choosing b in this way (assuming that there are empty slots in ξ-table),
we guarantee that after each our move there exists a non-covered cell (p, a).
Our move is non-trivial only when the previous adversary’s move is non-
trivial. The second inequality guarantees that the number of cells in ξ-table

4

�

�

�

�

�

� �

�

Figure 1: Cells of our table ξ and adversary’s table ψ are filled with elements
of B; each row of ξ has at most α outgoing edges, each cell of ψ contains at
most β elements.

is greater than the number of adversary’s non-trivial moves (so the empty
slots do exist). Indeed, for each of #P arguments the value of ϕ may be
changed at most α times and for each of #A ·#P ′ pairs 〈p′, a〉 the value of ψ
may be changed at most β times.

Hence after every adversary’s non-trivial move we can find an empty cell
in ξ-table and enter a value in it so that the cell becomes non-covered. The
lemma is proved.

Now we prove the theorem using Lemma. Fix some positive rational
constants c1 < c2 < c3 and ε > 0 such that ε is small compared with c1,
c2 − c1 and c3 − c2. Let B be the set of all strings of length at most c1n, let
P ′ be the set of all strings of length at most c2n and let P be the set of all
strings of length at most c3n. The set A can be chosen in many ways, as we
have almost no restrictions on a. For example, let A be equal to B.

Let us fix the adversary’s strategy now. Assume that the adversary in-
cludes in ϕ(p) (one by one) all p′ ∈ P ′ such that K (p′|p) < εn, and includes
in ψ(p′, a) all the strings b ∈ B such that K (b|a, p′) < εn. One can do this
effectively given n, as the function K is upper semi-computable (that is, the
set {〈x, y, l〉 | K(x|y) < l} is recursively enumerable). This strategy does not
violate the rules provided α = β = 2εn.

5

Let us verify that the conditions of the Lemma are satisfied:

α · β 6 22εn+2 � 2c1n

(we assume that ε is less than c1/2), and both terms in the sum

α · #P + β · #A · #P ′ ≈ 2εn+c3n + 2εn+c1n+c2n

are much less than #A · #P = 2c1n+c3n (we also assume that ε is less than
c3 − c2). Therefore, by the Lemma, we have a winning strategy in the game.

The winning strategy is computable given n. Applying it against the ad-
versary’s strategy described above we obtain a function ξ that is computable
given n (as the adversary’s moves are computable, so are ours). To be precise
we should write ξn indicating the dependence on n; complexity of algorithm
that computes ξn is O(logn) since ξn is determined by n Since our strategy
is a winning one, there exists a cell langlep, a〉 that is not covered after all
non-trivial moves are performed. (It depends on n in a non-computable way,
as we do not know which of the adversary’s moves is the last non-trivial one.)

Let b = ξ(p, a) be the element in the “winning” cell of our table. Then
K (b|a, p) = O(logn). As the length of b is less than c1n we have K (b) 6

c1n + O(1). [This is O(1) larger than the upper bound in the theorem but
can be compensated by a small increase in c1.] As the cell (p, a) is not
covered, there is no string p′ of length at most c2n such that K (p′|p) < εn
and K (b|a, p′) < εn. This is weaker than required: we want the statement
to be true for all p′ of complexity (not the length) less than c2n. However
it is easy to fix this. Replacing p′ by its shortest description we increase
K (b|a, p′) and K (p′|p) by O(logn) and this increase can be compensated by
a small change in ε. Note also that lengths of all strings are at most c3n so
we may use any c4 > c3. It remains to fix only one problem: we want the
complexity of p to be at least c3n and the rules of the game do not provide
any guarantee for this.

Let us change the game allowing the adversary at any step remove (=“mark
as unusable”) any element of P ; the total number of removed elements should
not exceed #P/2, so at least half of elements in P should remain intact. In
the winning rule we require that element p has not been removed by the
adversary. For the modified game the statement of the Lemma is changed as
follows: in the right hand side of the inequality α·#P+β·#A·#P ′ < #A·#P
the term #A · #P is replaced by #A · #P/2. The modified Lemma is still
true: Indeed, if we cannot perform any move then all the non-removed p’s

6

have been used with all a’s, thus we have done #A · #P/2 moves. And the
conditions of the modified lemma are still fulfilled for large enough n.

Other changes are as follows: we let P be equal to the set of all strings
of length at most c3n+ 2, and the adversary removes all elements of P with
complexity less than c3n. It is clear that at most half of elements could be
removed, and all the other bounds remain true. After this modification we
know that for the winning cell (p, a) the complexity of p is at least c3n, and
the theorem is proved.

