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The main aim of this lecture is to prove the Browder theorem. The main reference is W. Browder’s
paper [Bro69].

1 Introduction

At the previous lecture we have defined the Kervaire invariant of a framed manifold of dimension 2q.
Recall that this invariant is a bordism invariant, so it defines a homomorphism:

c : Ωfr2q → Z /2.

Here Ωfr2q is the group of framed cobordisms of dimension 2q and by the Pontryagin-Thom theorem

this group is equal to πs2q(S
0).

The Kervaire Invariant One Problem asks for what q the homomorphism c is surjective. The
Browder theorem is a milestone in the solution of this problem. In order to formulate theorem we need
to introduce some notation.

Notation. Denote by A2 the Steenrod algebra mod 2. Recall that there exists the Adams spectral
sequence:

E2
s,t = ExtA2

s,t (F2,F2)⇒ 2π
s
t−s(S

0),

which converges to the 2-primary component of stable homotopy groups πs∗(S
0). Let us to describe

two first rows at the second page of this spectral sequence.
Recall that A2 is a Hopf algebra, so its dual is also a Hopf algebra. Denote by Prim(A∗2) the vector

space of primitive elements of A∗2. Now it is not hard to see (for instance, the proof can be found
in [Swi75, Proposition 19.17]) that

ExtA2
1,∗(F2,F2) ∼= Prim(A∗2),

The vector space Prim(A∗2) has the basis 〈h0, h1, . . . , hi, . . .〉, such that for any i, j ∈ N

hi(Sq2j

) =

{
1, i = j;
0, i 6= j.

Moreover, any hi is evaluated by zero on decomposable elements in A2. All in all,

ExtA2
1,∗(F2,F2) ∼= F2〈h0, . . . , hi, . . . |hi ∈ ExtA2

1,2i(F2,F2)〉

There exists the Yoneda multiplication on Ext-groups and the group ExtA2
2,∗(F2,F2) is generated by

products. More precisely [Ada60],

ExtA2
2,∗(F2,F2) ∼= F2〈hihj , | i ≥ j, i 6= j + 1〉

Finally, we can formulate the Browder theorem. Recall that a class α ∈ Ep∗,∗ at some finite page is
called a permanent cycle if α persists to E∞.

Theorem (Browder). 1) There is no a framed closed manifold of dimension 2q with the Kervaire
invariant one, if q + 1 is not a power of two.
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2) If q = 2i − 1, then a such manifold (i.e framed, closed and dimension 2q) exists if and only if the
class h2

i is a permanent cycle in the Adams spectral sequence.

Remark. Form of this theorem is very close to the Adams observation on the Hopf invariant problem.
He obtained that there exists an element α ∈ π2n−1(Sn) with the Hopf invariant one if and only if
n = 2i and hi is a permanent cycle.

2 Plan of the proof

Let M be a closed smooth manifold of dimension 2q. Denote by ν the stable normal bundle of M and
denote by T (ν) the Thom spectrum of ν.

In Lecture 4 we defined the Browder spectrum MO〈vq+1〉 and by any mock MO〈vq+1〉-orientation
η : T (ν) → MO〈vq+1〉 we constructed the quadratic refinement of the intersection form restricted
to (ker(Dη)∗)q. We also proved that if η comes from a framing of M , then we have the equality

(ker(Dη)∗)q = Hq(M,Z /2). Denote by Im Ωfr2q the image of Ωfr2q under natural map

ε : Ωfr2q = π2q(S)→ π2q(MO〈vq+1〉) = MO2q〈vq+1〉.

Define the map c̃ : Im Ωfr2q → Z /2 by the rule: c̃(M,η) = c(M,η,Hq(M,Z /2)). Then the Kervaire
invariant factors as

Ωfr2q Z /2

Im Ωfr2q

c

ε
c̃

Here c̃ is the Kervaire invariant of a vq+1-oriented manifold.

The Browder’s idea was to bound the order of Im Ωfr2q . In order to do this, he first considered the
“generalized Whitehead tower” of MO〈vq+1〉.

