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Abstract. Our goal is to classify all generically transitive actions of commutative unipo-
tent groups on flag varieties up to conjugation. We establish relationship between this
problem and classification of multiplications with certain properties on Lie algebra rep-
resentations. Then we classify multiplications with the desired properties and solve the
initial classification problem.

Introduction

Let G be a semisimple algebraic group over C. Consider a generalized flag
variety G/P where P ⊂ G is a parabolic subgroup. Let m = dimG/P , and let
(Ga)m be the unipotent commutative group of dimension m. We are going to
classify all generically transitive actions of (Ga)m on G/P up to conjugation by
an automorphism of G/P . The variety G/P does not change after taking the
quotient of G and of P over a finite central subgroup simultaneously, so in the
sequel we suppose that the center of G is trivial.

If G/P is a projective space, the actions in question were classified in [1]. In [2],
all possible pairs (G,P ) such that at least one commutative unipotent action is
possible were found, and the problem of classification of actions on Grassmannians
was stated.

If G = G(1) × . . . × G(s) is the factorization of G into a product of simple
subgroups, and P (i) = G(i) ∩ P , then (see [3, Chapter 4, §15.4, Theorem 2] and

Section 2 here) the group G̃ = Aut(G/P )◦ can be written as G̃ = G̃(1) × . . . ×
G̃(s), where G̃(i) = Aut(G(i)/P (i))◦, and the action is diagonal. Here by the
automorphism group of an algebraic variety we understand the following.
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Definition 1. Let X be an algebraic variety. An algebraic group G together with
an algebraic action G : X is called the automorphism group of X if for every
algebraic group H acting on X algebraically there exists a unique algebraic group
morphism f : G→ H such that for every x ∈ X and h ∈ H one has h ·x = f(h) ·x.

This enables us to consider subgroups of Aut(G/P )◦ isomorphic to (Ga)m in-
stead of actions (Ga)m : (G/P ) and reduces the problem to the case when G is
simple. Automorphism groups in this sense were also studied by Demazure in
[4]. The existence of the automorphism group for generalized flag varieties in this
sense will be established in Section 2. Note that in [3] a different definition of the
automorphism group is used.

Moreover, it follows from the same theorem in [3] and Section 2 here that if

G is simple, then G̃ = Aut(G/P )◦ is also simple with trivial center, and there

exists a parabolic subgroup P̃ ⊆ G̃ such that G/P is G̃-isomorphic to G̃/P̃ ,

where the action on G̃/P̃ originates from the left action G̃ : G̃. More pre-
cisely, for (G,P ) = (PSp2l, P1), (group of type G2, P1), (SO2l−1, Pl−1), one has

(G̃, P̃ ) = (PSL2l, P1), (SO7, P1) or (PSO2l, Pl), respectively, and for all other

pairs (G simple, P parabolic) one has G̃ = G, P̃ = P . The classification problem
is now reduced to the cases where G is simple and G = Aut(G/P )◦. (Here and fur-
ther Pi denotes the maximal parabolic subgroup corresponding to the i-th simple
root, roots are enumerated as in [5].)

All pairs of a simple group G and its parabolic subgroup P up to isogeny such
that G = Aut(G/P )◦ and G/P allows a generically transitive (Ga)m-action are
listed in the following table, see [2, Theorem 1].

G P

PSLl+1 Pi (1 ≤ i ≤ l)
SO2l+1 P1

PSp2l Pl
PSO2l Pi (i = 1, l − 1, l)

Group of type E6 Pi (i = 1, 6)
Group of type E7 P7

Note that [2, Theorem 1] in all these cases the unipotent radical of P is commu-
tative. Hence, to classify generically transitive (Ga)m-actions on generalized flag
varieties, it is sufficient to consider only varieties of the form G/P , where G is sim-
ple, and P is its parabolic subgroup such that G = Aut(G/P )◦ and the unipotent
radical of P is commutative.

Every Lie algebra in what follows is a subalgebra of the Lie algebra of a reductive
algebraic group H, and it will be considered together with this embedding. We
call such a Lie algebra a unipotent, if it is the Lie algebra of a unipotent algebraic
subgroup of H. In other words, a is called unipotent if it is a subalgebra of
the Lie algebra of a maximal unipotent subgroup of H. Alternatively, if V is a
representation of H with a finite kernel, a is unipotent if every element of a acts
on V by a nilpotent operator.
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Proposition 1. (see Section 3) Let G be a simple algebraic group, P be a parabolic
subgroup such that Aut(G/P )◦ = G and the unipotent radical of P is commutative,
g = LieG, p = LieP . Then there is a bijection between generically transitive ac-
tions (Ga)m : (G/P ) up to G-conjugation and commutative unipotent subalgebras
a ⊂ g such that a ∩ p = 0 and a⊕ p = g up to P -conjugation.

Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Let B− ⊂ G be the
Borel subgroup such that B ∩B− = T . Then for every parabolic subgroup P ⊆ G
such that B ⊆ P there exists a unique parabolic subgroup P− such that B− ⊆ P−
and L = P− ∩ P is a Levi subgroup of P . Let U− be the unipotent radical of
P−, u− = LieU−. Then g = u− ⊕ p. We also have a decomposition g = a ⊕ p,
so every u ∈ u− can be written as u = a + p for some p ∈ p. Set ϕ(u) = −p.
Clearly, ϕ : u− → p is a linear map and for every u ∈ u− we have u + ϕ(u) ∈ a.
On the other hand, every a ∈ a can be written as a = v + q, v ∈ u−, q ∈ p,
and we see from the definition of ϕ that q = ϕ(v) satisfies this equation. Hence,
a = {u+ϕ(u) | u ∈ u−}. Note that this correspondence between subalgebras a and
maps ϕ is compatible with the P -actions on the set of m-dimensional subalgebras
of g, on u−, and on p. For a general subalgebra a from Proposition 1 we can only
say that ϕ(u−) ⊆ p, but the following proposition shows that we can say more
about ϕ(u−) if we apply a suitable conjugation by an element of P to a. Denote
the unipotent radical of B− by U−0 .

Proposition 2. (see Section 3) For every unipotent commutative subalgebra a ⊂ g
such that a ∩ p = 0 and a ⊕ p = g there exists p ∈ P such that (Ad p)a ⊆ u−0 =
LieU−0 .

If a ⊆ u−0 , then for every u ∈ u− we have u+ϕ(u) ∈ u−0 , so, since u− and u−0 are
subspaces of p−, ϕ(u) ∈ p− ∩ p = l = LieL. Therefore, every P -conjugation class
of commutative unipotent subalgebras a ⊂ g such that a∩p = 0 and a⊕p = g can
be defined by some L-conjugation class of linear maps ϕ : u− → l. Notice that it is
not true in general that every linear map ϕ : u− → l leads to a suitable subalgebra.
It could also turn out that several classes of maps up to L-conjugation define the
same class of subalgebras up to P -conjugation, but later we will see that this is a
bijection.

Such a map ϕ enables us to define a multiplication u−×u− → u−, namely u×v =
[ϕ(u), v]. Since the representation l : u− is faithful, given such a multiplication
defined by a linear map u− → l, it is possible to recover the linear map. The
following theorem describes the multiplications u− × u− → u− that are really
defined my maps ϕ : u− → l such that a = {u + ϕ(u) | u ∈ u−} is a commutative
unipotent subalgebra. Here and further, if a vector space V is equipped with a
multiplication V ⊗ V → V , and v ∈ V , we denote by µv the operator µv : V → V
defined by µvw = vw. We shortly call it a multiplication operator.

Theorem 3. (see Section 3) A multiplication u− × u− → u− defines a commuta-
tive unipotent subalgebra a ⊂ p− satisfying a ∩ p = 0 and a ⊕ p = g as described
above if and only if this multiplication is commutative, associative, and every mul-
tiplication operator µw : u− → u− (w ∈ u−) is nilpotent and coincides with an
operator of the form ad g|u− , where g ∈ l.
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Thus, to classify generically transitive (Ga)m-actions on G/P , it is sufficient
to find all multiplications satisfying the conditions from Theorem 3 on certain
representations of certain reductive Lie algebras. This problem can be naturally
generalized as follows. Let L be a connected reductive algebraic group, let V be
a representation of L. These data define an action of l = LieL on V . Denote the
action of an element x ∈ l on V by ρ(x). We want to classify up to L-conjugation
all multiplications V × V → V satisfying the conditions from Theorem 3, namely:

(1) The multiplication is commutative.
(2) The multiplication is associative.
(3) Every multiplication operator µw : V → V (w ∈ V ) is nilpotent.
(4) For every w ∈W there exists x ∈ l such that ρ(x) = µw.

