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ABSTRACT

We onstrut a series of ombinatorial quandle-like knot invariants. We olour regions

of a knot diagram rather than lines and assign a weight to eah olouring. Sets of

these weights are the invariants we onstrut (olourings and weights depend on several

parameters).

Using these invariants, we prove that left and right trefoils are not isotopi using

this invariant (in a partiular ase).
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1. Introdution

Left and right trefoils were �rst deteted by Max Dehn [1℄. The invariants used in

the present artile to detet trefoils are similar to quandle invariants introdued by

Matveev and Joye [2℄, [3℄, but quandles themselves do not detet trefoils. Quandles

give us almost omplete knot invariant. Quandles detet any pair of distint knots

exept for those whih an be obtained one from another by double involution,

i. e. simultaneous orientation hange of the knot and the ambient spae R

3

. The

approah used in the present paper is similar to Fenn, Rourke and Sanderson's one

[4℄, [5℄, [6℄. But they use framed knots and raks instead of quandles. Also their

approah uses some topologial alulations with homology and homotopy of the

rak spae and the extended rak spae.

In the present artile we onstrut a series of ombinatorial knot invariants

based on olourings of regions of a knot diagram by elements of some �nite ring

R. These olourings satisfy a ondition at rossings that we all admissibility. This

ondition, in partiular, uniquely determines the olour of one of four regions nearby

the rossing if the other three olours are known. Thus, it is usually enough to set

olours of a small number of regions to obtain a omplete olouring. If R is small,

the invariant an be alulated easily. In partiular, trefoils are deteted by the

invariant with R = Z

3

.

Admissible olourings themselves are similar to quandles. In fat, eah admissi-

ble olouring of regions yields a line olouring by quandle olours. But, instead of

1
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a simple ount of admissible olourings, we introdue a funtion on an admissible

olouring and all this funtion weight. The set of weights of all admissible olour-

ings is the invariant we onstrut. This enables us to distinguish pairs of knots with

equal numbers of admissible olourings.

Of ourse, there are a lot of possible ways to detet trefoils. For example, we will

disuss the relationships between the onstruted invariant, quandle invariants and

more omplex quandle ohomology invariants ([10℄, [11℄, [12℄). In a partiular ase

when we are deteting trefoils, the invariant oinsides with a partiular quandle

ohomology invariant, �

1

+ �

2

+ �

3

+ �

5

in [10℄. Our goal was to make a simple

invariant of knots oloured in some way that ould detet trefoils.

The invariant an detet knots other than the trefoils. For example, it an detet

the knot 9

1

and its mirror image if R = Z

9

.

2. Constrution of the invariant

Fix a lassial link diagram L and a rossing X of it. We denote the adjaent

regions by a, b, , d as shown in Fig. 1. Namely, denote by a the bottom-left region,

we onsider the overrossing line oriented from left to right. Other regions follow

lokwise starting from a.

a

d

b 

Fig. 1. Notations of the regions near the rossing.

We olour regions by elements of some �nite ring R. Fix an invertible element

p 2 R. We all a olouring of L admissible if for eah rossing X of L we have

pa+ b� � pd = 0. We get a set of admissible olourings A.

Consider the following 4 funtions:

w

1

(a; b; ; d) = (a� )(b� d)(a � d)(a+ d);

w

2

(a; b; ; d) = (a� )(b� d)(a � d)(b+ );

w

3

(a; b; ; d) = (a� )(b� d)(b� )(a+ d);

w

4

(a; b; ; d) = (a� )(b� d)(b� )(b+ ); (2.1)
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and polynomials:

f

1

(p) = (2p+ 1)(p

2

+ 1);

f

2

(p) = �(p+ 2)(p

2

+ 1);

f

3

(p) = �p(2p+ 1)(p

2

+ 1);

f

4

(p) = p(p+ 2)(p

2

+ 1): (2.2)

Fix arbitrary polynomials x

1

; x

2

; x

3

; x

4

over the ground ring R. Consider the

funtion w = x

1

w

1

+x

2

w

2

+x

3

w

3

+x

4

w

4

and all it the weight of the rossing. Set

the polynomial f = x

1

f

1

+ x

2

f

2

+ x

3

f

3

+ x

4

f

4

. With eah admissible olouring we

assoiate the sum of weights w(a; b; ; d) over all rossings and all it the weight of

a olouring.