Theorem 1. There exists the diagram

MO〈vq+1〉 MO〈vq+1〉(1) MO〈vq+1〉(2) MO〈vq+1〉(3)

MO Σ−1MO ∧Kq+1 Σ2q HZ/2

G0

F0

G1

F1

G2

F2

Here

1) the map G0 : MO〈vq+1〉 →MO is the natural map of “forgetting of vq+1-orientation”;

2) sequences

MO〈vq+1〉(1) F0−→MO〈vq+1〉
G0−−→MO,

MO〈vq+1〉(2) F1−→MO〈vq+1〉(1) G1−−→ Σ−1MO ∧Kq+1,

MO〈vq+1〉(3) F2−→MO〈vq+1〉(2) G2−−→ Σ2q HZ/2

are fiber sequences;

3) the spectrum MO〈vq+1〉(3) is 2q-connected.
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Notice that with such diagram we can associate two maps:

k1 : MO
δ−→ Σ1MO〈vq+1〉(1) ΣG1−−−→MO ∧Kq+1,

and

k2 : MO ∧Kq+1
Σδ−−→MO〈vq+1〉(2) Σ2G2−−−→ Σ2q+2 HZ/2 .

Moreover, the composition k2 ◦ k1 is trivial, so it defines the secondary cohomological operation

Φ: SMO → TΣ2q+1 HZ/2.

Now consider the morphism f : S2q → S0. We are interested in the map ε ◦f . Since any framed
manifold is a non-oriented boundary, the composition G0 ◦ (ε ◦f) is trivial, so there exists a map
ε̃ : Cone(f)→MO such that the following diagram is commutative:

S2q S0 MO〈vq+1〉 MO

Cone(f)

f ε

d

G0

ε̃

The map ε̃ is non-trivial because the composition ε̃ ◦ d = G0 ◦ ε is non-trivial.

Proposition 1. The composition ε ◦f is non-trivial if and only if the following dichotomy is satisfied

1) the composition k1 ◦ ε̃ is non-trivial;

2) or Φ(ε̃) is defined (i.e the composition k1 ◦ ε̃ is trivial) and Φ(ε̃) is non-trivial.

Proof. Exercise. Hint: suppose that ε ◦f is a lifting of ε ◦f along F0. Consider the diagram:

S2q S0 Cone(f)

MO〈vq+1〉(1) MO〈vq+1〉 MO

Σ−1MO ∧Kq+1 ∗ MO ∧Kq+1

Σ2q+1 HZ/2 ∗ Σ2q+2 HZ/2 .

f

ε ◦f

d

ε ε̄

F0

G1

G0

k1

k2 k2

Proposition 2. Spectra MO and MO ∧Kq+1 are sums of Eilenberg-Maclane spectra.

Proof. The spectrum MO is an Eilenberg-Maclane spectrum by the Thom theorem [Swi75, Theo-
rem 20.8]. Since the smash product of any spectrum with an Eilenberg-Maclane spectrum is a sum of
Eilenberg-Maclane spectra, the spectrum MO ∧Kq+1 is also an Eilenberg-Maclane spectrum.

Now notice that the map k1 acts between Eilenberg-Maclane spectra, therefore k1 is a sum of
Steenrod squares. But any Steenrod square acts by zero onH∗(Cone(f),Z /2). So the composition k1◦ε
is trivial and we can only study the secondary cohomological operation Φ.
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Since all spectra MO, MO ∧ Kq+1 and Σ2q+2 HZ/2 are sums of Eilenberg-Maclane spectra, the
secondary cohomological operation Φ is the sum of the secondary cohomological operations Φj , such
that each Φj based on the relation of the form:∑

i

SqaiSqbi = 0.

By Proposition 1, we are interested in conditions when such operation can detect an element in πs2q(S
0).

Theorem (Adams, [Ada60]). The secondary cohomology operation based on the relation
∑

SqaiSqbi =
0 detects an element in πs∗(S

0) if and only if there exists a permanent cycle hjhk ∈ E2
2,∗ in the Adams

spectral sequence, such that the experesion

hjhk

(∑
i

SqaiSqbi
)

:=
∑
i

hj(Sqai)hk(Sqbi)

is equal to one.

After the computation of maps k1 and k2 and applying the Adams theorem we can prove the
following statement.

