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ABSTRACT

We construct a series of combinatorial quandle-like knot invariants. We colour regions
of a knot diagram rather than lines and assign a weight to each colouring. Sets of
these weights are the invariants we construct (colourings and weights depend on several
parameters).

Using these invariants, we prove that left and right trefoils are not isotopic using
this invariant (in a particular case).
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1. Introduction

Left and right trefoils were first detected by Max Dehn [1]. The invariants used in
the present article to detect trefoils are similar to quandle invariants introduced by
Matveev and Joyce [2], [3], but quandles themselves do not detect trefoils. Quandles
give us almost complete knot invariant. Quandles detect any pair of distinct knots
except for those which can be obtained one from another by double involution,
i. e. simultaneous orientation change of the knot and the ambient space R®. The
approach used in the present paper is similar to Fenn, Rourke and Sanderson’s one
[4], [5], [6]. But they use framed knots and racks instead of quandles. Also their
approach uses some topological calculations with homology and homotopy of the
rack space and the extended rack space.

In the present article we construct a series of combinatorial knot invariants
based on colourings of regions of a knot diagram by elements of some finite ring
R. These colourings satisfy a condition at crossings that we call admissibility. This
condition, in particular, uniquely determines the colour of one of four regions nearby
the crossing if the other three colours are known. Thus, it is usually enough to set
colours of a small number of regions to obtain a complete colouring. If R is small,
the invariant can be calculated easily. In particular, trefoils are detected by the
invariant with R = Zs.

Admissible colourings themselves are similar to quandles. In fact, each admissi-
ble colouring of regions yields a line colouring by quandle colours. But, instead of
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a simple count of admissible colourings, we introduce a function on an admissible
colouring and call this function weight. The set of weights of all admissible colour-
ings is the invariant we construct. This enables us to distinguish pairs of knots with
equal numbers of admissible colourings.

Of course, there are a lot of possible ways to detect trefoils. For example, we will
discuss the relationships between the constructed invariant, quandle invariants and
more complex quandle cohomology invariants ([10], [11], [12]). In a particular case
when we are detecting trefoils, the invariant coinsides with a particular quandle
cohomology invariant, 71 + 72 + 13 + 15 in [10]. Our goal was to make a simple
invariant of knots coloured in some way that could detect trefoils.

The invariant can detect knots other than the trefoils. For example, it can detect
the knot 9; and its mirror image if R = Zy.

2. Construction of the invariant

Fix a classical link diagram L and a crossing X of it. We denote the adjacent
regions by a, b, ¢, d as shown in Fig. 1. Namely, denote by a the bottom-left region,
we consider the overcrossing line oriented from left to right. Other regions follow
clockwise starting from a.

>

h

A
Y

Fig. 1. Notations of the regions near the crossing.

We colour regions by elements of some finite ring R. Fix an invertible element
p € R. We call a colouring of L admissible if for each crossing X of L we have
pa+b—c—pd=0. We get a set of admissible colourings A.

Consider the following 4 functions:

wi (a,b,¢,d) = (a —c)(b—d)(a — d)(a + d),
wa(a,b,c,d) = (a—c)(b—d)(a—d)(b+c),
ws(a,b,c,d) = (a —c)(b—d)(b— c)(a + d),
wa(a,b,e,d) = (a—c)(b—d)(b—c)(b+c), (2.1)
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and polynomials:

Alp) = 2p+1)(P* +1),

folp) = —(p+2)(° +1),

fs(p) = =p(2p+ D(P* + 1),

f1p) = plp+2)(p* + 1). (2.2)

Fix arbitrary polynomials x;,zs, 23,24 over the ground ring R. Consider the
function w = 1w + Tows + T3ws + r4wy4 and call it the weight of the crossing. Set
the polynomial f = z1 f1 + x2fo + x3f3 + x4 f4. With each admissible colouring we
associate the sum of weights w(a, b, ¢, d) over all crossings and call it the weight of
a colouring.

Thus, for the link diagram L, we get a set of weighted colourings A (and thus,
a set of weights w(A)).

Theorem 2.1. If p is a root of f then this set of weights of colourings is a knot
invariant.

