Chromatic Homotopy Theory Problem set 4. Adams-Novikov spectral sequence

Reminder

Let R be a commutative ring spectrum. For a spectrum $X \in Sp$ define an R-cobar complex of X by

$$\operatorname{CB}^{\bullet}_R(X) := X \otimes R^{\otimes \bullet}.$$

This is a cosimplicial object of Sp, with the arrows induced by the adjunction $-\otimes R$: Sp \leftrightarrows Mod_R: U_R , where U_R is the forgetful functor. Recall that we proved:

Theorem. Let R be a commutative ring spectrum.

- 1. Assume that R is connective and that $\pi_0 R$ is isomorphic either to \mathbb{Z}/n or to a localization of \mathbb{Z} in some set of primes. Then for any eventually connective spectrum $X \in \text{Sp}$ the natural map $L_R X \to \text{Tot } \text{CB}^{\bullet}_R(X)$ is an equivalence, where $L_R: \text{Sp} \to L_R \text{Sp}$ denotes the Bousfield localization functor.
- 2. Assume that the ring R_*R is flat over R_* . Let X, Y be a pair of spectra such that R_*X is projective over R_*R . Then the spectral sequence associated to the cosimplicial spectrum $Map(X, CB^{\bullet}_R(Y))$ is naturally a spectral sequence in (R_*, R_*R) -comodules with the second page isomorphic to

$$E_2^{s,t} \simeq \operatorname{Hom}_{R_*R}(R_*X, R_*Y)$$

and differentials of degree $|d_r| = (r, r - 1)$. If additionally $\pi_0 R$ is as in the previous part, and X and Y are eventually connective, then the spectral sequence above converges strongly to $[\Sigma^{t-s}X, L_RY]$.

The standard choices for R are $H\mathbb{F}_p$ (Adams spectral sequence), MU (Adams-Novikov spectral sequence), or BP (*p*-local Adams-Novikov spectral sequence).

1 Steenrod algebra

Problem 1. For $n \ge 0$, let $A(n) \subset \mathcal{A}^*_{(2)}$ be a subalgebra generated by Steenrod squares $\operatorname{Sq}^1, \operatorname{Sq}^2, \operatorname{Sq}^4, \ldots, \operatorname{Sq}^{2^n}$

- a) Prove that A(n) is finite dimensional Hopf subalgebra of $\mathcal{A}^*_{(2)}$ for all n.
- b) Deduce that all element of $\mathcal{A}_{(2)}^{>0}$ are nilpotent.
- c) Deduce that the Steenrod algebra is injective as a module over itself.

Problem 2. Let B be a subalgebra of k-algebra A and $\varepsilon \colon B \to k$ an augmentation. Set

$$A//B := A \otimes_B k \simeq A/(A \cdot I(B)),$$

where $I(B) := \ker(\varepsilon)$ is an augmentation ideal.

- a) Prove that if $A \cdot I(B) = I(B) \cdot A$, then A//B is a k-algebra and the canonical map $A \to A//B$ is an algebra homomorphism.
- b) Let A be a connected Hopf algebra and $B \hookrightarrow A$ a Hopf subalgebra. Prove that $A \simeq A//B \otimes_k B$ as right B-modules. In particular A is free as right B-module.
- c) Let $B \hookrightarrow \mathcal{A}^*_{(2)}$ be a subalgebra such that $\mathcal{A}^*_{(2)}$ is flat as a right *B*-modules. Prove that if $H^*(E, \mathbb{F}_2) \simeq \mathcal{A}^*_{(2)}//B$, then for any spectrum X the second pages of the cohomological \mathbb{F}_p -Adams spectral sequence for $E_*(X)_{\widehat{p}}$ and $E^*(X)_{\widehat{p}}$ take the form

 $E_2^{*,*} \simeq \operatorname{Ext}_B^{*,*}(H^*(X, \mathbb{F}_2), \mathbb{F}_2) \quad \text{and} \quad E_2^{*,*} \simeq \operatorname{Ext}_B^{*,*}(\mathbb{F}_2, H^*(X, \mathbb{F}_2))$

respectively.

Problem 3.