Theorem 2. 1) If q + 1 is not a power of two, then Im Ωfr2q = 0;

2) If q + 1 = 2i and h2
i is not a permanent cycle, then Im Ωfr2q = 0;

3) If q + 1 = 2i and h2
i is a permanent cycle, then Im Ωfr2q = Z /2.

Moreover, in the last case the generator of Im Ωfr2q is cobordant to Sq×Sq with the vq+1-orientation η
such that c̃(Sq × Sq, η) = 1 (see subsection 2.3 in Lecture 4).

Evidently, Theorem 2 proves the Browder theorem.

3 Proof of Theorem 1

Let us construct the map ΣG1 : MO/MO〈vq+1〉 →MO ∧Kq+1.

Lemma 1. There exists a map h : MO/MO〈vq+1〉 →MO∧Kq+1 such that h∗ induces an isomorphism
on Hi(−,Z /2) for i ≤ 2q + 1 and (kerh∗)2q+2 generated by one element β.

Proof. Denote by B the space BO, by E the space BO〈vq+1〉, and denote by π : E → B the embedding

of the fiber. Consider the homotopy colimit Ê of the diagram:

E B

B Ê.

π

π σ

σ

There exists the natural map π̂ : Ê → B such that the following diagram is commutative:

E B

B Ê

B

π

π σ

idσ

id
π̂

4



Then the map σ is a homotopy section π̂ and Fib(π̂) ∼= Σ Fib(π) ∼= ΣKq. Denote by γ the universal
vector bundle over B = BO. Set γ̄ := π∗(γ) and γ̂ := π̂∗(γ). The following diagram of Thom spectra
is commutative and cocartesian:

T (γ̄) T (γ)

T (γ) T (γ̂).

Tπ

Tπ Tσ

Tσ

Recall that by definition T (γ) = MO and T (γ̄) = MO〈vq+1〉. So we have the homotopy equivalence

MO/MO〈vq+1〉 ∼= Cone(Tσ) = T (γ̂)/T (γ).

It means that it is enough to construct a map h from T (γ̂)/T (γ) to MO ∧Kq+1.

Denote by j : ΣKq → Ê the embedding of the fiber of tha map π̂. Since the map π̂ : Ê → B has

the homotopy section σ : B → Ê, there exists an element g ∈ Hq+1(Ê,Z /2) = [Ê,Kq+1] such that

j∗(g) = Σ(ιq) and π̂∗(g) = 0. Consider the map H : Ê → Kq+1 × B which is defined by the rule
H(x) = (g(x), π̂(x)). Then there exists the commutative diagram

ΣKq Ê B

Kq+1 Kq+1 ×B B.

j

R

π̂

H

σ

id

i1 p2

i2

Here rows are fiber sequences, p2 : Kq+1×B → B is the projection map, i1 and i2 are standard embed-
dings, and the map R : ΣKq → Kq+1 represents Σ(ιq) ∈ Hq+1(ΣKq,Z /2). Well-known that the map R
induces an isomorphism on Hi(−,Z /2) for i ≤ 2q + 1 and (kerR∗)2q+2 is generated by Sqq+1(ιq+1).
By Serre spectral sequences for maps π̂ and i2 the map H induces an isomorphism on Hi(−,Z /2) for
i ≤ 2q + 1 and (kerH∗)2q+2 is generated by the cohomological class α such that i∗1(α) = Sqq+1(ιq+1).

Now consider the diagram of Thom spectra:

Σ∞(ΣKq)+ T (γ̂) T (γ)

Σ∞(Kq+1)+ Σ∞(Kq+1)+ ∧ T (γ) T (γ).

j̄

R

T π̂

H

Tσ

id

Ti1 Tp2

Ti2

Now rows is not fiber sequence any more, but the diagram is still commutative. So there exists the
map

h : T (γ̂)/T (γ) = Cone(Tσ)→ Cone(Ti2) = (Σ∞(Kq+1)+ ∧ T (γ))/T (γ).

There exists an isomorphism

(Σ∞(Kq+1)+ ∧ T (γ))/T (γ) ∼= Σ∞Kq+1 ∧ T (γ) = MO ∧Kq+1.

