
§4. The generalization of Shelah – Stup theorem.
A signature is a finite set of predicate symbols; each symbol has its own

dimension (= number of arguments).
A structure of signature σ = (P1, . . . ,Pn) is a tuple 〈D, P̄1, . . . P̄n〉, where

D is a non-empty set (the universum of the structure) and P̄1, . . . , P̄n are
relations on D such that the dimension of P̄i equals to the dimension of Pi

for each i ≤ n.
Let us define the notion of tree counterpart of a structure 〈D; P̄1, . . . , P̄n〉.

This is a structure of signature σ̄ = (P1, . . . ,Pn,Q) where Q is a new binary
predicate symbol. Its universum is the set D∗ of all the words over the alpha-
bet D. Similar to the case of binary tree, we call D∗ the tree of D-branching,
or the tree of branching D (e.g., binary tree is the tree of branching {L,R}).
The elements of D are called directions. Let us define the interpretations
¯̄P1, . . . ,

¯̄Pn,
¯̄Q of predicate symbols P1, . . . ,Pn,Q in the tree counterpart.

The predicate symbol Q is interpreted as the relation “to be a son”, i.e.,
¯̄Q(u,v) is true if u = vd for some d ∈ D. The predicate symbol Pi is in-

terpreted as the relation ¯̄Pi which is true on a tuple 〈v1, . . . ,vk〉 (where k
is the dimension of Pi) if there exist v ∈ D∗ and d1, . . . ,dk ∈ D such that
v1 = vd1, v2 = vd2, . . . ,vk = vdk and P̄i(d1, . . . ,dk) is true. In other

words, ¯̄Pi(v1, . . . ,vk) is true if v1, . . . ,vk “are in the same fan” and their
last letters satisfy P̄i.

Let us give the definition of the monadic theory of a structure. In
§1, this definition was given for the structure 〈binary tree; L, R〉. Let
S = 〈M; P̄1, . . . , P̄n〉 be a structure of signature σ = (P1, . . . ,Pn). The
monadic language contains both individual and set variables, its atomic for-
mulae are of the form x ∈ Q and Pi(x1, . . . ,xk), where x,x1, . . . ,xk are indi-
vidual variables, Q is a set variable and Pi is a k-ary predicate symbol in σ.
Both individual and set variables can be bounded by quantifiers in formulae
of the language. The monadic theory of S consists of all closed formulae of
the language true in the structure S.

Shelah and Stup [?] proved the following generalization of Rabin’s theo-
rem.

Theorem of Shelah and Stup. If the monadic theory of a structure is
decidable, then the monadic theory of its tree counterpart is decidable also.

Theorem of Rabin is a consequence of Theorem of Shelah and Stup, as
theory S2S is equivalent to the monadic theory of the tree counterpart of

1



the structure 〈{L,R}; unary relation “to be equal to L”〉.
Our goal is to strengthen Theorem of Shelah and Stup by enriching the

signature of tree counterpart. Let us include in the signature of tree counter-
part the unary relation ¯̄R(u) which means that u = wdd for some w ∈ D∗

and d ∈ D, i.e., the last letter of u and the last but one letter of u are equal.
Thus, the tree counterpart of a structure 〈D; P̄1, . . . , P̄n〉 in the new sense is

the structure 〈D∗; ¯̄P1, . . . ,
¯̄Pn,

¯̄Q, ¯̄R〉 of signature (P1, . . . ,Pn,Q,R).
Note that if k is the dimension of Pi, then, in enriched language, we can

express that vertices v1, . . . ,vk−1 are in the same fan and their last letters
and their common last but one letter satisfy P̄i, as well as other relations of
this type.

Theorem 6. If the monadic theory of a structure is decidable, then the
monadic theory of its tree counterpart in the new sense is decidable also.

Let us mention that this theorem cannot be strengthened by means of
including in the signature the unary relation “the last letter of u and the last
but two letter of u are equal”. Moreover, we even cannot replace ¯̄R with this
relation. Namely, if the initial structure is S = (IN; <), the monadic theory
of which is known to be decidable, and we enrich the tree counterpart of S
(in the first sense) by the unary relation “the last letter and the last but two
letter are equal”, then we get a structure with undecidable monadic theory.
Indeed, in the monadic theory of the resulting structure we can simulate any
machine, having two counters, i.e., for a given machine with two counters and
its input we can construct a monadic formula which is true in the resulting
structure iff the given machine halts on the given input. It is well known
that machines with two counters can simulate Turing machines.

