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The main aim of this lecture is to prove the Browder theorem. The main reference is W. Browder’s
paper [Bro69].

1 Introduction

At the previous lecture we have defined the Kervaire invariant of a framed manifold of dimension 2q.
Recall that this invariant is a bordism invariant, so it defines a homomorphism:

c: Qgg — 7 )2.

Here Qg; is the group of framed cobordisms of dimension 2¢ and by the Pontryagin-Thom theorem
this group is equal to w3, (S).

The Kervaire Invariant One Problem asks for what ¢ the homomorphism c is surjective. The
Browder theorem is a milestone in the solution of this problem. In order to formulate theorem we need
to introduce some notation.

Notation. Denote by As the Steenrod algebra mod 2. Recall that there exists the Adams spectral
sequence:
EZ, = Ext (Fy, Fy) = omy_(S°),

which converges to the 2-primary component of stable homotopy groups 7¢(S°). Let us to describe
two first rows at the second page of this spectral sequence.

Recall that As is a Hopf algebra, so its dual is also a Hopf algebra. Denote by Prim(.A%) the vector
space of primitive elements of Aj. Now it is not hard to see (for instance, the proof can be found
in [Swi75, Proposition 19.17]) that

Ext{? (F2,F3) = Prim(A43),

The vector space Prim(.A%) has the basis (ho, h1,..., hi,...), such that for any i,j € N
) 27 o 17 1= _7,

Moreover, any h; is evaluated by zero on decomposable elements in A,. All in all,

EXt‘iA’i(]FQ,FQ) = F2<h0, ey h,i, e | hl € EXtﬁ;l (]FQ,FQ)>

There exists the Yoneda multiplication on Ext-groups and the group Ext“éi (Fo,F3) is generated by
products. More precisely [Ada60],

Eixty'2 (F3, Fp) = Fa(hihy, |i > j, i # j +1)

Finally, we can formulate the Browder theorem. Recall that a class a € EY . at some finite page is
called a permanent cycle if a persists to E°.

Theorem (Browder). 1) There is no a framed closed manifold of dimension 2q with the Kervaire
mwvariant one, if ¢ + 1 is not a power of two.



2) If ¢ = 2° — 1, then a such manifold (i.e framed, closed and dimension 2q) exists if and only if the
class h? is a permanent cycle in the Adams spectral sequence.

Remark. Form of this theorem is very close to the Adams observation on the Hopf invariant problem.
He obtained that there exists an element o € 7o, —1(S™) with the Hopf invariant one if and only if
n = 2* and h; is a permanent cycle.

2 Plan of the proof

Let M be a closed smooth manifold of dimension 2q. Denote by v the stable normal bundle of M and
denote by T'(v) the Thom spectrum of v.

In Lecture 4 we defined the Browder spectrum M O(v441) and by any mock MO(vg41)-orientation
n: T(v) — MO(vg41) we constructed the quadratic refinement of the intersection form restricted
to (ker(Dn)*)?. We also proved that if 7 comes from a framing of M, then we have the equality
(ker(Dn)*)? = H9(M,Z /2). Denote by Im Qgg the image of Qg; under natural map

e Q) = 12y (8) = Mag(MO(vg41)) = MOoq(vgi1).

Define the map ¢: Im QZ — Z /2 by the rule: ¢(M,n) = ¢(M,n, HY(M,Z /2)). Then the Kervaire
invariant factors as

off —< )
J{e /
c
Im Qé‘g
Here ¢ is the Kervaire invariant of a vg1-oriented manifold.

The Browder’s idea was to bound the order of Im QZ In order to do this, he first considered the
“generalized Whitehead tower” of MO(vg41).

Theorem 1. There exists the diagram

MO(vg41) — MO(vg41)™M S MO(vg41)® —_— MO(vg41)®

J{Go JGI JGz
MO E_lMO/\KqH 24 HZ/2
Here

1) the map Go: MO(vg41) — MO is the natural map of “forgetting of vqy1-orientation”;

2) sequences
MOwe1)™ 22 MO(vg41) £ MO,

MO(Wes1)® L5 MO(ga))® 5 ST IMO A Koy,
MO@Wa1)® L2 MO(vg41)® £ £29 17,/2
are fiber sequences;

3) the spectrum MO (v,11)®) is 2q-connected.



