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ABSTRACT

We 
onstru
t a series of 
ombinatorial quandle-like knot invariants. We 
olour regions

of a knot diagram rather than lines and assign a weight to ea
h 
olouring. Sets of

these weights are the invariants we 
onstru
t (
olourings and weights depend on several

parameters).

Using these invariants, we prove that left and right trefoils are not isotopi
 using

this invariant (in a parti
ular 
ase).
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1. Introdu
tion

Left and right trefoils were �rst dete
ted by Max Dehn [1℄. The invariants used in

the present arti
le to dete
t trefoils are similar to quandle invariants introdu
ed by

Matveev and Joy
e [2℄, [3℄, but quandles themselves do not dete
t trefoils. Quandles

give us almost 
omplete knot invariant. Quandles dete
t any pair of distin
t knots

ex
ept for those whi
h 
an be obtained one from another by double involution,

i. e. simultaneous orientation 
hange of the knot and the ambient spa
e R

3

. The

approa
h used in the present paper is similar to Fenn, Rourke and Sanderson's one

[4℄, [5℄, [6℄. But they use framed knots and ra
ks instead of quandles. Also their

approa
h uses some topologi
al 
al
ulations with homology and homotopy of the

ra
k spa
e and the extended ra
k spa
e.

In the present arti
le we 
onstru
t a series of 
ombinatorial knot invariants

based on 
olourings of regions of a knot diagram by elements of some �nite ring

R. These 
olourings satisfy a 
ondition at 
rossings that we 
all admissibility. This


ondition, in parti
ular, uniquely determines the 
olour of one of four regions nearby

the 
rossing if the other three 
olours are known. Thus, it is usually enough to set


olours of a small number of regions to obtain a 
omplete 
olouring. If R is small,

the invariant 
an be 
al
ulated easily. In parti
ular, trefoils are dete
ted by the

invariant with R = Z

3

.

Admissible 
olourings themselves are similar to quandles. In fa
t, ea
h admissi-

ble 
olouring of regions yields a line 
olouring by quandle 
olours. But, instead of

1
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a simple 
ount of admissible 
olourings, we introdu
e a fun
tion on an admissible


olouring and 
all this fun
tion weight. The set of weights of all admissible 
olour-

ings is the invariant we 
onstru
t. This enables us to distinguish pairs of knots with

equal numbers of admissible 
olourings.

Of 
ourse, there are a lot of possible ways to dete
t trefoils. For example, we will

dis
uss the relationships between the 
onstru
ted invariant, quandle invariants and

more 
omplex quandle 
ohomology invariants ([10℄, [11℄, [12℄). In a parti
ular 
ase

when we are dete
ting trefoils, the invariant 
oinsides with a parti
ular quandle


ohomology invariant, �

1

+ �

2

+ �

3

+ �

5

in [10℄. Our goal was to make a simple

invariant of knots 
oloured in some way that 
ould dete
t trefoils.

The invariant 
an dete
t knots other than the trefoils. For example, it 
an dete
t

the knot 9

1

and its mirror image if R = Z

9

.

2. Constru
tion of the invariant

Fix a 
lassi
al link diagram L and a 
rossing X of it. We denote the adja
ent

regions by a, b, 
, d as shown in Fig. 1. Namely, denote by a the bottom-left region,

we 
onsider the over
rossing line oriented from left to right. Other regions follow


lo
kwise starting from a.

a

d

b 


Fig. 1. Notations of the regions near the 
rossing.

We 
olour regions by elements of some �nite ring R. Fix an invertible element

p 2 R. We 
all a 
olouring of L admissible if for ea
h 
rossing X of L we have

pa+ b� 
� pd = 0. We get a set of admissible 
olourings A.

Consider the following 4 fun
tions:

w

1

(a; b; 
; d) = (a� 
)(b� d)(a � d)(a+ d);

w

2

(a; b; 
; d) = (a� 
)(b� d)(a � d)(b+ 
);

w

3

(a; b; 
; d) = (a� 
)(b� d)(b� 
)(a+ d);

w

4

(a; b; 
; d) = (a� 
)(b� d)(b� 
)(b+ 
); (2.1)
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and polynomials:

f

1

(p) = (2p+ 1)(p

2

+ 1);

f

2

(p) = �(p+ 2)(p

2

+ 1);

f

3

(p) = �p(2p+ 1)(p

2

+ 1);

f

4

(p) = p(p+ 2)(p

2

+ 1): (2.2)

Fix arbitrary polynomials x

1

; x

2

; x

3

; x

4

over the ground ring R. Consider the

fun
tion w = x

1

w

1

+x

2

w

2

+x

3

w

3

+x

4

w

4

and 
all it the weight of the 
rossing. Set

the polynomial f = x

1

f

1

+ x

2

f

2

+ x

3

f

3

+ x

4

f

4

. With ea
h admissible 
olouring we

asso
iate the sum of weights w(a; b; 
; d) over all 
rossings and 
all it the weight of

a 
olouring.