Proof of Theorem 6. The proof is similar to our proof of Rabin’s theorem.
For every notion used in that proof we give its analog.
A Σ-tree of D-branching (where Σ is an alphabet) is any mapping from

D∗ into Σ. Analogous to the notion of an automaton on binary Σ-trees, we
could give the notion of an automaton on Σ-trees of D-branching. However,
we need a notion of automaton different from that natural generalization.
Namely, in the automaton of the new type, the state labeling a son u of a
vertex v can depend not only on automaton state in vertex v, on the label
of v in the tree and on the last letter of u but also on the last letter of
v (if v is not empty). Let us give the formal definition. Compared with
automata on binary Σ-trees, only the notion of a transition and the notion of

2



a table of transitions are changed. Now, a transition is a quadruple 〈s, a,d, f〉,
where s is a state, a ∈ Σ, d ∈ D and f is a function from D into the set of
automaton states. A set T of transitions is called monadic definable if there
is a monadic formula ϕ(s, a,d, f) such that a transition 〈s, a,d, f〉 belongs to
T iff ϕ(s, a,d, f) is true in D.

To make this definition meaningful we enrich the monadic language as
follows:

(1) we include variables ranging Σ and all elements from Σ as constants;
(2) we include variables ranging S (the set of states) and all elements

from S as constants;
(3) we include variables ranging the set of functions from D into S; for

any such variable f , for any individual variable x (i.e. ranging D) and for
any s ∈ S we allow the expression f(x) = s;

(4) we include equality relation;
(5) we allow to bound new variables by quantifiers.
Let us note that if the monadic theory of a structure is decidable, then

the theory of that structure in enriched monadic language is also decidable,
since given a closed formula in enriched monadic language we can construct
an equivalent formula in monadic language.

So, we require the table of transitions to be monadic definable.
As earlier, let us call a transition of automaton A any transition in the

table of transitions of A. Let us call an automaton A correct if its transitions
having the initial state s0 at the bottom don’t depend on the last letter of
vertex, i.e., if for all a ∈ Σ, d,d′ ∈ D and f : D −→ S,
〈s0, a,d, f〉 is a transition of A ⇐⇒ 〈s0, a,d′, f〉 is a transition of A.

For a labelled tree G and for a vertex x, we denote by G(x) the label
of x in G. Let us define the notion of a run of a correct automaton A on a
Σ-tree T of D-branching. This is a S-tree H of D-branching such that

1) H(λ) = s0;
2) for any x ∈ D∗, the transition 〈H(x),T(x),d, f〉 belongs to the table

of transitions of A, where d and f are defined as follows: d is the last letter of
x (and any element of D if x = λ) and f is the function from D into S such
that f(d′) = H(xd′); the transition 〈H(x),T(x),d, f〉 is called the transition
of H in x (when T is clear from the context).

Now, similar to the case of binary tree, we have to prove that any monadic
definable set of Σ-trees of D-branching can be recognized by a correct au-
tomaton on Σ-trees of D-branching. The proof runs as the proof of The-

3



orem 1. As it was earlier, only one point is nontrivial: to prove that the
complement of any recognizable set of Σ-trees of D-branching is recogniz-
able.

A correct semiautomaton on Σ-trees of D-branching is a pair 〈a correct
automation L on Σ-trees of D-branching; a (nondeterministic) automaton B

on ω-words over the set of L’s states〉. The semiautomation accepts a Σ-tree
T of D-branching if there is a run of L on T such that all the sequences of
L’s states lying along infinite paths in that run are rejected by B.

Let us prove first that the complement of any recognizable (by a correct
automaton) set of Σ-trees of D-branching is recognizable by a correct semi-
automaton. Again we define the notion of a strategy with memory. The only
difference with old definition is that now the strategy distributes all possible
(in a vertex) copy-transitions among elements of D and does not divide them
into left and right. The analog of Theorem 4 is proved in the similar way.
The only difficulty arises in the proof of the analog of Theorem 5, i.e., in the
proof that for any correct automaton A and for any strategy set M, the set of
Σ-trees of D-branching on which there is a rejecting strategy for A based on
M, is semirecognizable. Let us present the proof of this statement in detail.
To understand the following better, we advise the reader to recall the notions
of a strategy with memory, of a strategy set and of a probable path.