We call a multiplication V × V → V l-compatible if conditions 1–4 hold for it.
First, let us reduce this problem to the case of an irreducible representation of

a simple group. Since all multiplication operators µv are nilpotent, the elements
x ∈ l such that ρ(x) = µv can be taken from [l, l], so we will always suppose that
x ∈ [l, l]. Moreover, we are going to prove the following proposition:

Proposition 4. (see Section 4) Let L be a connected reductive group, l = LieL.
Let V be a representation of L such that there exists a nonzero l-compatible mul-
tiplication V × V → V . Let [l, l] = l1 ⊕ . . . ⊕ ls be the decomposition of [l, l] into
simple summands. Then, after a suitable permutation of the subalgebras li, there
exists a decomposition V = V1 ⊕ . . .⊕ Vt and an index r ≤ s, r ≤ t such that:

(1) Vi is an irreducible representation of li for 1 ≤ i ≤ r.
(2) li · Vj = 0 for 1 ≤ i, j ≤ r, i 6= j.
(3) ViVj = 0 for 1 ≤ i, j ≤ r, i 6= j.
(4) li · Vj = 0 for 1 ≤ i ≤ r, r < j ≤ t.
(5) li · Vj = 0 for r < i ≤ s, 1 ≤ j ≤ r.
(6) ViV = 0 for r < i ≤ t.

Informally speaking, the representation [l, l] : V can be decomposed into a sum
of two direct summands, ”the nontrivial summand” l1 ⊕ . . . ⊕ lr : V1 ⊕ . . . ⊕ Vr
and ”the trivial summand” lr+1 ⊕ . . . ⊕ ls : Vr+1 ⊕ . . . ⊕ Vt. The ”trivial” part
of the algebra or the ”trivial” part of the representation (or both) can be zero.
The action of the ”trivial” part of [l, l] on the ”nontrivial” part of V is zero, as
well as the action of the ”nontrivial” part of [l, l] on the ”trivial” part of V . The
multiplication between the ”nontrivial” and the ”trivial” part of V is also zero, as
well as the multiplication inside the ”trivial” part of V . The ”nontrivial” parts
of [l, l] and V can be further decomposed into direct sums of simple algebras and
irreducible representations of each of the simple algebras. The multiplication
between different irreducible subrepresentations inside the ”nontrivial” part of V
is also zero.

Notice that toric direct summands in l and simple direct summands lr+1, . . . , ls
play different roles. The direct summands lr+1, . . . , ls must act on V1 ⊕ . . . ⊕ Vr
trivially, otherwise there exist no nonzero l-compatible multiplications. And the
toric direct summands are allowed to act nontrivially on V1 ⊕ . . . ⊕ Vr, this does
not change the set of nonzero l-compatible multiplications. Generally speaking,
it is possible that two l-compatible multiplications are in the same class up to
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L-conjugation, but not in the same class up to conjugation by the semisimple part
of L.

The central torus T of L acts on the space of all multiplications Vi × Vi → Vi
(1 ≤ i ≤ r) by a character χi, i. e. if g ∈ T , the action of g multiplies all structure
constants of a multiplication Vi × Vi → Vi by χi(g). For the action of the simple
subgroup Li ⊆ L (1 ≤ i ≤ r) such that LieLi = li, there are two possibilities:

(1) For every ci ∈ C and for every li-compatible multiplication Vi × Vi → Vi
there exists g ∈ Li that multiplies all structure constants by ci.

(2) There exists an li-compatible multiplication such that for only finitely many
ci ∈ C there exists g ∈ Li that multiplies all structure constants by ci.

Later we will see that case 1 always takes place if li is not of type Al. If case 1
holds for all indices i, 1 ≤ i ≤ r such that T acts on Vi nontrivially and there exist
nonzero li-compatible multiplications on Vi, then the classes of multiplications
up to conjugation by the semisimple part of L coincide with the classes up to L-
conjugation. Otherwise one should take the quotient over the action of T explicitly.
We will say more about that in case of the tautological representation of a group
of type Al in Subsection 5.1.1.

Now we are going to consider irreducible representations of simple groups.

Proposition 5. (see Section 4) Let l be a simple Lie algebra, denote its root sys-
tem by Φ. Let V be an irreducible representation of l with a highest weight λ such
that there exist nonzero l-compatible multiplications on V .

Then λ is a fundamental weight. Moreover, suppose that λ corresponds to the
simple root αi. Denote the corresponding simple root in the dual root system Φ∨

by α∨i . Then α∨i occurs in the decomposition of the highest short root of Φ∨ into
a sum of simple root only once (i. e. with coefficient 1).