Thus, for the link diagram L, we get a set of weighted 
olourings A (and thus,

a set of weights w(A)).

Theorem 2.1. If p is a root of f then this set of weights of 
olourings is a knot

invariant.

Proof. We shall show that this set is invariant under Reidemeister moves. In all

three 
ases we will assume that we have some admissible 
olouring of the diagram

before the move and 
onstru
t an admissible 
olouring of the diagram after the

move. This will give us a one-to-one 
orresponden
e between the 
olourings of two

diagrams.

Move 1. Consider four variants of the �rst Reidemeister move, where a single

line oriented from left to right or from right to left (not shown) be
omes a twist

forming positive or negative 
rossing (see Fig. 2). Be
ause p is invertible, the 
olour

of the newborn small region is 
ompletely de�ned if we want the 
olouring of the

new diagram to be admissible. (Colours of all other regions remain un
hanged). So,

we have one-to-one 
orresponden
e between the 
olourings of two diagrams before

and after performing the Reidemeister move. Regions a and 
 (or b and d) of this


rossing are parts of the same domain so the fun
tion w equals 0 for this new


rossing. Hen
e, 
olourings of the former diagram 
orrespond to the 
olourings of

the latter diagram with the same weights.

a

b




d

d

a

b







d

a

b

b




d

a

Fig. 2. Reidemeister move 1.
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Move 2. Consider the se
ond Reidemeister move su
h that for the diagram before

performing the move we have two 
lose lines, one (upper in the diagram) of whi
h

is oriented from left to right or from right to left (see Fig. 3, left part), and for the

diagram after performing the move we have these two lines forming two 
rossings

(see Fig. 3, right part).

Assume we have some admissible 
olouring of the former diagram where regions

are 
oloured by elements x; y; z 2 R. Leave all the regions of the latter diagram

ex
ept for the newborn small region 
oloured their former 
olours. Let t be the


olour of the newborn small region. Then the admissibility at the �rst and at the

se
ond 
rossings yields the equations pz + y � x� pt = 0 and pt+ x� y � pz = 0.

Be
ause p is invertible, these equations uniquely determine (the same) value of t.

(In the se
ond 
ase, admissibility yields the equations px + t � z � py = 0 and

py + z � t� px = 0, and again the values of t we obtain are equal).

x

z

y

a

b




d

y

t

x

d

a

b




y

z




d

a

b

y

t

x

b




d

a

y

z

Fig. 3. Reidemeister move 2.

Two newborn 
rossings add two summands to the weight of the 
olouring. They

are w(z; y; x; t) and w(t; y; x; z) (or w(x; t; z; y) and w(y; z; t; x) in the se
ond 
ase).

But all the fun
tions w

i

satisfy the 
ondition w(a; b; 
; d) = �w(d; 
; b; a), so the

weight of the former 
olouring equals the weight of the latter one.

Move 3. It is known that (see [7℄, [8℄) it is suÆ
ient to 
onsider only one 
ase

of the third Reidemeister move, where two topmost lines form a positive 
rossing.

Consider an admissible 
olouring of the former diagram Let its four regions be


oloured by elements a

2

; b

3

; a

1

; b

2

2 R (see Fig. 4). Then two other `exterior' regions

of the former diagram are 
oloured pb

3

+a

2

�pb

2

and a

2

�p

2

a

1

+p

2

b

2

. The `interior'

region of the former diagram is 
oloured pb

3

+ a

2

� pa

1

. After performing the

Reidemeister move, if the four �rst regions are 
oloured a

2

; b

3

; a

1

; b

2

, admissibility


onditions make two other exterior regions be 
oloured pb

3

+ a

2

� pb

2

and a

2

�

p

2

a

1

+p

2

b

2

again. The interior region is 
oloured pa

1

+b

3

�pb

2

. So every admissible


olouring of the former diagram 
orresponds to an admissible 
olouring of the latter

diagram and vi
e versa.