Thus, for the link diagram L, we get a set of weighted olourings A (and thus,

a set of weights w(A)).

Theorem 2.1. If p is a root of f then this set of weights of olourings is a knot

invariant.

Proof. We shall show that this set is invariant under Reidemeister moves. In all

three ases we will assume that we have some admissible olouring of the diagram

before the move and onstrut an admissible olouring of the diagram after the

move. This will give us a one-to-one orrespondene between the olourings of two

diagrams.

Move 1. Consider four variants of the �rst Reidemeister move, where a single

line oriented from left to right or from right to left (not shown) beomes a twist

forming positive or negative rossing (see Fig. 2). Beause p is invertible, the olour

of the newborn small region is ompletely de�ned if we want the olouring of the

new diagram to be admissible. (Colours of all other regions remain unhanged). So,

we have one-to-one orrespondene between the olourings of two diagrams before

and after performing the Reidemeister move. Regions a and  (or b and d) of this

rossing are parts of the same domain so the funtion w equals 0 for this new

rossing. Hene, olourings of the former diagram orrespond to the olourings of

the latter diagram with the same weights.

a

b



d

d

a

b





d

a

b

b



d

a

Fig. 2. Reidemeister move 1.
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Move 2. Consider the seond Reidemeister move suh that for the diagram before

performing the move we have two lose lines, one (upper in the diagram) of whih

is oriented from left to right or from right to left (see Fig. 3, left part), and for the

diagram after performing the move we have these two lines forming two rossings

(see Fig. 3, right part).

Assume we have some admissible olouring of the former diagram where regions

are oloured by elements x; y; z 2 R. Leave all the regions of the latter diagram

exept for the newborn small region oloured their former olours. Let t be the

olour of the newborn small region. Then the admissibility at the �rst and at the

seond rossings yields the equations pz + y � x� pt = 0 and pt+ x� y � pz = 0.

Beause p is invertible, these equations uniquely determine (the same) value of t.

(In the seond ase, admissibility yields the equations px + t � z � py = 0 and

py + z � t� px = 0, and again the values of t we obtain are equal).

x

z

y

a

b



d

y

t

x

d

a

b



y

z



d

a

b

y

t

x

b



d

a

y

z

Fig. 3. Reidemeister move 2.

Two newborn rossings add two summands to the weight of the olouring. They

are w(z; y; x; t) and w(t; y; x; z) (or w(x; t; z; y) and w(y; z; t; x) in the seond ase).

But all the funtions w

i

satisfy the ondition w(a; b; ; d) = �w(d; ; b; a), so the

weight of the former olouring equals the weight of the latter one.

Move 3. It is known that (see [7℄, [8℄) it is suÆient to onsider only one ase

of the third Reidemeister move, where two topmost lines form a positive rossing.

Consider an admissible olouring of the former diagram Let its four regions be

oloured by elements a

2

; b

3

; a

1

; b

2

2 R (see Fig. 4). Then two other `exterior' regions

of the former diagram are oloured pb

3

+a

2

�pb

2

and a

2

�p

2

a

1

+p

2

b

2

. The `interior'

region of the former diagram is oloured pb

3

+ a

2

� pa

1

. After performing the

Reidemeister move, if the four �rst regions are oloured a

2

; b

3

; a

1

; b

2

, admissibility

onditions make two other exterior regions be oloured pb

3

+ a

2

� pb

2

and a

2

�

p

2

a

1

+p

2

b

2

again. The interior region is oloured pa

1

+b

3

�pb

2

. So every admissible

olouring of the former diagram orresponds to an admissible olouring of the latter

diagram and vie versa.

