Circuit Complexity and Multiplicative Complexity of Boolean Functions

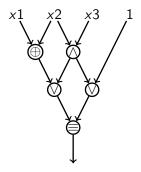
Alexander S. Kulikov joint work with Arist Kojevnikov

Steklov Institute of Mathematics at St. Petersburg

Franco-Russian workshop on Algorithms, complexity and applications 14 June 2010

Boolean Circuits

- inputs: propositional variables x_1, x_2, \dots, x_n and constants 0, 1
- gates: binary functions
- fan-out of a gate is unbounded



• Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n,t) of circuits of size $\leq t$ with n input variables does not exceed

$$\left(16(t+n+2)^2\right)^t.$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variable or a constant ($\leq n+2$ choices).

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n,t) of circuits of size $\leq t$ with n input variables does not exceed

$$\left(16(t+n+2)^2\right)^t.$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variable or a constant ($\leq n+2$ choices).

• For $t = 2^n/(10n)$, F(n, t) is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n,t) of circuits of size $\leq t$ with n input variables does not exceed

$$\left(16(t+n+2)^2\right)^t.$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variable or a constant ($\leq n+2$ choices).

- For $t = 2^n/(10n)$, F(n, t) is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.
- Thus, the circuit complexity of almost all Boolean functions on *n* variables is exponential in *n*. Still, we do not know any explicit function with super-linear circuit complexity.

Known Lower Bounds

	circuit size	formula size
full binary basis B_2	3n - o(n)	$n^{2-o(1)}$
	[Blum]	[Nechiporuk]
basis $U_2 = B_2 \setminus \{\oplus, \equiv\}$	5n-o(n)	$n^{3-o(1)}$
	[lwama et al.]	[Hastad]
	exponential	
monotone basis $M_2 = \{\lor, \land\}$	[Razborov; Alon, Boppana;	
	Andreev; Karchmer, Wigderson]	

 We are interested in explicitly defined Boolean functions of high circuit complexity.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.
- Usually, under a Boolean function f we actually understand an infinite sequence $\{f_n \mid n = 1, 2, \dots\}$.

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

```
2n-c [Kloss, Malyshev, 65]

2n-c [Schnorr, 74]

2.5n-o(n) [Paul, 77]

2.5n-c [Stockmeyer, 77]

3n-o(n) [Blum, 84]
```

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

```
2n-c [Kloss, Malyshev, 65]

2n-c [Schnorr, 74]

2.5n-o(n) [Paul, 77]

2.5n-c [Stockmeyer, 77]

3n-o(n) [Blum, 84]
```

This Talk

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

```
2n-c [Kloss, Malyshev, 65]

2n-c [Schnorr, 74]

2.5n-o(n) [Paul, 77]

2.5n-c [Stockmeyer, 77]

3n-o(n) [Blum, 84]
```

This Talk

• We present a proof of a 7n/3 - c lower bound which is as simple as Schnorr's proof of 2n - c lower bound.

Known Lower Bounds for Circuits over B₂

Known Lower Bounds

```
2n-c [Kloss, Malyshev, 65]

2n-c [Schnorr, 74]

2.5n-o(n) [Paul, 77]

2.5n-c [Stockmeyer, 77]

3n-o(n) [Blum, 84]
```

This Talk

- We present a proof of a 7n/3 c lower bound which is as simple as Schnorr's proof of 2n c lower bound.
- The key idea is a combined circuit complexity measure assigning different weight to gates of different types.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

Take an optimal circuit for the function in question.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination

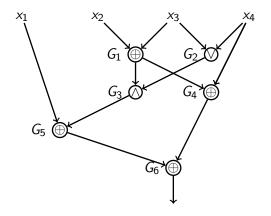
All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

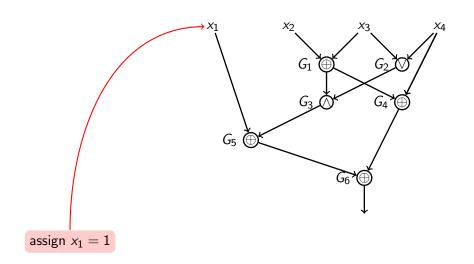
The main idea

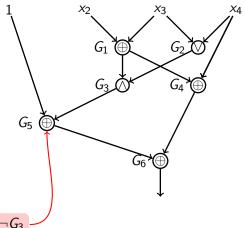
- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

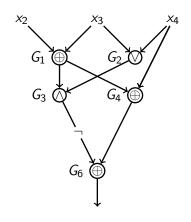
This method is very unlikely to produce non-linear lower bounds.