Before the Reidemeister move, three former 
rossings add three summands to the

weight. They are w(b

3

; a

2

; pb

3

+a

2

�pa

1

; a

1

), w(a

1

; pb

3

+a

2

�pa

1

; pb

3

+a

2

�pb

2

; b

2

)

and w(pb

3

+ a

2

� pa

1

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

). After performing the
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a

b 


d a

b 


d

a

b




d

a

1

b

3

b

2

a

2

pb

3

+ a

2

� pa

1

pb

3

+ a

2

� pb

2

a

2

� p

2

a

1

+ p

2

b

2

a

b 


da

b 


d

a

b




d

a

1

b

2

b

3

a

2

pa

1

+ b

3

� pb

2

pb

3

+ a

2

� pb

2

a

2

� p

2

a

1

+ p

2

b

2

Fig. 4. Reidemeister move 3.

Reidemeister move, we have three new summands: w(a

1

; b

3

; pa

1

+ b

3

� pb

2

; b

2

),

w(b

3

; a

2

; a

2

�p

2

a

1

+p

2

b

2

; pa

1

+b

3

�pb

2

) and w(pa

1

+b

3

�pb

2

; a

2

�p

2

a

1

+p

2

b

2

; pb

3

+

a

2

� pb

2

; b

2

). The weight will remain un
hanged if and only if

w(b

3

; a

2

; pb

3

+ a

2

� pa

1

; a

1

) +

w(a

1

; pb

3

+ a

2

� pa

1

; pb

3

+ a

2

� pb

2

; b

2

) +

w(pb

3

+ a

2

� pa

1

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

)�

w(a

1

; b

3

; pa

1

+ b

3

� pb

2

; b

2

)�

w(b

3

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pa

1

+ b

3

� pb

2

)�

w(pa

1

+ b

3

� pb

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

; b

2

) = 0: (2.3)

In order to prove (2.3), �rst 
he
k it for w = w

i

where i = 1; 2; 3; 4. We will use

the fa
t that f(p) = 0.

A 
al
ulation (see Appendix) shows that for all i, if w = w

i

, the sum (2.3)

equals f

i

(p)g(p; a

1

; a

2

; b

2

; b

3

), where g does not depend on i. Hen
e, if w =

P

x

i

w

i

,

the sum (2.3) equals (

P

x

i

(p)f

i

(p))g(p; a

1

; a

2

; b

2

; b

3

) = f(p)g(p; a

1

; a

2

; b

2

; b

3

), and

this is 0 if p is a root of f . Again, the former weight equals the latter one.

We have proved that for any Reidemeister move, every admissible 
olouring of

the diagram before the move 
orresponds to the 
olouring of the diagram after the

move, and the weights of these 
orresponding 
olorings are the same. Hen
e, the

set of weights is invariant under Reidemeister moves. Hen
e, it is a knot invariant,

and this is what was to be proved.

Dis
ussion of the 
onstru
tion. The 
ondition pa + b � 
 � pd = 0 
omes

from the se
ond Reidemeister move. There we have a small newborn region, whose
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olour is de�ned by two admissibility 
onditions at the two newborn 
rossings.

These two 
onditions should 
oin
ide. If we assume that the admissibility 
ondition

at a 
rossing is a linear equation in a; b; 
; d, the 
oin
iden
e 
an be a
hieved if

this equation is either symmetri
 or antisymmetri
 with respe
t to simultaneous

ex
hange a$ d; b$ 
. The weights of these 
rossings should be opposite, and this

holds if w(a; b; 
; d) = �w(d; 
; b; a).

After the �rst Reidemeister move we 
an get a single newborn 
rossing whose

weight should be 0. One of the ways to a
hieve this is to make the equalities

w(a; b; a; d) = 0 and w(a; b; 
; b) = 0 hold for all a; b; 
; d 2 R. Assume now that w is

a polynomial in a; b; 
; d. The simpler the polynomial, the more the possibility that

the weight of the diagram is invariant under the third Reidemeister move. But too

simple polynomials might turn to dete
t nothing. We 
an 
onsider some polynomial

of total degree 4, like w

1

.