- a) Prove that $H^*(H\mathbb{Z}, \mathbb{F}_2) \simeq \mathcal{A}^*_{(2)}//A(0)$.
- b) Prove that $H^*(ko, \mathbb{F}_2) \simeq \mathcal{A}^*_{(2)}//A(1)$.
- *c) Prove that there does not exist a spectrum X such that $H^*(X, \mathbb{F}_2) \simeq \mathcal{A}^*_{(2)}//A(n)$ for n > 2.

2 Adams spectral sequence

Problem 4.

- a) Let A be an augmented associative k-algebra with the augmentation ideal $I := \ker(A \to k)$. Prove that $\operatorname{Ext}_{A}^{1}(k,k)$ is canonically isomorphic to the space of indecompossable elements I/I^{2} .
- b) Prove that

$$\operatorname{Ext}^{1}_{\mathcal{A}^{(2)}_{*}}(\mathbb{F}_{2}, \Sigma^{t}\mathbb{F}_{2}) \simeq \begin{cases} \mathbb{F}_{2}, & t = 2^{i} \\ 0, & t \neq 2^{i} \end{cases}$$

c) Prove that h_0 detects $2 \in \mathbb{Z}_2 \simeq \pi_0(\mathbb{S})_{\widehat{2}}$. Using Adams spectral sequence for $\pi_*(\mathbb{S}/2)_{\widehat{2}}$ deduce that $\pi_2(\mathbb{S}/2) \simeq \mathbb{Z}/4\mathbb{Z}$.

Definition 2.1. Generators of $\operatorname{Ext}_{4^{(2)}}^{1}(\mathbb{F}_{2}, \Sigma^{2^{i}}\mathbb{F}_{2})$ are usually denoted by h_{i} .

Problem 5. (Division algebras, *H*-space structures on \mathbb{S}^{2n-1} and Hopf invariant one)

- a) Let X_{φ} be the cofiber of a map $\varphi \colon S^{2n-1} \to S^n$. By excision $H_*(X_{\varphi}, \mathbb{F}_2) \simeq \mathbb{F}_2 \oplus \Sigma^{-n} \mathbb{F}_2 \oplus \Sigma^{-2n} \mathbb{F}_2$. Let x, y be generators of $H^n(X_{\varphi}, \mathbb{F}_2)$ and $H^{2n}(X_{\alpha}, \mathbb{F}_2)$ respectively. Hopf invariant of the map φ is the number $h(\varphi) \in \mathbb{F}_2$, such that $x^2 = h(\varphi)y$. Prove that if \mathbb{S}^{2n-1} admits a structure of H-space, then there exists a map $\mathbb{S}^{2n-1} \to \mathbb{S}^n$ with Hopf invariant 1. (Hint: Use generalized Hopf fibration).
- b) Prove that the map $\varphi \colon \mathbb{S}^{2n-1} \to \mathbb{S}^n$ has Hopf invariant one, then n is a power of 2. (Hint: interpret $h(\varphi)$ in terms of Steenrod squares and use relations in Steenrod algebra).
- c) For $n = 2^i$, prove that if $\varphi \in \pi_{2n-1}(\mathbb{S}^n)$ has Hopf invariant one, then h_i is a permanent cycle (i.e. survives to $E_{\infty}^{*,*}$) in the cohomological Adams spectral sequence $E_2^{*,*} = \operatorname{Ext}_{\mathcal{A}_{(2)}^*}^*(\mathbb{F}_2, \Sigma^*\mathbb{F}_2) \Rightarrow \pi_*(\mathbb{S})_{\widehat{2}}$.

Remark 2.2. In the next problem set You will prove that h_i are not infinite cycles for i > 3. Hence the only unital division algebras over \mathbb{R} are $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} .