3 Probabilistic approach

Assume that finite sets A, B, P , P ′ are fixed. (They will play the same
role as before.) Consider partial functions ξ : P × A → B and multi-valued
functions ϕ : P → P ′ and ψ : P ′ × A → B having at most α and β values
(respectively) for each argument.

Call a function ξ a winning function (cf. the game described above) if for
all multi-valued ϕ and ψ (satisfying given bounds on the number of values)
and for every set P̄ ⊂ P of cardinality at most #P/2 there exists a non-
covered cell in a row outside P̄ , that is, there exist p ∈ P \ P̄ , a ∈ A and
b ∈ B such that ξ(p, a) = b but there is no p′ ∈ ϕ(p) such that b ∈ ψ(p′, a).

In other words, a function ξ is winning if we can put its values in the
table ignoring the adversary’s moves and be sure that we win. It is clear
that without loss of generality we may assume that the functions ϕ and ψ
always take maximum allowed number of values (if ξ wins in this case, it wins
always). If a partial function ξ is a winning one, then any its total extension
is also a winning function, so we consider only total winning functions in the
sequel.

Thus if there is a winning function then there is a winning strategy. We
will use probabilistic arguments to show that if the cardinalities of A,B, P
satisfy certain requirements then a winning function exists. That is, we
prove that with positive probability a randomly chosen function ξ is winning
(assuming that all total functions ξ are equiprobable).

Let us estimate the probability that a random (total) function ξ does not
win against given P̄ , ϕ and ψ; it is enough to show that this probability is so
small that being multiplied by the number of different choices for P̄ , ϕ and
ψ it is still less than 1.

Fix P̄ , ϕ and ψ. We need an upper bound for the probability that for all

7

p ∈ P \ P̄ and all a the value b = ξ(p, a) (that is chosen independently for
all pairs 〈p, a〉) is covered by the functions ϕ and ψ. For a given pair 〈p, a〉
this probability is less than αβ/#B, and the number of different pairs is at
least #P · #A/2. So we obtain the upper bound

(αβ/#B)#P ·#A/2.

Let us count now the number of different triples 〈P̄ , ϕ, ψ〉. We have at most
2#P choices for P̄ , at most (#P ′)α·#P choices for ϕ, and at most (#B)β·#A·#P ′

choices for ψ. This gives a sufficient condition for the existence of a winning
function:

(αβ/#B)#P ·#A/2 · 2#P · (#P ′)α·#P · (#B)β·#A·#P ′

< 1.

What does this condition mean? Assume that αβ < #B/2 (significantly
larger αβ do not satisfy the condition anyway). Let us focus on exponents in
the inequality. The condition is true if all the exponents with bases greater
than 1 are much less than the exponent with base less than 1:

#P � #P · #A/2,
α · #P � #P · #A/2,

β · #A · #P ′ � #P · #A/2.

The first condition is true almost always, the second one means that α � #A,
the third one means that β · #P ′ � #P . We see that all these conditions
(together with the inequality αβ < #B/2) strengthen the conditions of the
Lemma above (It could be expected since winning functions are special cases
of winning strategies—those where all moves are fixed in advance and do not
depend on the adversary’s move).

In particular, a winning function exists if A, B, P , P ′, α, β are chosen
as in the first proof of the theorem. Recall that we want K (ξ(p, a)|a, p) to
be O(logn). This can be achieved if the function ξ has Kolmogorov com-
plexity O(logn), that is, the Kolmogorov complexity K (ξ) of the graph of ξ
is O(logn). To prove that there is a winning function ξ such that K (ξ) =
O(logn) we can use the following (very general) argument: By a very long
(but finite) exhaustive search we can check whether a given function is win-
ning or not (checking all P̄ , ϕ and ψ). Thus we can probe all the functions ξ in
some natural order until we find the first winning one. To run this algorithm

8

we need only to know n, hence the first winning function has Kolmogorov
complexity O(logn).

The second proof of the theorem is completed.
What is the advantage of this (more complicated) proof? It shows that

the theorem can be strengthened as follows: for every oracle X there exist
p, a, b satisfying conditions (a)–(c) of the theorem (unchanged, without the
oracle) such that there is no p′ for which both K X(p′|p) and K X(b|a, p′) are
less than εn. Indeed, our winning function beats any adversary’s strategy
and its contruction (and the inequality K (b|a, p) = O(logn)) does not depend
on the enemy’s strategy. [Instead of relativizing the Kolmogorov complexity
by an oracle one can add any string as the extra condition in K (p′|p) and
K (b|a, p′).]