The equation (2.3) is not an identity if w equals w

1

. But in this 
ase, the left

part of (2.3) 
an be fa
torized, and some of the fa
tors depend on p only and does

not depend on a; b; 
; d. These fa
tors form f

1

. Three more fun
tions, w

2

, w

3

and

w

4

, give us similar fa
tors f

2

, f

3

and f

4

. Observation that the se
ond fa
tor of the

left part of (2.3) is always (for all w

i

) the same leads us to the general 
onstru
tion

w =

P

x

i

w

i

, where x

i

are arbitrary polynomials from R[p℄.

Unfortunately, for most of the rings R the invariant turns to be useless (for a

given knot). For example, there always exist a set of trivial admissible 
olourings,

where 
olours of all the regions are the same. Moreover, if R is a �eld, the set

of admissible 
olourings is a linear spa
e. In this 
ase, it seems to be true that

there always exists a two-dimensional spa
e of trivial admissible 
olourings. (For

the unknot, where there are no 
rossings, we 
an 
olour interior and exterior of

a 
ir
le in two arbitrary 
olours). If a knot diagram has n regions, it has n � 2


rossings. Therefore we have n � 2 admissibility 
onditions. If all these 
onditions

are linearly independent, the spa
e of admissible 
olourings is 2-dimensional. They


an be made dependent by 
hoosing the 
hara
teristi
 of the �eld, and this might

yield a non-trivial admissible 
olouring.

Admissible 
olourings themselves are similar to quandles. Here we explain how

to 
onstru
t a 
olouring by quandle 
olours from an admissible 
olouring of regions.

Consider a diagram line. Let a be the 
olour of the region at right of it and b be

the 
olour of the region at left of it. Colour this line by pa + b. The admissibility


ondition at 
rossing may be rewritten as pa + b = p
 + d, and this makes the

de�nition of the line 
olour 
orre
t. Then, 
onsider a 
rossing and denote the 
olour

of the over
rossing line by B, the 
olour of the line between a and d by A and the


olour of the line between b and 
 by C. Then B = pa+ b = pd+ 
, A equals either

pa+d or pd+a, C equals either pb+
 or p
+b, respe
tively. Thus, in the former 
ase

�pA+(1+p)B = �p

2

a�pd+pa+b+p

2

a+pb = pb+(pa+b�pd) = pb+
 = C, and in

the latter 
ase �pA+(1+p)B = �pa�p

2

d+pd+
+p

2

d+p
 = p
+(�pa+pd+
) =

p
+ b = C. The quandle operation is: A ÆB = �pA+ (1 + p)B. And vi
e versa, if
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we have lines of the diagram 
oloured by elements of quandle and know the 
olour

of one of the regions, we 
an 
olour other regions using the rule above.

However, weights of 
rossings 
annot be rewritten in terms of A;B;C only. So,

the invariant 
onstru
ted might dete
t some pairs of knots that quandles 
annot

dete
t.

We 
an say more if p + 1 is invertible as well as p. In this 
ase we 
an 
olour

a line between a region of 
olour a and a region of 
olour b by A = �(pa + b),

where � = (1 + p)

�1

. Obviously, quandle 
onditions at 
rossings are still satis�ed.

Moreover, a ÆA = �pa+(1+ p)�(pa+ b) = b, and this leads to a standard quandle


olouring of lines and regions of the diagram (see [11℄). We 
an 
onsider a quandle


o
y
le �(x; y; z) = w((p+1)y� px; (p+1)z � p(p+1)y+ p

2

x; (p+1)z � px; x). If

pa + b � 
 � pd = 0, w(a; b; 
; d) = �(d; �(pd + a); �(pd + 
)), and we 
an see that

for a positive 
rossing the weight w 
oin
ides to a 
o
yle weight � (see �g. 5). For a

negative 
rossing, the 
o
y
le weight is ��(a; �(pa+d); �(pa+b)) = �w(d; 
; b; a) =

w(a; b; 
; d), i. e. it also 
oinsides to the weight w.

a

d = x

b 


�(pd+ a) = y

�(pd+ 
) = z

x = a

d

b 


�(pa+ d) = y

�(pa+ b) = z

Fig. 5. Co
y
le weight at the 
rossing.