Notice that with such diagram we can associate two maps:

ket MO 2 STMO(vgy 1) 255 MO A Ky,

and
2
ky: MO A Ky =2 MO(vgyq)® 2252 22042 [17,/9

Moreover, the composition ks o ky is trivial, so it defines the secondary cohomological operation
D: Spo = Txza+1 HZ/2-

Now consider the morphism f: S?7 — S% We are interested in the map eof. Since any framed
manifold is a non-oriented boundary, the composition Gy o (eof) is trivial, so there exists a map
g: Cone(f) — MO such that the following diagram is commutative:

524 ! S0 : MO(vg41) —=— MO

Cone(f)

The map ¢ is non-trivial because the composition & o d = Gy o € is non-trivial.
Proposition 1. The composition € of is non-trivial if and only if the following dichotomy is satisfied
1) the composition ki o & is non-trivial;

2) or ®(&) is defined (i.e the composition ki o & is trivial) and ®(&) is non-trivial.

Proof. Exercise. Hint: suppose that eof is a lifting of e of along Fy. Consider the diagram:

§2a ! 50 d Cone(f)

eof € E

MO(g1)V —2 s MO(wgs1) — S MO

G1 k1
SIMO A Ky x MO A Ky
ko k2
»20+L [{7,/2 x $20+2 {7,/2 .

Proposition 2. Spectra MO and MO A K,11 are sums of Eilenberg-Maclane spectra.

Proof. The spectrum MO is an Eilenberg-Maclane spectrum by the Thom theorem [Swi75, Theo-
rem 20.8]. Since the smash product of any spectrum with an Eilenberg-Maclane spectrum is a sum of
Eilenberg-Maclane spectra, the spectrum MO A K, is also an Eilenberg-Maclane spectrum. O

Now notice that the map k; acts between Eilenberg-Maclane spectra, therefore k; is a sum of
Steenrod squares. But any Steenrod square acts by zero on H*(Cone(f),Z /2). So the composition kjoe
is trivial and we can only study the secondary cohomological operation ®.



Since all spectra MO, MO A K,11 and X272 HZ/2 are sums of Eilenberg-Maclane spectra, the
secondary cohomological operation ® is the sum of the secondary cohomological operations ®;, such
that each ®; based on the relation of the form:

Z Sq‘“qu’i =0.

By Proposition 1, we are interested in conditions when such operation can detect an element in 7r§q(50).

Theorem (Adams, [Ada60]). The secondary cohomology operation based on the relation SqSqb =
0 detects an element in 7$(SY) if and only if there exists a permanent cycle hjhy, € EQQ* in the Adams
spectral sequence, such that the experesion

hh ( Z Sq‘“qui) = Z R (Sq® ) ha(Sq®)

18 equal to one.

After the computation of maps k; and ko and applying the Adams theorem we can prove the
following statement.

Theorem 2. 1) If g+ 1 is not a power of two, then Im Qg; =0;
2) If g+ 1 =2" and h? is not a permanent cycle, then Im Qg; =0;

3) If g+ 1= 2" and h? is a permanent cycle, then Im Qg; =7Z/2.
Moreover, in the last case the generator of Im Qg; is cobordant to S9x.S9 with the vgy1-orientation n
such that é(S? x S%,n) =1 (see subsection 2.3 in Lecture 4).

Evidently, Theorem 2 proves the Browder theorem.

3 Proof of Theorem 1

Let us construct the map £G1: MO/MO(vg11) = MO N Kgy1.

Lemma 1. There exists a map h: MO/MO(vq11) = MONK 11 such that h* induces an isomorphism
on H(—,Z/2) fori <2q+1 and (ker h*)?4+2 generated by one element 3.

Proof. Denote by B the space BO, by E the space BO(v441), and denote by m: E — B the embedding
of the fiber. Consider the homotopy colimit E of the diagram:

F—"+ B

L

B2, E.

There exists the natural map 7: E — B such that the following diagram is commutative:




Then the map o is a homotopy section 7 and Fib(7) = L Fib(r) = X¥K,. Denote by 7 the universal
vector bundle over B = BO. Set 4 := 7*(y) and 4 := @#*(y). The following diagram of Thom spectra
is commutative and cocartesian:

Recall that by definition T'(y) = MO and T'(¥) = MO(vg41). So we have the homotopy equivalence
MO/MO(v:1) = Cone(To) = T(3)/T(3).