Let us remind that in binary case the states of the semiautomaton recog-
nizing the set of Σ-trees on which there is a rejecting strategy, were pairs of
disjoint sets of copy-transitions of the initial automaton. In our case, if D is
infinite, then the number of such pairs is infinite. Therefore, we have to take
another semiautomaton. Let us define its first component L (a correct au-
tomaton on Σ-trees of D-branching). The states of L are subsets of M×M
(recall that M is the strategy set). The initial state is the set {〈m0,m0〉},
where m0 is the initial copy of initial state of automaton A. Let us define the
table of transitions of L. Let 〈A, a,d,F〉 be a transition, where A ⊂ M×M,
a ∈ Σ, d ∈ D, and F: D −→ P(M×M). Let us define in what case it be-
longs to the table of transitions. Let G be a function from M×Σ×D× SD

into D (the meaning is that G attaches a direction to every copy-transition).
Denote by GA,a,d the following function from D into P(M×M). Its value
on d′ ∈ D consists of all pairs 〈m, f(d′)〉 such that 〈m, a,d, f〉 is a transition
of A for which G(〈m, a,d, f〉) = d′ and m belongs to the second projection
of A.

4



Formally, GA,a,d(d′) =
{
〈m, f(d′)〉 | 〈m, a,d, f〉 is a transition of A,

G(〈m, a,d, f〉) = d′ and there is m′ ∈ M such that 〈m′,m〉 ∈ A
}
.

So, a quadruple 〈A, a,d,F〉 is a transition of L if there is a function G
such that GA,a,d(d′) ⊆ F(d′) for all d′ ∈ D. Clearly, L is correct.

Let us prove that the property of a quadruple 〈A, a,d,F〉 “to be a tran-
sition of L” is monadic definable. Indeed, this property can be expressed by
the formula ϕ(A, a,d,F) which states that for every copy-transition of A of
the form 〈m, a,d, f〉, where m belongs to the second projection of A, there
is a d′ ∈ D such that the pair 〈m, f(d′)〉 belongs to F(d′).

Let us construct the second component of the semiautomaton, i.e., the
automaton B on ω-words over the set of states of L. Let us define when B

accepts a sequence α = (A0,A1, . . . ,Ak, . . .) of states of L. Let us call a se-
quence s0, s1, . . . , sk, . . . of states of A possible for α if there exist copies
m0,m1, . . . ,mk, . . . of the states s0, s1, . . . , sk, . . ., respectively, such that
〈m0,m1〉 ∈ A1, 〈m1,m2〉 ∈ A2, . . . , 〈mk−1,mk〉 ∈ Ak, . . .. So, B accepts
α if there is a sequence s0, s1, . . . , sk, . . . having final limit macrostate which
is possible for α. It is easy to construct an automaton on ω-words satisfying
this requirement.

Let us prove that the defined semiautomaton accepts a Σ-tree T of D-
branching iff there is a rejecting strategy based on M for A on T. Assume
that there is a rejecting strategy based on M for A on a Σ-tree T of D-
branching. Let us define the following run of the semiautomaton on T: in
every vertex x, take the transition 〈A, a,d,GA,a,d〉 where d is the last letter
of x, a is the label of x and G is the function from M×Σ×D× SD into D
indicating how the rejecting strategy distributes copy-transitions possible in
x among directions (on impossible in x copy-transitions G is defined in any
way). Obviously, any sequence s0, s1, . . . , sk, . . . that is possible for a sequence
A0,A1, . . . ,Ak, . . . of states of the semiautomaton lying along an infinite
path in this run, is a probable path of the rejecting strategy and therefore
has non-final limit macrostate. Hence, the defined run is an accepting run.

Conversely, if there is an accepting run H of the semiautomaton on a Σ-
tree of D-branching, then there is a rejecting strategy on that tree (in a vertex
x, the rejecting strategy distributes transitions among directions according
to the function G for which ∀d′ GA,a,d(d′) ⊆ F(d′), where 〈A, a,d,F〉 is the
transition of H in x).

Just as it was done in Theorem 1, we can prove that any set recognizable

5



by a correct semiautomaton on Σ-trees of D-branching is recognizable by a
correct automaton on Σ-trees of D-branching.

Thus, we have completed the proof of the analog of Theorem 1. To
complete the proof of Theorem 6 we have to construct an algorithm deciding
whether a correct automaton A on Σ-trees of D-branching recognizes the
empty set, where Σ consists of a single letter. There is unique Σ-tree of D-
branching (for one-element Σ), call it simply the tree of D-branching; we may
think, that its vertices have no labels. Therefore we may delete the second
component from transitions of A. The algorithm recognizing emptiness is
more complicated compared with binary case. We are going to construct it.