4 Algebraic construction

Although the proof in the previous section allows us to find the winning
function by an exhaustive search, this search could be very long. We would
like to have a more “explicit” example of the winning function. To this end
we formulate certain conditions that guarantee that a function ξ : P×A → B
is a winning one. Then we will explicitly present a winning function satisfying
those conditions.

Consider a function ξ : P × A → B. For every p ∈ P consider the
corresponding line in the table ξ, that is, the function ξp : A→ B defined as
ξp(a) = ξ(p, a). We require that the functions ξp for different p (=different
lines of the table ξ) are far away from each other. This requirement seems
natural: if the number of different a’s where ξp(a) and ξq(a) coincide is large,
then the adversary may use the same p′ for p and q.

Formally speaking, we give the following
Definition. A function ξ is γ-regular if for all p 6= q the number of a ∈ A

such that ξp(a) = ξq(a) is at most γ (=if the Hamming distance between
corresponding lines is at least #A− γ).

Lemma 1. If a function ξ is γ-regular,

8αβ2 < #P/#P ′ and 8αβ
√
γ <

√

#A,

then the function ξ is a winning one.
Proof. First we reduce the general case to the case β = 1. To this end we

replace every line in the table ψ by β lines (that contain the same elements

9

of B as the old line, one element per cell). The height of the table, #P ′,
becomes β times bigger and the function ϕ has now β times more values (each
arrow is replaced by β arrows). So α is replaced by α̃ = αβ. If a function ξ is
winning in the modified game with P̃ ′ = {1, . . . , β} × P ′, α̃ = αβ and β̃ = 1
(all other parameters remain unchanged) then ξ is winning in the original
game. Indeed, every P̄ , ϕ, ψ for the original game can be transformed into
P̄ , ϕ̃, ψ̃ for the modified game: let ϕ̃(p) be the set {〈i, p′〉 | p′ ∈ ϕ(p)}, and let
ψ̃(〈j, p′〉, a) be equal to the jth value of ψ(p′, a)), in some order. If ξ beats
P̄ , ϕ̃, ψ̃ then it beats also P̄ , ϕ, ψ.

The conditions of the lemma translate into inequalities

8α̃ < #P/#P̃ ′ and 8α̃
√
γ <

√

#A.

So we can assume that β = 1 from now on.
Let us split an α-valued function ϕ into α single-valued functions ϕ1, . . . , ϕα.

Each ϕi covers some cells of the table ξ. We will estimate the fraction of ele-
ments covered by ϕi and prove that it is less than 1/(2α). This implies that
less than half of all cells are covered.

Why any single-valued function ϕ covers few cells? The reason is that
#P ′ is much less than #P , thus the same line of the table ψ must correspond
to many lines of the table ξ. By our assumption the lines of ξ have small
intersection and hence cannot be easily covered by the same line. The formal
argument use the following simple bound:

Lemma 2. Assume that a family of k subsets of an a-element set is given
such that every two subsets in this family have at most γ common elements.
Then the sum of cardinalities of all the subsets in the family is at most

2a+ 2k
√
aγ.

Remark: For small k the first term of the sum 2a+2k
√
aγ, not depending

on k, is the main term; for large k the second term, linear in k, is the main
term; two terms are equal for k =

√

a/γ.
Proof of Lemma 2. Let a1, . . . , ak be the cardinalities of the given

subsets. The inclusions-exclusions formula implies that

a > a1 + a2 + . . .+ ak − k2γ

(there are at most k2 pairwise intersections, each of cardinality at most γ).
Therefore

a1 + . . .+ ak 6 a+ k2γ.

10

If k 6
√

a/γ then the second term (k2γ) is bounded by a and the sum a+k2γ

is at most 2a. Hence the inequality of the lemma is true for all k 6
√

a/γ. For

k =
√

a/γ we have also a1 + . . .+ ak 6 2k
√
aγ, as in this case 2k

√
aγ = 2a.

Since the right hand side of the last inequality is linear in k, the inequality
is true for all k >

√

a/γ. To demonstrate this let us delete from the sum

a1 + . . . + ak all terms except for the
√

a/γ largest ones. As the average of
remaining terms is not smaller than the average of all terms, we are done.