Before the Reidemeister move, three former rossings add three summands to the

weight. They are w(b

3

; a

2

; pb

3

+a

2

�pa

1

; a

1

), w(a

1

; pb

3

+a

2

�pa

1

; pb

3

+a

2

�pb

2

; b

2

)

and w(pb

3

+ a

2

� pa

1

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

). After performing the
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a

b 

d a

b 

d

a

b



d

a

1

b

3

b

2

a

2

pb

3

+ a

2

� pa

1

pb

3

+ a

2

� pb

2

a

2

� p

2

a

1

+ p

2

b

2

a

b 

da

b 

d

a

b



d

a

1

b

2

b

3

a

2

pa

1

+ b

3

� pb

2

pb

3

+ a

2

� pb

2

a

2

� p

2

a

1

+ p

2

b

2

Fig. 4. Reidemeister move 3.

Reidemeister move, we have three new summands: w(a

1

; b

3

; pa

1

+ b

3

� pb

2

; b

2

),

w(b

3

; a

2

; a

2

�p

2

a

1

+p

2

b

2

; pa

1

+b

3

�pb

2

) and w(pa

1

+b

3

�pb

2

; a

2

�p

2

a

1

+p

2

b

2

; pb

3

+

a

2

� pb

2

; b

2

). The weight will remain unhanged if and only if

w(b

3

; a

2

; pb

3

+ a

2

� pa

1

; a

1

) +

w(a

1

; pb

3

+ a

2

� pa

1

; pb

3

+ a

2

� pb

2

; b

2

) +

w(pb

3

+ a

2

� pa

1

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

)�

w(a

1

; b

3

; pa

1

+ b

3

� pb

2

; b

2

)�

w(b

3

; a

2

; a

2

� p

2

a

1

+ p

2

b

2

; pa

1

+ b

3

� pb

2

)�

w(pa

1

+ b

3

� pb

2

; a

2

� p

2

a

1

+ p

2

b

2

; pb

3

+ a

2

� pb

2

; b

2

) = 0: (2.3)

In order to prove (2.3), �rst hek it for w = w

i

where i = 1; 2; 3; 4. We will use

the fat that f(p) = 0.

A alulation (see Appendix) shows that for all i, if w = w

i

, the sum (2.3)

equals f

i

(p)g(p; a

1

; a

2

; b

2

; b

3

), where g does not depend on i. Hene, if w =

P

x

i

w

i

,

the sum (2.3) equals (

P

x

i

(p)f

i

(p))g(p; a

1

; a

2

; b

2

; b

3

) = f(p)g(p; a

1

; a

2

; b

2

; b

3

), and

this is 0 if p is a root of f . Again, the former weight equals the latter one.

We have proved that for any Reidemeister move, every admissible olouring of

the diagram before the move orresponds to the olouring of the diagram after the

move, and the weights of these orresponding olorings are the same. Hene, the

set of weights is invariant under Reidemeister moves. Hene, it is a knot invariant,

and this is what was to be proved.

Disussion of the onstrution. The ondition pa + b �  � pd = 0 omes

from the seond Reidemeister move. There we have a small newborn region, whose
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olour is de�ned by two admissibility onditions at the two newborn rossings.

These two onditions should oinide. If we assume that the admissibility ondition

at a rossing is a linear equation in a; b; ; d, the oinidene an be ahieved if

this equation is either symmetri or antisymmetri with respet to simultaneous

exhange a$ d; b$ . The weights of these rossings should be opposite, and this

holds if w(a; b; ; d) = �w(d; ; b; a).

After the �rst Reidemeister move we an get a single newborn rossing whose

weight should be 0. One of the ways to ahieve this is to make the equalities

w(a; b; a; d) = 0 and w(a; b; ; b) = 0 hold for all a; b; ; d 2 R. Assume now that w is

a polynomial in a; b; ; d. The simpler the polynomial, the more the possibility that

the weight of the diagram is invariant under the third Reidemeister move. But too

simple polynomials might turn to detet nothing. We an onsider some polynomial

of total degree 4, like w

1

.