Proof. We shall show that this set is invariant under Reidemeister moves. In all
three cases we will assume that we have some admissible colouring of the diagram
before the move and construct an admissible colouring of the diagram after the
move. This will give us a one-to-one correspondence between the colourings of two
diagrams.

Move 1. Consider four variants of the first Reidemeister move, where a single
line oriented from left to right or from right to left (not shown) becomes a twist
forming positive or negative crossing (see Fig. 2). Because p is invertible, the colour
of the newborn small region is completely defined if we want the colouring of the
new diagram to be admissible. (Colours of all other regions remain unchanged). So,
we have one-to-one correspondence between the colourings of two diagrams before
and after performing the Reidemeister move. Regions a and ¢ (or b and d) of this
crossing are parts of the same domain so the function w equals 0 for this new
crossing. Hence, colourings of the former diagram correspond to the colourings of
the latter diagram with the same weights.

Fig. 2. Reidemeister move 1.



August 8, 2008 21:33 WSPC/INSTRUCTION FILE invariant

4 Rostislav Deviatov

Move 2. Consider the second Reidemeister move such that for the diagram before
performing the move we have two close lines, one (upper in the diagram) of which
is oriented from left to right or from right to left (see Fig. 3, left part), and for the
diagram after performing the move we have these two lines forming two crossings
(see Fig. 3, right part).

Assume we have some admissible colouring of the former diagram where regions
are coloured by elements z,y,z € R. Leave all the regions of the latter diagram
except for the newborn small region coloured their former colours. Let ¢ be the
colour of the newborn small region. Then the admissibility at the first and at the
second crossings yields the equations pz +y—x —pt =0 and pt + ¢ —y — pz = 0.
Because p is invertible, these equations uniquely determine (the same) value of ¢.
(In the second case, admissibility yields the equations pz + ¢t — 2z — py = 0 and
py + 2z —t — pr =0, and again the values of ¢ we obtain are equal).

Fig. 3. Reidemeister move 2.

Two newborn crossings add two summands to the weight of the colouring. They
are w(z,y,z,t) and w(t,y,z,z) (or w(z,t,z,y) and w(y, z,t,z) in the second case).
But all the functions w; satisfy the condition w(a,b,c,d) = —w(d,¢c,b,a), so the
weight of the former colouring equals the weight of the latter one.

Move 3. It is known that (see [7], [8]) it is sufficient to consider only one case
of the third Reidemeister move, where two topmost lines form a positive crossing.
Consider an admissible colouring of the former diagram Let its four regions be
coloured by elements as, b3, a1, b2 € R (see Fig. 4). Then two other ‘exterior’ regions
of the former diagram are coloured pbz +az — pby and as — pa; + p?bs. The ‘interior’
region of the former diagram is coloured pbs + as — pa;. After performing the
Reidemeister move, if the four first regions are coloured as, b3, a1, bo, admissibility
conditions make two other exterior regions be coloured pbs + as — pbs and as —
p?a; +p°by again. The interior region is coloured pa; + bs — pbs. So every admissible
colouring of the former diagram corresponds to an admissible colouring of the latter
diagram and vice versa.

Before the Reidemeister move, three former crossings add three summands to the
weight. They are w(bs, az, pbs + as —pa1, a1), w(ar, pbs + as — par, pbs + az — pba, b2)
and w(pbs + as — pai,as,as — p*a; + p*ba, pbs + as — pbs). After performing the
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as as — p*ar + p*bo pbs + az — pbo
b\ ¢ b/e
a\d

pai + bz — pba

az pbs + az — pby

by
pbz + az — pa;

c b\ ¢

b3 ay ba

Fig. 4. Reidemeister move 3.

Reidemeister move, we have three new summands: w(a1,bs, pa; + bz — pba, b2),
w(bs, as, as —p*ar +p°by, pay +bs —pbs) and w(pas +bs — pba, as — p®ar +p°ba, pbs +
as — pba, by). The weight will remain unchanged if and only if

w(bs, az, pbs + as — pai,a) +

w(ay,pbs + az — pay,pbz + az — pby, ba) +

g

(
(
(pbs + az — pay, as,az — p*ay + p°ba, pbs + ax — pbe) —
(a1,bs,pay + b3 — pbz, ba) —
(
(

g

w(bs, as,az — p*ar + p*ba, pas + by — pha) —

w(pay + by — pba,az — p*ar + p>ba, pb + as — pba, ba) = 0. (2.3)

In order to prove (2.3), first check it for w = w; where i = 1,2, 3,4. We will use
the fact that f(p) = 0.