It means that it is enough to construct a map h from T(H)/T(v) to MO AN Kgq1.
Denote by j: YK, — E the embeddlng of the fiber of tha map . Since the map #: E — B has
the homotopy section o: B — E, there exists an element g € H1* (E,Z /2) = [E, Kg41] such that

7*(g) = X(14) and #*(g) = 0. Consider the map H: E — K,41 X B which is defined by the rule
H(z) = (g(z),7(x)). Then there exists the commutative diagram

SK, J E—— "——>B8B
Kyygy —— s K,  x B 1

—_—y—

Here rows are fiber sequences, py: K41 x B — B is the projection map, 4; and i, are standard embed-

dings, and the map R: YK, — K, represents ¥(1,) € H7™ (XK, Z /2). Well-known that the map R

induces an isomorphism on H®(—,Z /2) for i < 2¢ + 1 and (ker R*)2‘1+2 is generated by Sq?™ (1441).

By Serre spectral sequences for maps 7 and ip the map H induces an isomorphism on H*(—,Z /2) for

i <2q+1 and (ker H*)?9%? is generated by the cohomological class a such that i (a) = Sq?t* (1441)-
Now consider the diagram of Thom spectra:

J ~ Tfr
2% (SK,)+ : TH) — = TO)
jo%s) Til %) Tp2 —\)
T (Kg+1)+ > X%°(Kg+1)+ AT () (7).

<\T22’/

Now rows is not fiber sequence any more, but the diagram is still commutative. So there exists the
map

T(3)/T(3) = Cone(T'a) > Cone(Tiz) = (S(K 1)+ AT(7)/T(7):
There exists an isomorphism
(5K 1)+ AT(3))/T(3) = E%Kpp1 AT(y) = MO A Ky

So we constructed the map h: T'(%)/T(v) = XK1 AT(y). By the Thom isomorphism h* is an
isomorphism on H'(—,Z /2) for i < 2q+ 1 and (ker h*)24%2 is generated by the cohomological class 3
such that T(i1)*(8) = Sq?™ (1441)- O

Lemma 2. 1) The map h induces an isomorphism on m;(—) for i < 2q.

2) There exists the exact sequence
0= Z /2 = g1 (MO/MO(vg41)) 25 g1 (MO A Kyiy) — 0.

3) Moreover, the kernel of h. is generated by the image of moq+1(E°XK,) under the map

Jut Taq1 (EFTK,) = maq41(T(R)) = maq1 (T(R)/T ().



Proof. Exercise. Hint: use Lemma 1 and the fact that MO A K441 is a sum of Eilenberg-Maclane
spectra. O

These two lemmas prove Theorem 1. Indeed, the map Gj: MO(vq+1>(1) — X 1MO A Kgyq is
the map ¥ ~'h and the map Go: MO(v,11)® — %24 HZ/2 is such that Y2Gy represents an element
B € (ker h*)?972, By Lemma 2 the fiber of G5 is 2¢-connected.

4 Proof of Theorem 2

By Theorem 1 we have the relation MO X5 MO A Kqi1 £2, 312042 7,/2. Let us compute k3 (t2g+2)-
Lemma 3. We have the equality in H*72(MO A Ky41,7 /2):
k5 (t2g12) = SA™ (U Utgi1) + g1 UU Utgpr + > (w; UU) USq 1g41.
0<j<q
i+j=q+1

HereU € H(MO,Z /2) is the Thom class, vg+1 € H™(BO,Z /2) is the universal (qg+1)-th Wu class,
w; € HI(BO,Z /2) is the universal j-th Stiefel-Whitney class and ty41 € H1 (K 41,2 /2).

Proof. Denote by X the expression

SQTTH U Utgyr) +vgr1 UU Ugy + Z (w; UU)USq tg41-
0<j<q
iti=g+1

By Lemma 1 the element k3(ta442) is a unique non-trivial element in (ker h*)29+2. So it is enough to
prove two facts on X: X # 0 and h*(X) = 0.
The element X is not equal to zero, because

7*(X) = 84" (tq41) € H? M2 (Kys1, 2 /2).