The equation (2.3) is not an identity if w equals w

1

. But in this ase, the left

part of (2.3) an be fatorized, and some of the fators depend on p only and does

not depend on a; b; ; d. These fators form f

1

. Three more funtions, w

2

, w

3

and

w

4

, give us similar fators f

2

, f

3

and f

4

. Observation that the seond fator of the

left part of (2.3) is always (for all w

i

) the same leads us to the general onstrution

w =

P

x

i

w

i

, where x

i

are arbitrary polynomials from R[p℄.

Unfortunately, for most of the rings R the invariant turns to be useless (for a

given knot). For example, there always exist a set of trivial admissible olourings,

where olours of all the regions are the same. Moreover, if R is a �eld, the set

of admissible olourings is a linear spae. In this ase, it seems to be true that

there always exists a two-dimensional spae of trivial admissible olourings. (For

the unknot, where there are no rossings, we an olour interior and exterior of

a irle in two arbitrary olours). If a knot diagram has n regions, it has n � 2

rossings. Therefore we have n � 2 admissibility onditions. If all these onditions

are linearly independent, the spae of admissible olourings is 2-dimensional. They

an be made dependent by hoosing the harateristi of the �eld, and this might

yield a non-trivial admissible olouring.

Admissible olourings themselves are similar to quandles. Here we explain how

to onstrut a olouring by quandle olours from an admissible olouring of regions.

Consider a diagram line. Let a be the olour of the region at right of it and b be

the olour of the region at left of it. Colour this line by pa + b. The admissibility

ondition at rossing may be rewritten as pa + b = p + d, and this makes the

de�nition of the line olour orret. Then, onsider a rossing and denote the olour

of the overrossing line by B, the olour of the line between a and d by A and the

olour of the line between b and  by C. Then B = pa+ b = pd+ , A equals either

pa+d or pd+a, C equals either pb+ or p+b, respetively. Thus, in the former ase

�pA+(1+p)B = �p

2

a�pd+pa+b+p

2

a+pb = pb+(pa+b�pd) = pb+ = C, and in

the latter ase �pA+(1+p)B = �pa�p

2

d+pd++p

2

d+p = p+(�pa+pd+) =

p+ b = C. The quandle operation is: A ÆB = �pA+ (1 + p)B. And vie versa, if
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we have lines of the diagram oloured by elements of quandle and know the olour

of one of the regions, we an olour other regions using the rule above.

However, weights of rossings annot be rewritten in terms of A;B;C only. So,

the invariant onstruted might detet some pairs of knots that quandles annot

detet.

We an say more if p + 1 is invertible as well as p. In this ase we an olour

a line between a region of olour a and a region of olour b by A = �(pa + b),

where � = (1 + p)

�1

. Obviously, quandle onditions at rossings are still satis�ed.

Moreover, a ÆA = �pa+(1+ p)�(pa+ b) = b, and this leads to a standard quandle

olouring of lines and regions of the diagram (see [11℄). We an onsider a quandle

oyle �(x; y; z) = w((p+1)y� px; (p+1)z � p(p+1)y+ p

2

x; (p+1)z � px; x). If

pa + b �  � pd = 0, w(a; b; ; d) = �(d; �(pd + a); �(pd + )), and we an see that

for a positive rossing the weight w oinides to a oyle weight � (see �g. 5). For a

negative rossing, the oyle weight is ��(a; �(pa+d); �(pa+b)) = �w(d; ; b; a) =

w(a; b; ; d), i. e. it also oinsides to the weight w.

a

d = x

b 

�(pd+ a) = y

�(pd+ ) = z

x = a

d

b 

�(pa+ d) = y

�(pa+ b) = z

Fig. 5. Coyle weight at the rossing.