Problem 6. (Vanishing line in the Adams Spectral Sequence) Let

$$\varepsilon'(s) = \begin{cases} 0, & s = 0 \mod 4, \\ 1, & s = 1 \mod 4, \\ 2, & s = 2, 3 \mod 4. \end{cases} \text{ and } \varepsilon(s) = \begin{cases} 1, & s = 1 \mod 4, \\ 2, & s = 2 \mod 4, \\ 3, & s = 0, 3 \mod 4. \end{cases}$$

a) Let M be a connective $\mathcal{A}^*_{(2)}$ -module (i.e. $M^{<0} \simeq 0$) free as A(0)-module. Prove that

$$\operatorname{Ext}^{s}_{\mathcal{A}^{*}_{(2)}}(M, \Sigma^{t}\mathbb{F}_{2}) \simeq 0$$

for $0 < t - s < 2s - \varepsilon'(s)$. (Hint: first prove the statement for $s \le 4$. Then show that there exists an A(0)-free resolution of M, hence $\operatorname{Ext}_{\mathcal{A}^{*}_{(2)}}^{s+4}(M, \Sigma^{t}\mathbb{F}_{2}) \simeq \operatorname{Ext}_{\mathcal{A}^{*}_{(2)}}^{s}(M', \Sigma^{t}\mathbb{F}_{2})$ for some other A(0)-free module M').

- b) Show that $\ker(\mathcal{A}^*_{(2)}//A(0) \to \mathbb{F}_2)$ is free as an A(0)-module.
- c) Deduce that $\operatorname{Ext}_{\mathcal{A}_{(2)}^{s}}^{s}(\mathbb{F}_{2}, \Sigma^{t}\mathbb{F}_{2}) \simeq 0$ for $0 < t s < 2s \varepsilon(s)$.

3 Adams-Novikov spectral sequence

Problem 7. (Few low dimensional stable homotopy groups)

a) Prove that

$$\pi_i(\mathbb{S})_{\widehat{p}} \simeq \begin{cases} 0 & i < 2p-3 \\ \mathbb{Z}/(p) & i = 2p-3 \end{cases}$$

- b) Using Adams spectral sequence compute $\pi_i(\mathbb{S})_{\widehat{2}}$ for $i \leq 4$.
- c) Deduce that

i	0	1	2	3	4
$\pi_i(\mathbb{S})$	\mathbb{Z}	$\mathbb{Z}/(2)\langle\eta\rangle$	$\mathbb{Z}/(2)\langle \eta^2 \rangle$	$\mathbb{Z}/(8)\langle u angle\oplus\mathbb{Z}/(3)\langle x angle$	0

where x is a generator of 3-torsion in $\pi_3(\mathbb{S})$ and ν representes the generalized Hopf fibration corresponding to \mathbb{H} and is detected in ASS by h_2 . Using multiplicative structure of ASS prove that $\eta^3 = 4\nu \neq 0$ and $\eta^4 = 0$,

Problem 8.

a) Prove that

$$H_*(MU, \mathbb{F}_p) \simeq P \otimes_{\mathbb{F}_p} \mathbb{F}_p[\{y_i\}_{i+1 \neq p^k}]$$

as a co-module over the dual Steenrod algebra, where P is sub-Hopf algebra of \mathcal{A}_*^{\vee} defined as

$$P = \begin{cases} \mathbb{F}_p[\xi_1, \xi_2, \dots], & p \neq 2\\ \mathbb{F}_p[\xi_1^2, \xi_2^2, \dots], & p = 2 \end{cases}$$

- b) Prove that $\mathcal{A}_*^{\vee}//\mathbb{F}_p[\xi_1,\xi_2,\ldots,\xi_n]$ is projective as a co-module over itself.
- c) Deduce that $\operatorname{Ext}_{\mathcal{A}_{p}^{\vee}}^{*,*}(\mathbb{F}_{p}[\xi_{1},\xi_{2},\ldots,\xi_{n}],\mathbb{F}_{p})\simeq 0$. Passing to co-limit deduce that $\operatorname{Ext}_{\mathcal{A}_{p}^{\vee}}^{*,*}(P,\mathbb{F}_{p})\simeq 0$
- d) Deduce that $\operatorname{Map}(MU, \mathbb{S}_p) \simeq 0$. Deduce that $\operatorname{Map}(MU, \mathbb{S}) \simeq 0$.

Problem 9.

- a) Let Y be a finite spectrum. For X
 - Any MU-module (in particular any complex oriented cohomology theory R),
 - KU, HA for any complex of abelian groups A,
 - Any bounded from above spectrum X

prove that $Map(X, Y) \simeq 0$.

b) Let X be bounded above spectrum. Deduce that X is dualizable if and only if $X \simeq 0$. (In particular HA is not dualizable for $A \neq 0$).