The map j': 8K, 11 — MO A Ky is the smash of the unit map S — MO with 2K ;.
Let us compute h*(X). First,

h*(Sa™ (U U tg41)) = Sa*™ (U U g)
= Z Sq'U US¢’g

i+j=q+1
=UUg*+ Z Sq'U USq¢’g
0<j<q
itj=q+1
=UUg+ > wuUUSdy.
0<j<q
+j=q+1

Here g € H*(MO/MO(vy41),7/2), so g*> = §*(g) U g. But 6*(g) is a non-zero element in the kernel
of the map
™ H"Y (MO, Z /2) — H"™™ Y (MO(vy11),7Z /2),

50 0%(g) = vg+1 UU. Hence,

R (Sa (U Utg1)) =01 UUUg+ > wUU USYg.

0<j<q
i+j=q+1
But
h*(ﬂq+1 uUuu Lq+1) = VUg+1 uUuu g,
h*( Z (w; UT) UquLq+1) = Z w; UU USYg
0<j<gq 0<j<q
i+i=q+1 i+j=q+1
So h*(X) =0. O



Now we can prove Theorem 2. The relation

MO 25 MO A Kyyy 22 222 HZ,/2

defines the sum of secondary cohomological operations ®;, where any ®; is based on a relation of the

form
Z aibi =0.

Here a;, b; is some Steenrod squares. By proposition 1 we want to know when ®; can detect elements
in 75,. By the Adams theorem it is enough to evaluate h;hy € Extéi (F2,F3) on the relation Y a;b; = 0.

Notice that dim(a;b;) = 2¢ + 2. Since MO A K,11 = X971 HZ/2 V3P A, where A is an Eilenberg-
Maclane spectrum and b > ¢ + 1, we have dim(b;) > ¢ + 1. So by dimensional reason if j > k,

then
Bt (3 aibi) =0

So we can consider only elements h} € Ext“;;k +1(F2,Fy). But if ¢ + 1 is not a power of two, then

hi (>~ agbi) = 0 for any k. So in this case ® does not detect any element in 75, and Im ngr =0. It
proves the first statement of Theorem 2.
Now suppose that ¢ = 28 — 1. Then the Steenrod square Sq?*! is indecomposable, so

X(Sq”™) = Sq?*! + D,

where D is the sum of decomposable elements in A;. It means that the Wu class vg11 = wg+1 + €,
where the element e belongs to the subalgebra of H*(BO,Z /2) generated by w;, i < g + 1.
Hence,

k5 (12g12) = Sq" M (U Utgn) + > UUz; UG
0<i<q

Here ¢; € HIT" Y (K41,7Z /2) and x; € HIT'7{(BO,Z /2).
Now ki (UUtgs1) = x(Sq?™HU in HT*Y(MO,Z /2). So in the relation, which defines the secondary
cohomological operation @,
Z aibi =0

we have by = x(Sq?*!), Since ¢ = 25 —1, hx(x(Sq?™)) = 1. Also, we have a; = Sq?**, so h?(a1by) = 1.
Now show that hZ (ki (> U Uz; U(¢;)) = 0. Consider the decomposition

Z UUl'iUCi:Zaici»

0<i<q i>2

where a; € Ay and ¢; are generators of H*(MO A Ky41,7Z /2) over the Steenrod algebra Aj. Notice
that dim(c¢;) > ¢ + 1.
Suppose that dim(ce) = ¢+ 1 and dim(¢;) > g+ 1 for ¢ > 2. Then ¢o = U U 1441 and

h%(Zaiki‘(Ci)) = hy(a)hy(kica) = hi(as).

q+1

Suppose that hi(az) =1, then as = Sq?"" + D, where D is a sum of decomposable elements. Then

i ( Z aici) =Sq" g1 + D' (1g41) # 0.
Here D’ is another sum of decomposable elements. On the other hand,
J< >, UUwiU<¢> =0,
0<i<q
because dim(x;) > 0 and j'*(x;) = 0. It means that hy(az) = 0 and

B2 (K k3 (12g42)) = 1.



By the Adams theorem @ detects an element in 73, if and only if h is a permanent cycle. So we
proved the second and the third statements of Theorem 2.

By Lemma 2 we have the inclusion Im QZ C Im(j.), where j: ¥°K, — MO(vg41) is the map
which comes from the fiber sequence K, — BO(v41+1) — BO. It is an exercise to show that Im(j,)
is generated by cobordism class of (S9 x S%,7) from subsection 2.3 in Lecture 4. But the Kervaire
invariant of (S? x S?,1) is equal to one, so we proved the Browder theorem.
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