So we constructed the map h : T (γ̂)/T (γ) → Σ∞Kq+1 ∧ T (γ). By the Thom isomorphism h∗ is an
isomorphism on Hi(−,Z /2) for i ≤ 2q + 1 and (kerh∗)2q+2 is generated by the cohomological class β
such that T (i1)∗(β) = Sqq+1(ιq+1).

Lemma 2. 1) The map h induces an isomorphism on πi(−) for i ≤ 2q.

2) There exists the exact sequence

0→ Z /2→ π2q+1(MO/MO〈vq+1〉)
h∗−→ π2q+1(MO ∧Kq+1)→ 0.

3) Moreover, the kernel of h∗ is generated by the image of π2q+1(Σ∞ΣKq) under the map

j̄∗ : π2q+1(Σ∞ΣKq)→ π2q+1(T (γ̂))→ π2q+1(T (γ̂)/T (γ)).
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Proof. Exercise. Hint: use Lemma 1 and the fact that MO ∧ Kq+1 is a sum of Eilenberg-Maclane
spectra.

These two lemmas prove Theorem 1. Indeed, the map G1 : MO〈vq+1〉(1) → Σ−1MO ∧ Kq+1 is
the map Σ−1h and the map G2 : MO〈vq+1〉(2) → Σ2q HZ/2 is such that Σ2G2 represents an element
β ∈ (kerh∗)2q+2. By Lemma 2 the fiber of G2 is 2q-connected.

4 Proof of Theorem 2

By Theorem 1 we have the relation MO
k1−→MO ∧Kq+1

k2−→ Σ2q+2 HZ/2. Let us compute k∗2(ι2q+2).

Lemma 3. We have the equality in H2q+2(MO ∧Kq+1,Z /2):

k∗2(ι2q+2) = Sqq+1(U ∪ ιq+1) + vq+1 ∪ U ∪ ιq+1 +
∑

0≤j≤q
i+j=q+1

(wi ∪ U) ∪ Sqjιq+1.

Here U ∈ H0(MO,Z /2) is the Thom class, vq+1 ∈ Hq+1(BO,Z /2) is the universal (q+1)-th Wu class,
wj ∈ Hj(BO,Z /2) is the universal j-th Stiefel-Whitney class and ιq+1 ∈ Hq+1(Kq+1,Z /2).

Proof. Denote by X the expression

Sqq+1(U ∪ ιq+1) + vq+1 ∪ U ∪ ιq+1 +
∑

0≤j≤q
i+j=q+1

(wi ∪ U) ∪ Sqjιq+1.

By Lemma 1 the element k∗2(ι2q+2) is a unique non-trivial element in (kerh∗)2q+2. So it is enough to
prove two facts on X: X 6= 0 and h∗(X) = 0.

The element X is not equal to zero, because

j̄′∗(X) = Sqq+1(ιq+1) ∈ H2q+2(Kq+1,Z /2).

The map j̄′ : Σ∞Kq+1 →MO ∧Kq+1 is the smash of the unit map S →MO with Σ∞Kq+1.
Let us compute h∗(X). First,

h∗(Sqq+1(U ∪ ιq+1)) = Sqq+1(U ∪ g)

=
∑

i+j=q+1

SqiU ∪ Sqjg

= U ∪ g2 +
∑

0≤j≤q
i+j=q+1

SqiU ∪ Sqjg

= U ∪ g2 +
∑

0≤j≤q
i+j=q+1

wi ∪ U ∪ Sqjg.

Here g ∈ H∗(MO/MO〈vq+1〉,Z /2), so g2 = δ∗(g) ∪ g. But δ∗(g) is a non-zero element in the kernel
of the map

π∗ : Hq+1(MO,Z /2)→ Hq+1(MO〈vq+1〉,Z /2),

so δ∗(g) = vq+1 ∪ U . Hence,

h∗(Sqq+1(U ∪ ιq+1)) = vq+1 ∪ U ∪ g +
∑

0≤j≤q
i+j=q+1

wi ∪ U ∪ Sqjg.