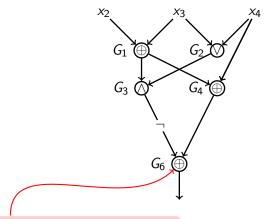




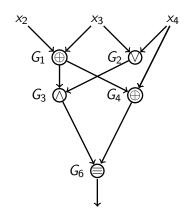


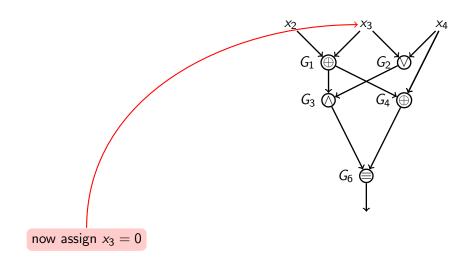
 G_5 now computes $G_3 \oplus 1 = \neg G_3$

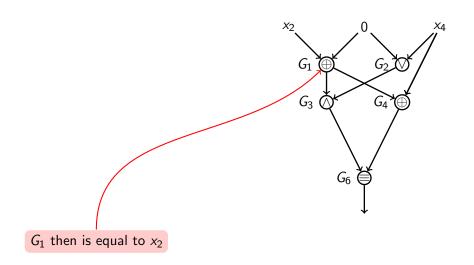


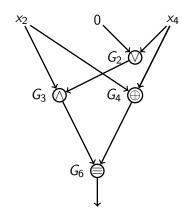


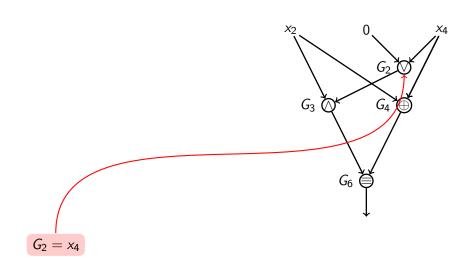
now we can change the binary function assigned to \mathcal{G}_6

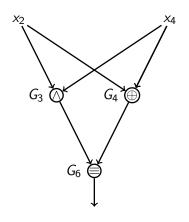












The Class $Q_{2,3}^n$

Definition

A function $f \colon \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

• for all different $i, j \in \{1, ..., n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- for all different $i, j \in \{1, ..., n\}$, one obtains at least three different subfunctions by replacing x_i and x_i by constants;
- ② for all $i \in \{1, ..., n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \ge 4$) by replacing x_i by any constant.

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- for all different $i, j \in \{1, ..., n\}$, one obtains at least three different subfunctions by replacing x_i and x_i by constants;
- ② for all $i \in \{1, ..., n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \ge 4$) by replacing x_i by any constant.

Modular functions

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- for all different $i, j \in \{1, ..., n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- ② for all $i \in \{1, ..., n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \ge 4$) by replacing x_i by any constant.

Modular functions

• Let $MOD_{m,r}^n(x_1,\ldots,x_n)=1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- for all different $i, j \in \{1, ..., n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- ② for all $i \in \{1, ..., n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \ge 4$) by replacing x_i by any constant.

Modular functions

- Let $MOD_{m,r}^n(x_1,\ldots,x_n)=1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.
- Then $\mathrm{MOD}^n_{3,r}, \mathrm{MOD}^n_{4,r} \in Q^n_{2,3}$, but $\mathrm{MOD}^n_{2,r} \not\in Q^n_{2,3}$ (as one can only get $\mathrm{MOD}^{n-2}_{2,0}$ and $\mathrm{MOD}^{n-2}_{2,1}$ from $\mathrm{MOD}^n_{2,r}$ by fixing two constants).

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Proof

• Induction on n. If $n \le 4$, then the statement is trivial.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on n. If $n \le 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on n. If $n \le 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on n. If $n \le 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.
- Thus, either x_i or x_j fans out to another gate P.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on n. If $n \le 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.
- Thus, either x_i or x_j fans out to another gate P.
- By assigning this variable, we eliminate at least two gates and get a subfunction from $Q_{2,3}^{n-1}$.

Binary functions

Binary functions

The set B_2 of all binary functions contains 16 functions f(x, y):

2 constants: 0, 1

Binary functions

- **1** 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .

Binary functions

- **1** 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.

Binary functions

- 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
- **3** 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Binary functions

The set B_2 of all binary functions contains 16 functions f(x, y):

- 2 constants: 0, 1
- 2 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
- **3** 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.

AND-type Gates vs XOR-type Gates

• AND-type gates are easier to handle than XOR-type gates.

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_i or \bar{x}_i .

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j .
- This is why, in particular, the current record bounds for circuits over $U_2 = B_2 \setminus \{\oplus, \equiv\}$ are stronger than the bounds over B_2 .

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j .
- This is why, in particular, the current record bounds for circuits over $U_2 = B_2 \setminus \{\oplus, \equiv\}$ are stronger than the bounds over B_2 .
- Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.

 The minimal possible number of AND-type gates in a circuit computing f is called the multiplicative complexity of f.

- The minimal possible number of AND-type gates in a circuit computing f is called the multiplicative complexity of f.
- The multiplicative complexity of almost all Boolean function is about $2^{n/2}$.

- The minimal possible number of AND-type gates in a circuit computing f is called the multiplicative complexity of f.
- The multiplicative complexity of almost all Boolean function is about $2^{n/2}$.
- The best known lower bound is n-1 (holds even for the conjunction of n variables).

Polynomials over GF(2)

Polynomials over GF(2)

• Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(\text{MOD}_{3,0}^3) = x_1 x_2 x_3 \oplus (1 \oplus x_1)(1 \oplus x_2)(1 \oplus x_3)$.

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(\text{MOD}_{3,0}^3) = x_1 x_2 x_3 \oplus (1 \oplus x_1)(1 \oplus x_2)(1 \oplus x_3)$.
- Note that $\tau(f)$ is multi-linear.

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(\text{MOD}_{3,0}^3) = x_1 x_2 x_3 \oplus (1 \oplus x_1)(1 \oplus x_2)(1 \oplus x_3)$.
- Note that $\tau(f)$ is multi-linear.

Lemma (Degree lower bound)

Any circuit computing f contains at least $\deg(au(f)) - 1$ AND-type gates.

Proof of the Degree Lower Bound

Proof of the Degree Lower Bound

• We show that a circuit with d AND-type gates cannot compute a function of degree more than d+1 by induction.

Proof of the Degree Lower Bound

- We show that a circuit with d AND-type gates cannot compute a function of degree more than d+1 by induction.
- Note that it is important that we are working in GF(2). To compute x^k one needs only about $\log k$ binary multiplications.

Proof of the Degree Lower Bound

- We show that a circuit with d AND-type gates cannot compute a function of degree more than d+1 by induction.
- Note that it is important that we are working in GF(2). To compute x^k one needs only about $\log k$ binary multiplications.
- Consider the first (in a topological sorting of all the gates) AND-type gate. Note that it computes a function of degree at most 2.

Proof of the Degree Lower Bound

- We show that a circuit with d AND-type gates cannot compute a function of degree more than d+1 by induction.
- Note that it is important that we are working in GF(2). To compute x^k one needs only about $\log k$ binary multiplications.
- Consider the first (in a topological sorting of all the gates) AND-type gate. Note that it computes a function of degree at most 2.
- Replace this gate by a new variable. We now have a circuit with d-1 AND-type gates and hence, by induction, it computes a function of degree at mots d.

Proof of the Degree Lower Bound

- We show that a circuit with d AND-type gates cannot compute a function of degree more than d+1 by induction.
- Note that it is important that we are working in GF(2). To compute x^k one needs only about $\log k$ binary multiplications.
- Consider the first (in a topological sorting of all the gates) AND-type gate. Note that it computes a function of degree at most 2.
- Replace this gate by a new variable. We now have a circuit with d-1 AND-type gates and hence, by induction, it computes a function of degree at mots d.
- Now return back the removed gate. Since we are in GF(2), this increases the degree by at most 1.

Combined Complexity Measure

Idea

In a typical bottleneck case we usually have only XOR-type gates, however we are given several AND-type gates in advance.

Combined Complexity Measure

Idea

In a typical bottleneck case we usually have only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Combined Complexity Measure

Idea

In a typical bottleneck case we usually have only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Definition

For a circuit C, let A(C) and X(C) denote the number of AND- and XOR-type gates in C, respectively. Let also $\mu(C) = 3X(C) + 2A(C)$.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

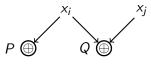
• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.