Problem 10. Let *E* be a spectrum such that π_*E and $H_*(E,\mathbb{Z})$ are torsion free. Prove that the restriction map $\pi_* \operatorname{End}_{\operatorname{Sp}}(E, E) \to \operatorname{End}_{\mathbb{Z}}^*(E^*)$ is injective. *(Hint: Atiyah-Hirzebruch spectral sequence).*

Problem 11.

- a) (*MU*-acyclic spectra) Let X be such that $Map(X, \mathbb{S}) \simeq 0$ and Y be such that the Brown-Comenetz dual spectrum *IY* is a finite spectrum. Prove that $X \wedge Y \simeq 0$. Deduce that there exists a non-zero *MU*-acyclic spectrum.
- c) Deduce that that $I \wedge I \simeq 0$ (equivalently $L_I I \simeq 0$).

Problem 12. (Adams tower) Let R be a commutative ring spectrum. For any $X \in \text{Sp}$ the Adams tower $A^R_{\bullet}(X)$ of X

$$\ldots \to \mathcal{A}_1^R(X) \to \mathcal{A}_0^R(X) \to \mathcal{A}_{-1}^R(X) \simeq X$$

defined inductively as follows: $A_{-1}^R(X) := X$ and $A_{n+1}^R(X)$ is defined as the fiber of the *R*-Hurewicz morphism of $A_n^R(X)$

$$\mathbf{A}_{n+1}^R(X) := \operatorname{fib}\left(\mathbf{A}_n^R(X) \simeq \mathbf{A}_n^R(X) \land \mathbb{S} \xrightarrow{1 \land \eta} \mathbf{A}_n^R(X) \land R\right)$$

where $\eta \colon \mathbb{S} \to R$ is the unit map.

a) (Total homotopy fiber vs. iterated homotopy fiber) Let S be a finite set and denote by $\mathcal{P}(S)$ the lattice of subsets of S. Given a cube $X_{\bullet}: \mathcal{P}(S) \to \mathcal{C}$ in a category \mathcal{C} which admits finite limits let us denote *total homotopy fiber of* X_{\bullet} as

$$\operatorname{tfib}(X_{\bullet}) \simeq \operatorname{fib}\left(X_{\varnothing} \to \lim_{T \in \mathcal{P}(S) \setminus \varnothing} X_T\right)$$

Prove that total homotopy fiber can be computed iteratively by restricting on smaller subcubes: for any $s \in S$

$$\operatorname{tfib}(X_{\bullet}) \simeq \operatorname{fib}\left(\operatorname{tfib}(X_{|\mathcal{P}(S\setminus s)}) \to \operatorname{tfib}(X_{|\mathcal{P}(S\setminus s)\cup\{s\}})\right)$$

b) Deduce that if R admits a structure of the homotopy commutative E_1 -ring spectrum, there exists a natural equivalence of towers over X

fib
$$(X \to \operatorname{Tot}^{\leq n} \operatorname{CB}^{\bullet}_R(X)) \simeq \operatorname{A}^R_n(X)$$

(*Hint: use the fact that the natural functor* $\mathcal{P}(n) \to \Delta_{\leq n}$ *is final*).

- c) Prove that each successive map $A_{n+1}^R(M) \to A_n^R(M)$ in the Adams tower becomes nullhomotopic after tensoring with R. Deduce that $f \in Map(X, Y)$ has filtration n in the R-based Adams-Novikov spectral sequence if and only if there exists a decomposition $f = f_n \circ f_{n-1} \circ \ldots \circ f_1$ such that each $f_i \wedge R, 1 \leq i \leq n$ is nullhomotopic.
- d) Let $R \to S$ be a ring morphism. Prove that $F_R^s \operatorname{Map}_{\operatorname{Sp}}(X, Y) \subseteq F_S^s \operatorname{Map}_{\operatorname{Sp}}(X, Y)$, i.e. an element $x \in \operatorname{Map}_{\operatorname{Sp}}(X, Y)$ is detected in *R*-based Adams-Novikov SS at $s \leq s'$.