A calculation (see Appendix) shows that for all 4, if w = w;, the sum (2.3)
equals f;(p)g(p, a1, az,ba, bs), where g does not depend on i. Hence, if w = Y z;w;,
the sum (2.3) equals (3" z;(p) fi(p))g(p, a1,a2,b2,b3) = f(p)g(p,ai,as,bs,bs), and
this is 0 if p is a root of f. Again, the former weight equals the latter one.

We have proved that for any Reidemeister move, every admissible colouring of
the diagram before the move corresponds to the colouring of the diagram after the
move, and the weights of these corresponding colorings are the same. Hence, the
set of weights is invariant under Reidemeister moves. Hence, it is a knot invariant,
and this is what was to be proved. O

Discussion of the construction. The condition pa + b — ¢ — pd = 0 comes
from the second Reidemeister move. There we have a small newborn region, whose
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colour is defined by two admissibility conditions at the two newborn crossings.
These two conditions should coincide. If we assume that the admissibility condition
at a crossing is a linear equation in a,b,c,d, the coincidence can be achieved if
this equation is either symmetric or antisymmetric with respect to simultaneous
exchange a < d, b < c¢. The weights of these crossings should be opposite, and this
holds if w(a,b,c,d) = —w(d, c,b,a).

After the first Reidemeister move we can get a single newborn crossing whose
weight should be 0. One of the ways to achieve this is to make the equalities
w(a,b,a,d) =0 and w(a,b,c,b) = 0 hold for all a,b,c,d € R. Assume now that w is
a polynomial in a, b, ¢,d. The simpler the polynomial, the more the possibility that
the weight of the diagram is invariant under the third Reidemeister move. But too
simple polynomials might turn to detect nothing. We can consider some polynomial
of total degree 4, like w; .

The equation (2.3) is not an identity if w equals wy. But in this case, the left
part of (2.3) can be factorized, and some of the factors depend on p only and does
not depend on a, b, ¢, d. These factors form f;. Three more functions, ws, ws and
wy, give us similar factors fo, f3 and fy4. Observation that the second factor of the
left part of (2.3) is always (for all w;) the same leads us to the general construction
w = Y x;w;, where x; are arbitrary polynomials from R[p].

Unfortunately, for most of the rings R the invariant turns to be useless (for a
given knot). For example, there always exist a set of trivial admissible colourings,
where colours of all the regions are the same. Moreover, if R is a field, the set
of admissible colourings is a linear space. In this case, it seems to be true that
there always exists a two-dimensional space of trivial admissible colourings. (For
the unknot, where there are no crossings, we can colour interior and exterior of
a circle in two arbitrary colours). If a knot diagram has n regions, it has n — 2
crossings. Therefore we have n — 2 admissibility conditions. If all these conditions
are linearly independent, the space of admissible colourings is 2-dimensional. They
can be made dependent by choosing the characteristic of the field, and this might
yield a non-trivial admissible colouring.

Admissible colourings themselves are similar to quandles. Here we explain how
to construct a colouring by quandle colours from an admissible colouring of regions.
Consider a diagram line. Let a be the colour of the region at right of it and b be
the colour of the region at left of it. Colour this line by pa + b. The admissibility
condition at crossing may be rewritten as pa + b = pc + d, and this makes the
definition of the line colour correct. Then, consider a crossing and denote the colour
of the overcrossing line by B, the colour of the line between a and d by A and the
colour of the line between b and ¢ by C. Then B = pa+ b = pd + ¢, A equals either
pa+d or pd+a, C equals either pb+c or pc+b, respectively. Thus, in the former case
—pA+(1+p)B = —p®a—pd+pa+b+p’*a+pb = pb+(pa+b—pd) = pb+c = C, and in
the latter case —pA+(14+p)B = —pa—p*d+pd+c+p?d+pc = pc+ (—pa+pd+c) =
pc+ b= C. The quandle operation is: Ao B = —pA + (1 + p)B. And vice versa, if
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we have lines of the diagram coloured by elements of quandle and know the colour
of one of the regions, we can colour other regions using the rule above.

