The Kervaire Invariant One Problem, Talk 1 Independent University of Moscow, Fall semester 2016

1 Arf invariant

Let k be a field and $b: V \otimes V \rightarrow k$ a nondegenerate antisymmetric bilinear form. Recall the following definition

Definition 1.1. For $r \in V$ and $\lambda \in k$ the transvection $T_{r, \lambda} \in \operatorname{GL}(V)$ with respect to r and λ is defined to be

$$
T_{r, \lambda}(x)=x-\lambda b(x, r) r
$$

One can easily see that $T_{r, \lambda}$ is always symplectic with respect to b. Moreover
Theorem 1.2. Every symplectomorphism $V \rightarrow V$ can be decomposed into a composition of transvections.

Let $q \in \operatorname{Sym}_{k}^{2}\left(V^{\vee}\right)$ be a quadratic form over the field k of characteristic 2 , and let

$$
b_{q}(x, y)=q(x+y)-q(x)-q(y)
$$

be the associated bilinear form. For the rest of this section we will assume that q is nondegenerate, in the sense that the associated bilinear form b_{q} is nondegenerate. In this case one can choose a symplectic basis e_{i}, f_{i} of V with respect to b_{q}.

Definition 1.3. The Arf invariant of q with respect to the basis $\left\{e_{i}, f_{i}\right\}$ is defined to be

$$
\operatorname{Arf}(q)=\sum_{i=1}^{n} q\left(e_{i}\right) q\left(f_{i}\right) \in k / \wp(k)
$$

where $\wp: k \rightarrow k$ is the Lang's isogeny for $\mathbb{G}_{a} / \mathbb{F}_{2}$, i.e. the map $x \mapsto x^{2}-x$.
Assume for a moment that the Arf invariant of q is well defined (i.e. does not depend on the choice of symplectic basis). Then we have the following basic properties

Proposition 1.4. 1. If q^{\prime} is equivalent to q, then $\operatorname{Arf}\left(q^{\prime}\right)=\operatorname{Arf}(q)$.
2. For a pair of quadratic forms q_{1}, q_{2}

$$
\operatorname{Arf}\left(q_{1} \oplus q_{2}\right)=\operatorname{Arf}\left(q_{1}\right)+\operatorname{Arf}\left(q_{2}\right)
$$

Proof. 1. Let q^{\prime} be equivalent to q. By definition it means that there is exists a map $A \in \mathrm{GL}(V)$ such that $q^{\prime}(x)=q(A x)$. Then $b_{q^{\prime}}(x, y)=b_{q}(A x, A y)$ and $\left\{A^{-1} e_{i}, A^{-1} f_{i}\right\}$ is the symplectic basis for $q_{b^{\prime}}$ if and only if $\left\{e_{i}, f_{i}\right\}$ is symplectic basis for b_{q}. But then by definition

$$
\operatorname{Arf}\left(q^{\prime}\right)=\sum_{i=1}^{n} q^{\prime}\left(A^{-1} e_{i}\right) q^{\prime}\left(A^{-1} f_{i}\right)=\sum_{i=1}^{n} q\left(A A^{-1} e_{i}\right) q\left(A A^{-1} f_{i}\right)=\sum_{i=1}^{n} q\left(e_{i}\right) q\left(f_{i}\right)=\operatorname{Arf}(q)
$$

2. If $\left\{e_{i}^{(1)}, f_{i}^{(1)}\right\}$ and $\left\{e_{i}^{(2)}, f_{i}^{(2)}\right\}$ are symplectic bases for q_{1} and q_{2} respectively then

$$
\left\{e_{i}^{(1)}, f_{i}^{(1)}, e_{i}^{(2)}, f_{i}^{(2)}\right\}
$$

is symplectic basis for $q_{1} \oplus q_{2}$ and the statement follows by definition.

Now following [Dye78] we will prove
Theorem 1.5. Let q be a quadratic form over the field k of characteristic 2. Then

1. The Arf invariant does not depend on the choice of symplectic basis.
2. If k is perfect and $\operatorname{Arf}\left(q_{1}\right)=\operatorname{Arf}\left(q_{2}\right)$ then q_{1} is equivalent to q_{2}.