Lemma 2 is proved.
In fact this proof works only if

√

a/γ is an integer. This is not really
important since one can easily adapt the arguments below and use Lemma
2 only for integer case, but we can still prove Lemma 2 in general case using
more careful bounds. Namely, a1 + . . .+ ak 6 a+ (k(k − 1)/2)γ, since there
are at most k(k− 1)/2 pairwise intersections. Then for k 6 d

√

a/γe one has

a+(k(k−1)/2)γ 6 a+
√

a/γ(
√

a/γ+1)γ 6 a+
√
a(
√
a+

√
gamma) 6 2a 6 2k

√
aγ,

(since we may assume without loss of generality that γ 6 a), and the proof
can be finished as before.

Let us continue the proof of Theorem 1. If k different lines of ξ are
mapped by ϕ onto one line of ψ, then the sets of covered columns in any two
of these lines have at most γ common elements. Hence the total number of
covered cells in these k lines is at most

2 #A+ 2k
√

#Aγ.

We have to sum this numbers for all #P ′ elements that can be values of the
function ϕ, that is, over all lines of table ψ.

The first terms sum up to 2 #A · #P ′, the second ones sum up to 2 ·
#P

√
#A · γ. So the total number of cells covered by each ϕi is at most

2#A · #P ′ + 2 · #P
√

#Aγ.

Recalling that there are α functions ϕi we conclude that a function ξ is
winning if

2α#A · #P ′ + 2#Pα
√

#Aγ <
1

2
#A · #P.

Lemma 1 is proved.
It is instructive to compare the requirements of Lemma 1 with those from

the probabilistic argument. Note that the first requirement strengthens the

11

requirement β#P ′ � #P and the second one strengthens the requirement
α� #A.

It remains to construct a function ξ satisfying the conditions of Lemma 1.
This can be done easily by the following algebraic construction. Let A = B
be the field of cardinality 2n, and let P be the set of all linear functions
(x 7→ a1x+a2) from A to A. A linear function is determined by 2 coefficients,
thus #P = 22n. We can let γ = 1, as if two linear functions coincide in 2
points then they coincide everywhere. Let P ′ = {0, 1}1.5n. Let α and β
be equal to 2εn. For ε < 1/6 the conditions of Lemma 1 are fulfilled. We
obtain a proof of the theorem with, say, c1 = 1.01, c3 = 1.99, c2 = 1.5 and
any ε < 1/6, c > 2 (small changes in c1 and c3 are needed to compensate
for O(logn) terms). In place of linear functions we can take polynomials of
small degree obtaining a proof with the same c1, c2 and larger c3, ε.

Here is a more “geometric” example. Consider the two-dimensional vector
space (the plane) over the finite field of cardinality 2n. The set A consists
of all points of this plane and the set B consists of all lines on it. The
set P consists also of all points of this plane. The function ξ is defined as
follows: ξ(p, a) is the line passing through a and p. This time γ = 2n, as
the line ap1 coincides with the line ap2 only if a lies on the line p1p2. Let
P ′ = {0, 1}1.5n. If ε is small enough the conditions of Lemma 1 are satisfied.
And the conditional complexity of b = ξ(a, p) given a is at most n+O(logn),
as there are about 2n lines passing through any given point. Apply the
winning strategy based on the function ξ against adversary’s strategy from
Section 2. The covered subset of A×P is small and can be enumerated given
n. This implies that all the random pairs in A× P (those whose complexity
is close to 4n) are not covered. Therefore we can reformulate the result as
follows (taking into account that the line passing through a pair of random
independent points is random):

any random line b on the plane over the field of cardinality 2n has
conditional complexity ≈ n given every its random point a; every
other random point p on that line is a description of complexity 2n
for b (given the point a) that cannot be reduced to a description
of complexity 1.5n.

(More precisely, we should require a and p be independent random points
on b, i.e., K (a, p|b) ≈ 2n.)

The constructions of this section have the following advantage compared
with proofs from Sections 2 and 3: The complexity of K (b|a) remains small

12

even if we consider time-bounded version of Kolmogorov complexity, i.e.,
require that the running time of the machine finding the object from its
description is bounded by a polynomial in n. And the non-reducible program
exists even for complexity relativized by any oracle, as in Section 3.

References

[1] Andrej A. Muchnik, Conditional complexity and codes, Theoretical Com-

puter Science, 271 (2002), p. 97–109.

[2] An. Muchnik and M. Ustinov, Constructing non-reducible programs for

given pair of strings, Preprint.

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