However, weights of crossings cannot be rewritten in terms of A, B, C only. So,
the invariant constructed might detect some pairs of knots that quandles cannot
detect.

We can say more if p + 1 is invertible as well as p. In this case we can colour
a line between a region of colour a and a region of colour b by A = A(pa + b),
where A = (1 + p)~!. Obviously, quandle conditions at crossings are still satisfied.
Moreover, ao A = —pa + (1 4+ p)A(pa+ b) = b, and this leads to a standard quandle
colouring of lines and regions of the diagram (see [11]). We can consider a quandle
cocycle 8(x,y,z) = w((p+ 1)y —pz, (p+ 1)z —p(p+ Vy + p?z, (p+ 1)z — pz, ). If
pa+b—c—pd=0, w(a,b,cd) = 0(d,\pd+ a), \(pd + ¢)), and we can see that
for a positive crossing the weight w coincides to a cocyle weight € (see fig. 5). For a

negative crossing, the cocycle weight is —0(a, A(pa+d), A(pa+b)) = —w(d, ¢, b,a) =
w(a, b, c,d), i. e. it also coinsides to the weight w.
b c b c
Alpd +¢) = / \ ‘/ > Apa+0b) ==z
a d= T=a d
Alpd +Ha) = Alpa Hd) =y

Fig. 5. Cocycle weight at the crossing.

For arbitrary z,y,2,t € R, set bo = x,a; = (p+1)t—pbe, b3 = (p+1)y—pay,as =
(p+ 1)z — pbs. Then © = by, t = A(pba + a1),y = A(pay + b3),z = A(pbs + a2), and
the cocycle condition

O(x,z,t) —
0(z,y,t) +
0(z,y,2) —
f(zoy,z,t)+
O(xoz,yozt)—

O(xot,yot,zot) =0 (2.4)

immediately follows from 2.3. The conditions §(z,z,y) = 0 and 6(z,y,y) = 0 are
also satsfied. Indeed, 0(z,z,y) = w(z,(p + 1)y — pz,(p + 1)y — px,z) = 0 since
wy and ws equal zero if @ = d and w3 and wy equal zero if b = ¢. O(z,y,y) =
w((p+ 1)y — pz,p*z — (p*> — )y, (p+ 1)y — pr,z) = 0 since w(a, b, a,d) = 0 for all
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a,b,d € R.
Threrfore, any w function leads to some cocycle 8. But we do not know whether
this cocycle is zero in the cohomology group.

Remark 2.2. We may assume that all the colourings of diagram have the infinite
exterior region of colour 0 (or to any other colour of R), because the corresponding
colourings of any two diagrams, one of which is result of a Reidemeister move
applied to the other, have their exterior regions coloured the same colour.

Also we can consider long knots that can be ‘constructed’ from (compact) knots
in the usual way.

It is known that (see [9]) two (compact) knots are isotopic iff two long knots
obtained from them are isotopic. A knot diagram in Ry can also be made of a
diagram of an isotopic knot using Reidemeister moves. A diagram of a long knot
has two infinite exterior regions. This yields the following remark:

Remark 2.3. Theorem 2.1 holds for long knot diagrams too. For a long knot
diagram, we may assume that all the colourings have the two infinite exterior regions
of colours ay,as, where ay,as are any prefixed elements of R.

3. Example (the left and right trefoils)

Consider two trefoil diagrams shown in Fig. 6. Let us prove they are not isotopic.
Set the ground ring be Zj3, whose elements will be denoted by 0, 1, 2. Set p = 1
and w = w;y.