Let us consider arbitrary automata on the tree of D-branching (not only
correct ones). Moreover, let us consider automata with dead ends from a
set ∆, which are defined in usual way. Let d0 be a direction. Let us define
the notion of a d0-run of an automaton with dead ends from ∆ on a P(∆)-
tree of D-branching. Informally speaking, a d0-run is an ordinary run of
the automaton with dead ends on P(∆)-tree of D-branching provided the
last letter of the empty word is defined to be d0. Formally, a d0-run of an
automaton A with dead ends from ∆ on a P(∆)-tree of D-branching is any
subtree H of the tree D∗ labelled by letters from S

⋃
∆ (where S is the set

of states of A) such that
(1) H(λ) is the initial state (recall that H(x) denotes the label of vertex

x in H);
(2) if x is a vertex such that H(x) ∈ S, then the vertex xd is in H for

any d ∈ D and the triple 〈H(x),d′, f〉 is a transition of H, where d′ = d0

if x = λ and d′ is the last letter of x otherwise and f(d) = H(xd) for all
d ∈ D;

(3) if x is a vertex such that H(x) ∈ ∆, then x has no descendants in H.
The notion of an accepting d0-path is defined similar to the binary case.

Let us say that an automaton A d0-accepts a tree if there is an accepting
d0-run of A on that tree.

A simple P(∆)-tree is any P(∆)-tree of D-branching such that for any
vertex x, the label of x depends only on the last letter of x (if x is not the
root) and the root of the tree is labelled by the empty set. Obviously, every
function from D into P(∆) uniquely defines a simple P(∆)-tree.

For any given automaton A with dead ends, we construct a monadic for-
mula ϕ(g,d) in the language of D, where d ∈ D and g: D −→ P(∆), which
is true in D iff A d-accepts the simple P(∆)-tree defined by g. Assume that

6



this is already done. Then to decide whether the given correct automaton
(without dead ends) accepts the tree of D-branching we can construct the
formula ϕ(g,d) for that automaton, substitute the function f(d) ≡ ∅ for g
and any direction for d and then decide whether the resulting formula is true
(making use of decidability of monadic theory of D).

So let us start with the construction of the formula ϕ(g,d). Let h be a
function from D into P(∆

⋃
S) and let g be a function from D into P(∆).

Say that h extends g if h(d)
⋂

∆ = g(d) for all d ∈ D.
We use the induction on the number of states.
Consider the case of an automaton A having single state. Denote that

state by s. Consider two subcases.
First subcase: the macrostate {s} is not final.
Say that a function h from D into P(∆

⋃{s}) is downward closed if
s ∈ h(d) for each d ∈ D such that there is a transition 〈s,d, f〉 of A for
which ∀d′ ∈ D f(d′) ∈ h(d′).

Lemma 6. The following conditions are equivalent.
(1) The automaton A d0-accepts the simple P(∆)-tree defined by the func-

tion g.
(2) s ∈ h(d0) for any function h which is downward closed and extends

g.
Proof. Let us prove first that (2) involves (1). Let (2) be fulfilled.

Set h(d) =


g(d)

⋃{s} if A d− accepts the simple tree
defined by g;

g(d) else.

Obviously, h extends g and h is downward closed, therefore s ∈ h(d0),
i.e., A d0-accepts the simple tree defined by g.

Conversely, let (2) be false, that is, there is a downward closed function
h extending g for which s /∈ h(d0). Let us prove that any d0-run of A on
the simple tree defined by g has an infinite path or a finite path ending in a
non-allowed dead end.

For any x ∈ D∗, let us define

l(x) =
{

the last letter of x if x 6= λ,
d0 if x = λ.

Let H be a d0-run of A on the simple tree defined by g. Using the induction
on i, we define the path x0 = λ, x1, . . . ,xi, . . . such that H(xi) /∈ h(l(xi))

7



for all i. For i = 0 we have H(x0) = H(λ) = s /∈ h(l(λ)) = h(d0). Let
x0,x1, . . . ,xi have already been defined and H(xi) /∈ h(l(xi)). If H(xi) is
a dead end, then that dead end is not allowed as h extends g. In this case
the desired path is already constructed. Otherwise (when H(xi) = s) we
have s /∈ h(l(xi)). As h is downward closed, there is a d′ ∈ D such that
H(xid

′) /∈ h(d′). Set xi+1 = xid
′. Lemma 6 is proved.

Obviously, the property of a function g and of an element d stated in
item (2) of Lemma 6 is monadic definable, thus the first subcase is completed.