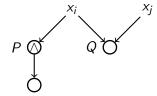
Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P. There are two cases:



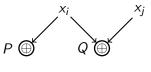


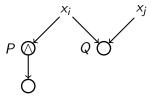
Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P. There are two cases:





• In the former case, by assigning x_i a constant one eliminates both XOR-type gates. In the latter, by assigning x_i the right constant one eliminates P, Q and all successors of P. In both cases, μ is reduced by at least 6.

7n/3 Lower Bound

Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \ge n-c$, then $C(f) \ge 7n/3-c'$.

7n/3 Lower Bound

Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \ge n - c$, then $C(f) \ge 7n/3 - c'$.

proof

Let C be an optimal circuit computing f.

7n/3 Lower Bound

Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \ge n - c$, then $C(f) \ge 7n/3 - c'$.

proof

Let C be an optimal circuit computing f.

$$3X(C)+2A(C) \ge 6n - 24 A(C) \ge n - c - 1 3C(f) = 3X(C)+3A(C) \ge 7n - 25 - c$$

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 =$$

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3$$

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3$$

• The Degree Lower Bound Lemma says that one needs at least two binary multiplications to compute $\mathrm{MOD}_{3,2}^3$, just because $\tau(\mathrm{MOD}_{3,2}^3)$ contains a monomial of degree 3.

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3$$

- The Degree Lower Bound Lemma says that one needs at least two binary multiplications to compute $\mathrm{MOD}_{3,2}^3$, just because $\tau(\mathrm{MOD}_{3,2}^3)$ contains a monomial of degree 3.
- It however contains other monomials, so probably one needs more binary multiplications in the worst case to compute $\mathrm{MOD}_{3,2}^3$?

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3$$

- The Degree Lower Bound Lemma says that one needs at least two binary multiplications to compute $\mathrm{MOD}_{3,2}^3$, just because $\tau(\mathrm{MOD}_{3,2}^3)$ contains a monomial of degree 3.
- It however contains other monomials, so probably one needs more binary multiplications in the worst case to compute $MOD_{3,2}^3$?
- No, two multiplications are enough:

$$\tau(\mathrm{MOD}_{3,2}^3) = (x_1 \oplus x_2 \oplus x_1 x_2)(x_1 \oplus x_2 \oplus x_3 \oplus 1).$$

• Consider the function $MOD_{3,2}^3$:

$$\tau(\text{MOD}_{3,2}^3) = x_1 x_2 (1 \oplus x_3) \oplus x_1 (1 \oplus x_2) x_3 \oplus (1 \oplus x_1) x_2 x_3 = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3$$

- The Degree Lower Bound Lemma says that one needs at least two binary multiplications to compute $\mathrm{MOD}_{3,2}^3$, just because $\tau(\mathrm{MOD}_{3,2}^3)$ contains a monomial of degree 3.
- It however contains other monomials, so probably one needs more binary multiplications in the worst case to compute $MOD_{3,2}^3$?
- No, two multiplications are enough:

$$\tau(\mathrm{MOD}_{3,2}^3) = (x_1 \oplus x_2 \oplus x_1 x_2)(x_1 \oplus x_2 \oplus x_3 \oplus 1).$$

• Moreover, the multiplicative complexity of any symmetric function is at most n + o(n) [Boyar, Peralta, Pochuev, 2000].

• Improve the lower bounds 3n - o(n) and 5n - o(n) for the circuit complexity over B_2 and U_2 , respectively.

- Improve the lower bounds 3n o(n) and 5n o(n) for the circuit complexity over B_2 and U_2 , respectively.
- Olose the gaps:

$$2.5n \le C_{B_2}(\mathrm{MOD}_3^n) \le 3n$$
$$4n \le C_{U_2}(\mathrm{MOD}_4^n) \le 5n$$

- Improve the lower bounds 3n o(n) and 5n o(n) for the circuit complexity over B_2 and U_2 , respectively.
- Close the gaps:

$$2.5n \le C_{B_2}(\mathrm{MOD}_3^n) \le 3n$$
$$4n \le C_{U_2}(\mathrm{MOD}_4^n) \le 5n$$

9 Prove a cn lower bound (for a constant c > 1) on the multiplicative complexity of an explicit Boolean function.

Thank you for your attention!