But
h∗(vq+1 ∪ U ∪ ιq+1) = vq+1 ∪ U ∪ g,

h∗
( ∑

0≤j≤q
i+j=q+1

(wi ∪ U) ∪ Sqjιq+1

)
=

∑
0≤j≤q
i+j=q+1

wi ∪ U ∪ Sqjg

So h∗(X) = 0.
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Now we can prove Theorem 2. The relation

MO
k1−→MO ∧Kq+1

k2−→ Σ2q+2 HZ/2

defines the sum of secondary cohomological operations Φj , where any Φj is based on a relation of the
form ∑

aibi = 0.

Here ai, bi is some Steenrod squares. By proposition 1 we want to know when Φj can detect elements

in πs2q. By the Adams theorem it is enough to evaluate hjhk ∈ ExtA2
2,∗(F2,F2) on the relation

∑
aibi = 0.

Notice that dim(aibi) = 2q + 2. Since MO ∧Kq+1 = Σq+1 HZ/2∨ΣbA, where A is an Eilenberg-
Maclane spectrum and b > q + 1, we have dim(bi) ≥ q + 1. So by dimensional reason if j > k,
then

hjhk

(∑
aibi

)
= 0

So we can consider only elements h2
k ∈ ExtA2

2,2k+1(F2,F2). But if q + 1 is not a power of two, then

h2
k(
∑
aibi) = 0 for any k. So in this case Φ does not detect any element in πs2q, and Im Ωfr2q = 0. It

proves the first statement of Theorem 2.
Now suppose that q = 2k − 1. Then the Steenrod square Sqq+1 is indecomposable, so

χ(Sqq+1) = Sqq+1 +D,

where D is the sum of decomposable elements in A2. It means that the Wu class vq+1 = wq+1 + e,
where the element e belongs to the subalgebra of H∗(BO,Z /2) generated by wi, i < q + 1.

Hence,

k∗2(ι2q+2) = Sqq+1(U ∪ ιq+1) +
∑

0≤i≤q

U ∪ xi ∪ ζi.

Here ζi ∈ Hq+i+1(Kq+1,Z /2) and xi ∈ Hq+1−i(BO,Z /2).
Now k∗1(U ∪ιq+1) = χ(Sqq+1)U in Hq+1(MO,Z /2). So in the relation, which defines the secondary

cohomological operation Φ, ∑
aibi = 0

we have b1 = χ(Sqq+1), Since q = 2k−1, hk(χ(Sqq+1)) = 1. Also, we have a1 = Sqq+1, so h2
k(a1b1) = 1.

Now show that h2
k(k∗1(

∑
U ∪ xi ∪ ζi)) = 0. Consider the decomposition∑

0≤i≤q

U ∪ xi ∪ ζi =
∑
i≥2

aici,

where ai ∈ A2 and ci are generators of H∗(MO ∧Kq+1,Z /2) over the Steenrod algebra A2. Notice
that dim(ci) ≥ q + 1.

Suppose that dim(c2) = q + 1 and dim(ci) > q + 1 for i > 2. Then c2 = U ∪ ιq+1 and

h2
k

(∑
aik
∗
1(ci)

)
= hk(a2)hk(k∗1c2) = hk(a2).

Suppose that hk(a2) = 1, then a2 = Sqq+1 +D, where D is a sum of decomposable elements. Then

j̄′∗
(∑

aici

)
= Sqq+1ιq+1 +D′(ιq+1) 6= 0.

Here D′ is another sum of decomposable elements. On the other hand,

j̄′∗

( ∑
0≤i≤q

U ∪ xi ∪ ζi

)
= 0,

because dim(xi) > 0 and j̄′∗(xi) = 0. It means that hk(a2) = 0 and

h2
k(k∗1k

∗
2(ι2q+2)) = 1.
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By the Adams theorem Φ detects an element in πs2q if and only if h2
k is a permanent cycle. So we

proved the second and the third statements of Theorem 2.
By Lemma 2 we have the inclusion Im Ωfr2q ⊂ Im(j∗), where j : Σ∞Kq → MO〈vq+1〉 is the map

which comes from the fiber sequence Kq → BO〈vq+1〉 → BO. It is an exercise to show that Im(j∗)
is generated by cobordism class of (Sq × Sq, η) from subsection 2.3 in Lecture 4. But the Kervaire
invariant of (Sq × Sq, η) is equal to one, so we proved the Browder theorem.
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