Second subcase: the macrostate {s} is final.
Let us call a function h: D −→ P(∆

⋃{s}) upward closed if s ∈ h(d) im-
plies that there is a transition 〈s,d, f〉 of A such that ∀d′ ∈ D, f(d′) ∈ h(d′).

Now we need the following
Lemma 7. The following assertions are equivalent.
(1) The automaton A d0-accepts the simple P(∆)-tree defined by the func-

tion g.
(2) s ∈ h(d0) for some function h which is upward closed and extends g.
Proof. Assume that (1) is true. Let us prove that (2) is true. Let us fix

an accepting d0-run H of A on the simple P(∆)-tree defined by g. Define
the function l(x) just as it was done in Lemma 6.
Set

h(d) =
{ {s}⋃

g(d) if there is x ∈ D∗ such that d = l(x) and H(x) = s,
g(d) else.

Obviously, h extends g, h is upward closed and s ∈ h(d0).
Conversely, let s be in h(d0) for some upward closed function h extending

g. Let us construct an accepting d0-run H of A on the simple tree defined by
g. For every vertex x ∈ D∗, let us define whether x belongs to H and if this
is the case then let us define the label of x. This will be done by induction
on the length of x in such a way that the label of x belongs to h(l(x)).

Base of induction: the root x = λ belongs to H and is labelled by s.
Induction step. Assume that for any vertex x of length not exceeding

n, we have made our decision in such a way that the label of x belongs to
h(l(x)). Let x be a vertex of length n. If x doesn’t belong to H or x is
labelled by a dead end, then all the sons of x don’t belong to H. Assume
that x is labelled by s. Since s ∈ h(l(x)) and h is upward closed, there is a
transition 〈s, l(x), f〉 of A such that ∀d′ ∈ D f(d′) ∈ h(d′). Include all the
sons of x in H and label the son xd′ by f(d′).

8



Thus, the run H is defined. All its finite paths have allowed dead ends
because if x is a leaf of H, then the label of x is a dead end from g(l(x))
(as h extends g). As the macrostate {s} is final, all infinite paths in H have
final limit macrostate, therefore, the run H is an accepting run. Lemma 7 is
proved.

Obviously, the property of a function g and of an element d stated in
item (2) of Lemma 7 is monadic definable, therefore the case of an automaton
with unique state is completed.

Let us turn to automata having more than one state. Let an automaton
A have n states 0, 1, . . . ,n− 1 and let 0 be the initial state. Let ∆ be the set
of dead ends of A. Consider two subcases.

First subcase: the macrostate S = {0, 1, . . . ,n − 1} is not final. We
use the automaton Bi, where i ∈ S, introduced in §2. Recall that the set of
states of Bi is S \ {i + 1}, where the addition is modulo n, the initial state
of Bi is i; Bi has all the transitions of A except for those having (i + 1) on
the bottom, the set of dead ends of Bi is ∆

⋃
(i + 1); finally, the macrostates

of Bi are obtained from macrostates of A by deleting (i + 1).
Let us say that a function h from D into P(S

⋃
∆) is downward closed if

i ∈ h(d) for any i ∈ S and for any d ∈ D such that Bi d-accepts the simple
P(∆

⋃{i + 1})-tree defined by the function hi(d
′) = h(d′)

⋂
(∆

⋃{i + 1}).
Lemma 8. The following assertions are equivalent.
(1) The automaton A d0-accepts the simple P(∆)-tree defined by g.
(2) 0 ∈ h(d0) for any downward closed function h extending g.
Proof. Assume that (2) is true. Let us prove that (1) is true. Define Ai

to be the automaton obtained from A by declaring i to be the (single) initial
state. Set
h(d) = g(d)

⋃{i ∈ S | Ai d-accepts the simple tree defined by g}.
Obviously h extends g and is downward closed. Hence 0 ∈ h(d0), that

is, the automaton A0 = A d0-accepts the simple tree defined by g.
Conversely, assume that there is a downward closed function h extending

g such that 0 /∈ h(d0). Let us prove that (1) is false. Let us define the
function l(x) just as it was done in the proof of Lemma 6. Let H be an
arbitrary d0-run of A on the simple tree defined by g. Let us prove that H
has an infinite path having non-final limit macrostate or a finite path with
a non-allowed dead end. We construct that path step by step; on each step
we add a finite or an infinite continuation to existing path.