For arbitrary x; y; z; t 2 R, set b

2

= x; a

1

= (p+1)t�pb

2

; b

3

= (p+1)y�pa

1

; a

2

=

(p+ 1)z � pb

3

. Then x = b

2

; t = �(pb

2

+ a

1

); y = �(pa

1

+ b

3

); z = �(pb

3

+ a

2

), and

the oyle ondition

�(x; z; t)�

�(x; y; t) +

�(x; y; z)�

�(x Æ y; z; t) +

�(x Æ z; y Æ z; t)�

�(x Æ t; y Æ t; z Æ t) = 0 (2.4)

immediately follows from 2.3. The onditions �(x; x; y) = 0 and �(x; y; y) = 0 are

also sats�ed. Indeed, �(x; x; y) = w(x; (p + 1)y � px; (p + 1)y � px; x) = 0 sine

w

1

and w

2

equal zero if a = d and w

3

and w

4

equal zero if b = . �(x; y; y) =

w((p+ 1)y � px; p

2

x� (p

2

� 1)y; (p+ 1)y � px; x) = 0 sine w(a; b; a; d) = 0 for all



August 8, 2008 21:38 WSPC/INSTRUCTION FILE invariant

8 Rostislav Deviatov

a; b; d 2 R.

Threrfore, any w funtion leads to some oyle �. But we do not know whether

this oyle is zero in the ohomology group.

Remark 2.2. We may assume that all the olourings of diagram have the in�nite

exterior region of olour 0 (or to any other olour of R), beause the orresponding

olourings of any two diagrams, one of whih is result of a Reidemeister move

applied to the other, have their exterior regions oloured the same olour.

Also we an onsider long knots that an be `onstruted' from (ompat) knots

in the usual way.

It is known that (see [9℄) two (ompat) knots are isotopi i� two long knots

obtained from them are isotopi. A knot diagram in R

2

an also be made of a

diagram of an isotopi knot using Reidemeister moves. A diagram of a long knot

has two in�nite exterior regions. This yields the following remark:

Remark 2.3. Theorem 2.1 holds for long knot diagrams too. For a long knot

diagram, we may assume that all the olourings have the two in�nite exterior regions

of olours a

1

; a

2

, where a

1

; a

2

are any pre�xed elements of R.

3. Example (the left and right trefoils)

Consider two trefoil diagrams shown in Fig. 6. Let us prove they are not isotopi.

Set the ground ring be Z

3

, whose elements will be denoted by 0, 1, 2. Set p = 1

and w = w

1

.

a

b



d

a

b



d

a

b



d

x

z

y

t

a

b



d

a

b



d

a

b



d

x

z

y

t

Fig. 6. The left and right trefoils.
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Consider the left trefoil. If the region t is oloured 0, then all the regions x,

y, z are oloured 0, and this yields three olourings of weight 0. If t is oloured

1, the olours of x, y, z form a yli permutation of 0, 1, 2, respetively (three

possible olourings). Two of the rossings (one with a = 1; b = 0;  = 0; d = 1 and

another with a = 1; b = 1;  = 0; d = 2) are of weight 0, and the last rossing (with

a = 1; b = 2;  = 0; d = 0) is of weight (1 � 0)(2 � 0)(1 � 0)(1 + 0) = 2. So these

three olourings are of weight 2 eah. Finally, if t is oloured 2, the olours of x,

y, z form a yli permutation of 1, 0, 2, respetively. Two of the rossings (one

with a = 2; b = 0;  = 0; d = 2 and the other with a = 2; b = 2;  = 0; d = 1) are

of weight 0, and the last rossing (with a = 2; b = 1;  = 0; d = 0) is of weight

(2 � 0)(1 � 0)(2 � 0)(2 + 0) = 2. So, we have three more olourings of weight 2.

Hene, there are three olourings of weight 0 and six olourings of weight 2.

Now onsider the right trefoil. If we �nd a olouring of weight 1 (with the exterior

region oloured 0), trefoils will be distinguished. Let region t be oloured 1, then the

regions x, y, z have olours 0, 1, 2 ordered ounter-lokwise. Two of the rossings

(one with a = 1; b = 0;  = 0; d = 1 and the other with a = 2; b = 0;  = 1; d = 1)

are of weight 0, and the last rossing (with a = 0, b = 0,  = 2, d = 1) is of weight

(0� 2)(0� 1)(0� 1)(0+ 1) = 1, and this distinguishes the trefoils. (Atually, there

are three olourings of weight 0 and six olourings of weight 1 of the right trefoil).
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