For arbitrary x; y; z; t 2 R, set b

2

= x; a

1

= (p+1)t�pb

2

; b

3

= (p+1)y�pa

1

; a

2

=

(p+ 1)z � pb

3

. Then x = b

2

; t = �(pb

2

+ a

1

); y = �(pa

1

+ b

3

); z = �(pb

3

+ a

2

), and

the 
o
y
le 
ondition

�(x; z; t)�

�(x; y; t) +

�(x; y; z)�

�(x Æ y; z; t) +

�(x Æ z; y Æ z; t)�

�(x Æ t; y Æ t; z Æ t) = 0 (2.4)

immediately follows from 2.3. The 
onditions �(x; x; y) = 0 and �(x; y; y) = 0 are

also sats�ed. Indeed, �(x; x; y) = w(x; (p + 1)y � px; (p + 1)y � px; x) = 0 sin
e

w

1

and w

2

equal zero if a = d and w

3

and w

4

equal zero if b = 
. �(x; y; y) =

w((p+ 1)y � px; p

2

x� (p

2

� 1)y; (p+ 1)y � px; x) = 0 sin
e w(a; b; a; d) = 0 for all
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a; b; d 2 R.

Threrfore, any w fun
tion leads to some 
o
y
le �. But we do not know whether

this 
o
y
le is zero in the 
ohomology group.

Remark 2.2. We may assume that all the 
olourings of diagram have the in�nite

exterior region of 
olour 0 (or to any other 
olour of R), be
ause the 
orresponding


olourings of any two diagrams, one of whi
h is result of a Reidemeister move

applied to the other, have their exterior regions 
oloured the same 
olour.

Also we 
an 
onsider long knots that 
an be `
onstru
ted' from (
ompa
t) knots

in the usual way.

It is known that (see [9℄) two (
ompa
t) knots are isotopi
 i� two long knots

obtained from them are isotopi
. A knot diagram in R

2


an also be made of a

diagram of an isotopi
 knot using Reidemeister moves. A diagram of a long knot

has two in�nite exterior regions. This yields the following remark:

Remark 2.3. Theorem 2.1 holds for long knot diagrams too. For a long knot

diagram, we may assume that all the 
olourings have the two in�nite exterior regions

of 
olours a

1

; a

2

, where a

1

; a

2

are any pre�xed elements of R.

3. Example (the left and right trefoils)

Consider two trefoil diagrams shown in Fig. 6. Let us prove they are not isotopi
.

Set the ground ring be Z

3

, whose elements will be denoted by 0, 1, 2. Set p = 1

and w = w

1

.

a

b




d

a

b




d

a

b




d

x

z

y

t

a

b




d

a

b




d

a

b




d

x

z

y

t

Fig. 6. The left and right trefoils.
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Consider the left trefoil. If the region t is 
oloured 0, then all the regions x,

y, z are 
oloured 0, and this yields three 
olourings of weight 0. If t is 
oloured

1, the 
olours of x, y, z form a 
y
li
 permutation of 0, 1, 2, respe
tively (three

possible 
olourings). Two of the 
rossings (one with a = 1; b = 0; 
 = 0; d = 1 and

another with a = 1; b = 1; 
 = 0; d = 2) are of weight 0, and the last 
rossing (with

a = 1; b = 2; 
 = 0; d = 0) is of weight (1 � 0)(2 � 0)(1 � 0)(1 + 0) = 2. So these

three 
olourings are of weight 2 ea
h. Finally, if t is 
oloured 2, the 
olours of x,

y, z form a 
y
li
 permutation of 1, 0, 2, respe
tively. Two of the 
rossings (one

with a = 2; b = 0; 
 = 0; d = 2 and the other with a = 2; b = 2; 
 = 0; d = 1) are

of weight 0, and the last 
rossing (with a = 2; b = 1; 
 = 0; d = 0) is of weight

(2 � 0)(1 � 0)(2 � 0)(2 + 0) = 2. So, we have three more 
olourings of weight 2.

Hen
e, there are three 
olourings of weight 0 and six 
olourings of weight 2.

Now 
onsider the right trefoil. If we �nd a 
olouring of weight 1 (with the exterior

region 
oloured 0), trefoils will be distinguished. Let region t be 
oloured 1, then the

regions x, y, z have 
olours 0, 1, 2 ordered 
ounter-
lo
kwise. Two of the 
rossings

(one with a = 1; b = 0; 
 = 0; d = 1 and the other with a = 2; b = 0; 
 = 1; d = 1)

are of weight 0, and the last 
rossing (with a = 0, b = 0, 
 = 2, d = 1) is of weight

(0� 2)(0� 1)(0� 1)(0+ 1) = 1, and this distinguishes the trefoils. (A
tually, there

are three 
olourings of weight 0 and six 
olourings of weight 1 of the right trefoil).
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