Denote by Pj (finite or infinite) path obtained on j-th step. On j-th step

9



we want to satisfy one of three following conditions:
(1) Pj is infinite and has non-final limit macrostate; in this case the

construction in completed;
(2) Pj is finite and its last vertex xj is labelled in H by a non-allowed

dead end; in this case the construction is completed also;
(3) Pj is finite and its last vertex xj is labelled by the state i, where

i = (j mod n), and i /∈ h(l(xj)).
At the start x0 = λ and H(x0) = H(λ) = 0 /∈ h(d0), thus for j = 0 third

alternative holds.
Assume now that the step j is made and that assertion (3) is true. Denote

by xj the last vertex of Pj and by i = (j mod n) its label in H. As i /∈ h(l(xj))
and h is downward closed, the automaton Bi doesn’t l(xj)-accept the simple
P(∆

⋃{i + 1})-tree defined by the function hi(d
′) = h(d′)

⋂
(∆

⋃{i + 1}).
Let us define a subtree H′ of the tree of D-branching labelled by elements
of S. The tree H′ consists of all the vertices y such that no proper prefix
of the word xjy is labelled by i + 1 in H. A vertex y has in H′ the label
equal to the label of xjy in H. It is easy to verify that H′ is a l(xj)-run of
Bi on the simple P(∆

⋃{i + 1})-tree defined by hi. We know that H′ is not
an accepting run. Hence, there is a finite path S′ in H′ ending in a vertex y
such that H′(y) ∈ ∆

⋃{i + 1} \ hi(l(y)) or an infinite path S′ in H′ having
non-final limit macrostate. In the first case either H′(y) ∈ ∆ \ g(l(y)), or
H′(y) = i + 1 /∈ h(l(y)). Thus, in this case we can define the last vertex of
the new path Pj+1 to be xjy. In the second case the path xjS

′ is infinite
path in H having non-final limit macrostate.

The construction of the path is completed. It remains to note that if
we have made infinitely many steps then the limit macrostate of the defined
path is equal to S and S is non-final macrostate. Lemma 8 is proved.

By induction hypothesis, for each i ∈ S there is a formula ϕi(hi,d) which
is true iff Bi d-accepts the simple P(∆

⋃{i + 1})-tree defined by hi. Thus,
the property of h to be downward closed is monadic definable, therefore, the
property of g and d0 stated in item (2) of Lemma 8 is monadic definable.

Second subcase: The macrostate S is final.
Let us call a function h: D −→ P(∆

⋃
S) upward closed if

Bi d0-accepts the simple P(∆
⋃{i + 1})-tree defined by the function

hi(d
′) = h(d′)

⋂
(∆

⋃{i + 1}) for any i ∈ S and for any d0 ∈ D such that
i ∈ h(d0).

Lemma 9. The following assertions are equivalent.

10



(1) The automaton A d0-accepts the simple P(∆)-tree defined by g.
(2) There is an upward closed function h extending g such that 0 ∈ h(d0).
Proof. Assume that (1) is true. Let us prove that (2) is true. Let

us fix an accepting d0-run of A on the simple tree defined by g. Set
h(d) =

{
H(x) | l(x) = d

} ⋃
g(d), where l(x) is defined just as it was done

in Lemma 6. It is easy to verify that h is upward closed, extends g and
0 ∈ h(d0).

Conversely, assume that there is an upward closed function h extending
g such that 0 ∈ h(d0). Let us define an accepting d0-run of A on the simple
tree defined by g. As 0 ∈ h(d0) and h is upward closed, there is an accepting
d0-run H0 of B0 on the simple tree defined by h0.

Obviously H0 is also a d0-run of A on the simple P(∆)-tree defined by
g. The d0-run H0 is not an accepting d0-run of A only if some its leaves are
labelled by 1.

For every vertex x in H0 labelled by 1 we make the following. We know
that 1 ∈ h(l(x)). Therefore there is an accepting l(x)-run H1 of B1 on the
simple tree defined by h1. Let us glue to x the labelled tree H1.

The resulting labelled tree may be regarded as a d0-run of A on the simple
tree defined by g. This tree is not an accepting d0-run only if some its leaves
are labelled by 2. We repeat the above actions and so on. After ω steps we
obtain a d0-run of A on the simple tree defined by g. Any dead end in that
run is allowed. Every infinite path in that run either from some place comes
into an accepting run of Bi (for some i ∈ S), or for each i ∈ S has infinitely
many occurrences of i and therefore has final limit macrostate. Lemma 9 is
proved.

It remains to note that the property of d0 and g stated in item (2) of
Lemma 9 is monadic definable.

11