Fig. 6. The left and right trefoils.
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Consider the left trefoil. If the region ¢ is coloured 0, then all the regions z,
y, z are coloured 0, and this yields three colourings of weight 0. If ¢ is coloured
1, the colours of z, y, z form a cyclic permutation of 0, 1, 2, respectively (three
possible colourings). Two of the crossings (one with a = 1,b = 0,¢ = 0,d = 1 and
another with a = 1,b =1,c¢ = 0,d = 2) are of weight 0, and the last crossing (with
a=1,b=2,¢=0,d=0)is of weight (1 —0)(2 —0)(1 — 0)(1 4+ 0) = 2. So these
three colourings are of weight 2 each. Finally, if ¢ is coloured 2, the colours of =z,
y, z form a cyclic permutation of 1, 0, 2, respectively. Two of the crossings (one
with a = 2,b = 0,¢ = 0,d = 2 and the other with a = 2,b = 2,¢ = 0,d = 1) are
of weight 0, and the last crossing (with a = 2,b = 1,¢ = 0,d = 0) is of weight
(2-0)(1 —-0)(2—-0)(2+0) = 2. So, we have three more colourings of weight, 2.
Hence, there are three colourings of weight 0 and six colourings of weight 2.

Now consider the right trefoil. If we find a colouring of weight 1 (with the exterior
region coloured 0), trefoils will be distinguished. Let region ¢ be coloured 1, then the
regions x, y, z have colours 0, 1, 2 ordered counter-clockwise. Two of the crossings
(one with a = 1,0 = 0,¢ = 0,d = 1 and the other with a = 2,6 =0,c=1,d = 1)
are of weight 0, and the last crossing (with a =0, b =0, c=2, d = 1) is of weight
(0—-2)(0—1)(0—1)(0+1) = 1, and this distinguishes the trefoils. (Actually, there
are three colourings of weight 0 and six colourings of weight 1 of the right trefoil).
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Appendix

Here we will show that if w = w;, the sum (2.3) equals f;(p)g(p, a1, az,bs,bs),
where g does not depend on i. (In fact, these calculations were performed using
Mathemathical Explorer). Indeed, if w = w;, after expanding, collecting similar
terms and factorization, we obtain: wj (b3, as,pbs + as — pai,a1) + wi(ar, pbs +
ax — pay, pbs + az — pbe, ba) + wi (pbs + a2 — pai,az,ax — p®ar + p*ba, pbs + as —
pba) — wi (a1, b3, par + by — pba, by) — wy (bs, as,as — p*ar + p?ba, pas + by — pba) —
w1 (pay +bs — pba, az —p*ai +p>ba, pbs +az — pba, ba) = 2a1b3p° —4alb3p® +2aibip® +
203b2p° — 4a1babip® 4+ 2a3bop® — 2a3bsp® — 2b3b3p° + 2a1 b3bsp® +2aTbabsp® + a1 bipt —
2a2b3p* + 2a1b3p* — 2b2b3p* + dajazbip® — 5aZbipt + babip® + 4aibabipt — aibapt —
2&%0,2[)2}74 + a%bgp‘l + b%b3p4 - 7a1b%b3p4 + 2&2[)3[)3])4 + 2&%&21)3])4 + 5a%b2b3p4 —
4aqasbabsp + 2a1b§p3 — a2b§p3 — a1b§p3 + b2b§p3 — 3a%b§p3 + a%b§p3 + 2a1a2b§ 3
a1b2b§p3 — 2a2b2b§p3 + a?b2p3 + a%a2b2p3 — a?b3p3 — bgb3p3 +3a2b3b3p3 — a%a2b3p3 +
2a%b2b3p3 —2a1asbsbsp? +a1b§p2 — 2a2b%p2 —l—albgp2 — b2b§p2 —|—3a1a2b§p2 — 4a%b§p2 +
arasb3p? +4a1bab3p? — asbab3p® — aibap® — alasbep® + aibsp® + b3bzp® — 6a1b3bsp® +
3agb%b3p2 + a%a2b3p2 + 4(L%b2b3p2 — 4aiasbybsp® — agb%p — albgp + bgbgp + a%b%p —
a%b%p — Qb%bgp + 2a1a2b§p + 3a1b2b§p — 2a2b2b§p — a?bgp + a%agbgp + a?bgp +
b%bgp — 2a1b%b3p + 3a2b§b3p — a%agbgp — 2a1a2b2b3p — albg + bgbg - alagbg +
a%b% — b%b% + a1a2b§ - agbgbg + a%ang + albgbg + agbgbg - a%agbg — a%bgbg
(p” +1)(2p+1) (a1 —b2) (b2 — b3)(2p+ 1) (par — a1 + bz — bap) (—az + bz + a1p—bsp) =
f1(p)g(p, a1,az2,b2,b3), where g(p,ay,as,bs,b3) = (ay — b2)(b2 — b3)(2p + 1)(pas
ai + b3 — bap)(—az + b3 + ayp — bsp).
Performing the same operations with wy yields:

wy(bs, az, pbs +az —pay, a;) +wsz(ay, pbs +az —pay, pbs +az — pb, by) + w2 (pbs +as —
pay, az, as —p*ay +p°ba, pbs +as —pbo) —wo (a1, bs, pas +bs —pba, by) —ws (b, az, as —
pay +p?ba, pai +bs — pba) — wa(pay + bs — pba, as —p?as +p*ba, pbs + as — pbo, bo) =
—a1b3p°® + 2aib3p° — aib3p® — B3B3P° + 2a1b2b3p° — atbap® + afbap® + bibap® —
a1b3bsp® — albybsp® — 2a,b3p* + axbip* — aib3p* + babip* + 3a2b3p* — 2a;a2b3p* +
a?bip* — 2b3b2p* + a1 bebip* — aibop® + aZasbap? + aibsp* + bibsp* + 2a1b3bsp* —
azb3bsp* —a?asbzp* —4albabsp* 4 2a1axbsbsp* — aib3p? +2a2b3p* — a1 b3p® + babip® —
3a1asb3p® + 4a202p® — ayaxb3p® — 4arbabip® + asbabip® + a3bap® + aZasbop® —
a?b3p3 — b%bgp3 + 6alb%b3p3 — 3a2b363p3 — a%a263p3 — 4a%b2b3p3 + 4ajasbabsp® —
2a1b3p* + axb3p® + a1b3p? — bab3p? + 3a3b3p® — aibip® — 2aia2b3p® + arbabip® +
2a2b2b§p2 — a?bgp2 — a%agbsz —l—a?bgp2 —}—b%bgp2 — 3a2b3b3p2 —|—a%a2b3p2 — 2a%b2b3p2 +
2a1asbabzp® + 2a2b3p — ar1b3p + bab3p — 2a2b3p — 3araxb3p + 5aibip + bibip —
alagbgp — 6a1b2b§p + agbgbgp + 2a?b2p + a%agbgp — 2a?b3p — 2b§b3p + 7a1b§b3p —
3a2b§b3p — a%agbgp — 3a%b2b3p + 4ajasbabsp + 2a1b§ — Qbeg + 2&10,2[)3 — 20,%[)% +
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Qb%bg — 2&10,2[)% + 2a2b2b§ — 2&%0,2[)2 — 2&1[)3()3 — 2a2b§b3 + 2&%0,2[)3 + 20,%[)2[)3 =
—(p+2)(P* + 1)(a1 — ba)(ba — b3)(par — a1 + bs — bap)(—as + bs + a1p — bzp) =
f2(p)g(p), a1, a2,bs, b3), where g(p, a1, az, ba,bs) is the same.
For ws:
ws(bs, az, pbs + as — pai, ar) + ws(ar, pbs + az — pai, pbs + as — pba, be) + w3 (pbs +
ay — pai,as,as — pPay + p’ba, pbs + ay — pba) — ws(ar,bs,par + bs — pba, by) —
w3 (b3, as, as — p?ay +p°be, pay +bs — pbs) — w3 (pay + bs — pba, as — p*a; + p?bs, pbs +
as — pba,ba) = —2a1b3p° + 4atbip® — 2a303p® — 2b6363p° + 4a1babip® — 2a3bapS +
Qa?b3p6 + 2bgb3p6 — 2a1b%b3p6 — Qa%b2b3p6 — alb%p5 + 2a2b§ 5_ 2a1b§p5 + 2b2b§ 5_
darazb3p® + 5a3bip® — b3b3p® — 4aibabip® + aibap® + 2a3asbap® — afbsp® — bibsp® +
70,1 b%b3p5 — 2a2b§b3p5 — 2&%&21)3])5 — 5a%b2b3p5 + 4a1a2b2b3p5 — 2a1b§p4 + a2b§p4 +
arbipt — babipt + 3a2b3p* — a2b3p* — 2a1a2b3p* + arbabip* + 2asbebipt — afbopt —
atasbap? + absp* + b3bzp* — 3axbibsp? + aZasbzp* — 2a2babsp* + 2a1a2bsb3p* —
a1b3p® + 2a203p° — a1b3p® + bab3p® — 3a1a2b3p® + 4aFbip — arazb3p® — daibab3p® +
a9 bgbgpS + a?bsz + G%UQ bgps — ai" bgps — bg bgpS + 6(11 b% bgps — 3&2()% bgps — a%a2b3p3 —
4a3babsp® + 4ajasbabsp® + azb3p? + arbip® — babip® — a2b3p® + ab3p? + 2b3b3p* —
2a1a2b3p% — 3a1bebip? + 2a3bebip? + albap? — afaxbap® — albsp® — b3bsp® +
2a1b3b3p* — 3a2b3b3p? + aasbsp® + 2a1a2babsp? + arbip — babip + a1axb3p — abip +
bib3p — arasb3p + azbab3p — aZasbap — a1bdbsp — azbibsp + afazbsp + albabzp =
—p(2p +1)(p* + 1)(a1 — b2) (b2 — b3)(pay — ay + bz — bap)(—az + bz + ar1p — bsp) =
f3(p)g(p, a1, az,ba,b3), where g(p, a1, as,bs, bs) is the same as in the previous cases.
For wy:

wy (b3, az, pbs+az —pai, ay)+wy(ay, pbs +az —pay, pbs +az —pba, by) + w4 (pbs +as —
pai, as, as —p°ay +p?be, pbs +as — pbs) —wy(ar, bs, pai +bs — pba, bo) —wa (bs, as, as —
p?a1 +p?ba, pai + bz — pbo) — wa(pai +bs — pbo, as — p®ai + p*bo, pbs + as — pba, by) =
a1b3p® —2a3b3p® +abip® +b363p° —2a1 bab3pS +adbap® —adbsp® — b3bsp® + a1 b3b3p® +
aibobsp® + 2a103p° — asb3p® + a1b3p® — beb3p® — 3a3b3p° + 2a1a2b3p° — aZb3p® +
202b2p° — ar1bab2p® + aibap® — atasbap® — aibzp® — bib3p® — 2a1b3bsp® + asb3bzp® +
a%a2b3p5 +4a%b2b3p5 —2a1asbabsp® +a1b%p4 —2a2b%p4+a1b§p4 —b2b§p4 +3a1a2b§p4 —
4a%b§p4 + a1a2b§p4 + 4a, b2b§p4 — a2b2b§p4 — a?bgp‘1 — a%azbgp4 + a?bgp4 + b§b3p4 —
6(],1 b%b3p4 + 3a2b§b3p4 + a%agbgp‘* + 4a%b2b3p4 — 4a1a2b2b3p4 + 20,11)%])3 — a2b§p3 —
a1b3p® + babip® — 3ab3p® + a3bip® + 2a1a2b3p° — a1bab2p® — 2asb2b3p® + aibap® +
a%a2b2p3 — a?b3p3 — bgb3p3 + 3a2b3b3p3 — a%a2b3p3 + Qa%b2b3p3 — 2a1asbybgp® —
2asb3p> + a1b3p® — bab3p? + 2a3b3p® + 3aiaxbip? — 5aibip® — b3b3p? + araxb3p® +
6a1b2b§p2 — a2b2b§p2 — Qa?bgp2 — a%agbgpQ + Qa?bgp2 + 2b§b3p2 — 7alb§b3p2 +
3a2b%b3p2+a%a2b3p2+3a%b2b3p2—4a1a2b2b3p2—2a1bgp—l—ngbgp—Qalagb%p—l—Qa%b%p—
2b%b§p+20,10,2b%p—2&2[)2b%p+2a%0,2b2p+2a1b%b3p+20,2b%b3p—2&%&2[)3])—2&%[)2[)3]) =
p(p + 2)(])2 + 1)(&1 — bg)(bg — bg)(pal —a; + b3 — bgp)(—GQ + b3 + a1p — b3p) =
f4(p)g(p7 ai,az,bs, b3)