Proof. 1. Let $e_{i}^{\prime}, f_{i}^{\prime}$ be some other symplectic bases of V. Consider the symplectomorphism $e_{i} \mapsto e_{i}^{\prime}, f_{i} \mapsto f_{i}^{\prime}$. By theorem 1.2 it can be decomposed as a composition of transvections. By direct calculations

$$
q(T x)=q(x)+\left(\lambda^{2} q(r)+\lambda\right) b_{q}(x, r)^{2}
$$

Write $r=\sum_{i=1}^{n} s_{i} e_{i}+t_{i} f_{i}$. For any $\mu \in k$ we have

$$
\begin{aligned}
\operatorname{Arf}(q(T x)) & =\sum_{i=1}^{n}\left(q\left(e_{i}\right)+\mu t_{i}^{2}\right)\left(q\left(f_{i}\right)+\mu s_{i}^{2}\right)=\operatorname{Arf}(q)+\mu\left(\sum_{i=1}^{n} q\left(e_{i}\right) t_{i}+q\left(f_{i}\right) s_{i}\right)+ \\
& +\sum_{i=1}^{n} \mu^{2} s_{i}^{2} t_{i}^{2}=\operatorname{Arf}(q)+\mu\left(q(r)+\sum_{i=1}^{n} s_{i} t_{i}\right)+\left(\mu \sum_{i=1}^{n} s_{i} t_{i}\right)^{2}= \\
& =\operatorname{Arf}(q)+\mu q(r)+\wp\left(\mu \sum_{i=1}^{n} s_{i} t_{i}\right)
\end{aligned}
$$

Hence $\operatorname{Arf}(q)-\operatorname{Arf}\left(q^{\prime}\right) \in \wp(k)$ if and only if $\mu q(r) \in \wp(k)$. Which is our case, because

$$
\mu q(r)=\left(\lambda^{2} q(r)+\lambda\right) q(r)=(\lambda q(r))^{2}+\lambda q(r)
$$

2. Let $\operatorname{Arf}(q)=\operatorname{Arf}\left(q^{\prime}\right)$. By proposition 1.4 we can assume $b_{q}=b_{q^{\prime}}$. Hence

$$
q(x)+q^{\prime}(x)=\sum_{i=1}^{n} a_{i} x_{i}^{2}+b_{i} y_{i}^{2}
$$

The field k is perfect, so we can find $s_{i}, t_{i} \in k$ such that $a_{i}=t_{i}^{2}$ and $b_{i}=s_{i}^{2}$. If we define $r=\sum_{i=1}^{n} s_{i} e_{i}+t_{i} f_{i}$, then $q^{\prime}(x)=q(x)+b_{q}(r, x)^{2}$ and hence there is some $v \in k$ such that $q(r)=v^{2}+v$. Let $\lambda=v^{-1}$. Then $q^{\prime}(x)=q\left(T_{r, \lambda} x\right)$ because

$$
\lambda^{2} q(r)+\lambda=\lambda^{2}\left(\lambda^{-2}+\lambda^{-1}\right)+\lambda=1+2 \lambda=1
$$

Corollary 1.6. Let q be a nondegenerate quadratic form over a perfect field k. Then in some basis $\left\{e_{i}, f_{i}\right\}$ it has a form

$$
q_{v}\left(\sum_{i} x_{i} e_{i}+y_{i} f_{i}\right)=\sum_{i=1}^{n} x_{i} y_{i}+v\left(x_{n}^{2}+y_{n}^{2}\right)
$$

for some $v \in k$.
Proof. The form q_{v} may be decomposed as a direct sum

$$
q_{v} \simeq q_{0,0}(x, y)^{\oplus n-1} \oplus q_{v, v}
$$

where $q_{a, b}$ is a quadratic form of rank 2 defined by $q_{a, b}(x, y)=a x^{2}+x y+b y^{2}$. Note, that by definition $\operatorname{Arf}\left(q_{a, b}\right)=a b$.

So by proposition 1.4 the Arf invariant of q_{v} is v^{2}. Since k is perfect we conclude by theorem 1.5.

Remark 1.7. We have the Kummer short exact sequence of Gal_{k}-representations

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow k_{+}^{\text {sep }} \xrightarrow{\wp} k_{+}^{\text {sep }} \rightarrow 0
$$

which induces

$$
k \xrightarrow{\wp} k \rightarrow H^{1}\left(k, \mathbb{F}_{2}\right) \rightarrow 0
$$

where $H^{1}\left(k, k_{+}^{\text {sep }}\right) \simeq 0$ by additive Hilbert 90 'th theorem.
So for any quadratic form q the Arf invariant $\operatorname{Arf}(q)$ is canonically an element of $H^{1}\left(k, \mathbb{F}_{2}\right)$, which classify some quadric field extension l of k. One can describe l explicitly as $k(\alpha)$, where α is a root of the equation $x^{2}+x=\operatorname{Arf}(q)$. By definition the form q has zero Arf invariant in l, hence $q=q_{0}$ in notation of the previous corollary over l.

Other way around, one can define the Arf invariant of q to be the class in $H^{1}(k, \mathbb{Z} / 2)$, which classifies the smallest extension l of k, such that q is equivalent to q_{0} over l (but it is not completely obvious that such an l is of degree 2 over k).

References

[Dye78] R. H. Dye, On the Arf invariant, Journal of Algebra 53 (1978), 36-39, available at http://www.maths. ed.ac.uk/~aar/papers/dye.pdf.