This proposition radically restricts the set of pairs (l, V ) where nonzero l-
compatible multiplications are possible. Namely, if l is of type Al, we have to
consider all fundamental representations, if l is of type Bl, we have to consider the
tautological and the spinor representations, if l is of type Cl, we have to consider all
fundamental representations, if l is of type Dl, we have to consider the tautological
representation and two half-spinor representations (one of them is transformed to
the other one by a diagram automorphism of l), if l is of type E6, E7, F4 or G2,
we have to consider only the representations of minimal dimension. We are going
to prove the following theorem:

Theorem 6. (see Section 5) Let l be a simple Lie algebra, V be an irreducible
representation of l such that there exists a nonzero l-compatible multiplication on
V . Then there are exactly two possibilities:

(1) l is of type Al, V is the tautological representation or the dual one. Then
an l-compatible multiplication is any commutative associative multiplication
such that all multiplication operators are nilpotent.

(2) l is of type Cl (l ≥ 2), V is the tautological representation. Then multi-
plications on V are parametrized by symmetric trilinear forms on V/V1,
where V1 ⊂ V is a prefixed Lagrangian subspace. See Subsection 5.3.1 for
an exact description of this parametrization.
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It should be underlined that if an l-compatible multiplication exists on an l-
module V , then the pair (l, V ) is listed only once in this theorem, while l can
be isomorphic to several classical Lie algebras (belonging to several different se-
ries). More specifically, here is the list of the cases where nontrivial l-compatible
multiplications exist, but they are not listed directly in Theorem 6:

(1) so5 is an algebra of type B2, and it isomorphic to sp4, which is an algebra
of type C2. This isomorphism identifies the spinor representation of so5

with the tautological representation of sp4, so nontrivial so5-compatible
multiplications exist on the spinor representation and can be classified using
this identification and Theorem 6.

(2) so6 is sometimes referred to as an algebra of type D3, and it is isomorphic
to sl4. This isomorphism identifies the two half-spinor representations of
so6 with the tautological representation of sl4 and the dual one. Therefore,
nontrivial so6-compatible multiplications exist on its half-spinor represen-
tations and are described in the same way as sl4-compatible multiplications
on the tautological representation and on the dual one.

(3) sp2 is isomorphic to sl2, and the tautological representation of sp2 is iso-
morphic to the tautological representation of sl2. One can use any part of
Theorem 6 to describe l-compatible multiplications.

(4) so3 is isomorphic to sl2, and the spinor representation of so3 is isomorphic
to the tautological representation of sl2. so3-compatible multiplications on
the spinor representation are described as sl2-compatible multiplications
on the tautological representation of sl2.

(5) so4 is isomorphic to sl2 ⊕ sl2, so it is not a simple algebra. However, each
half-spinor representation of so4 is isomorphic to the tensor product of
the tautological representations of one of the sl2 algebras and the trivial
representation of the other one. Therefore, nontrivial so4-compatible mul-
tiplications exist and are described as sl2 ⊕ sl2-compatible multiplications
on the corresponding tensor product.

For generically transitive (Ga)m-actions on G/P we then obtain the following
theorem:

Theorem 7. (see Section 6) Let G be a simple group, P ⊂ G be a parabolic
subgroup such that (Aut(G/P ))◦ = G, m = dim(G/P ).

Then if G is of type Al and P = P1 or P = Pl, then generically transitive ac-
tions (Ga)m : (G/P ) are parametrized by commutative associative m-dimensional
algebras with nilpotent multiplication operators. Otherwise, either there is exactly
one generically transitive action (Ga)m : (G/P ) up to G-conjugation, this happens
if and only if the unipotent radical of P is commutative, or there are no generically
transitive actions (Ga)m : (G/P ).
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1. Preliminaries

If an algebraic group is denoted by a single capital letter, the corresponding
small German letter denotes its Lie algebra. We denote the identity element of a
group G by 1G.

Starting from Section 3 we fix a simple algebraic group G, a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. These data determine a root system Φ ⊂ t∗,
a subset of positive roots Φ+ and a subset of simple roots ∆ = {α1, . . . , αrk g}.
Denote Φ− = Φ \ Φ+. Denote the root subspace of g corresponding to a root α
by gα. If α ∈ t∗ is not an element of Φ, then we denote by gα the zero subspace
of g. For every root α choose elements xα ∈ gα, yα ∈ g−α so that together with
hα = [xα, yα] they form a standard basis of sl2. Suppose that x−α = yα. Unless
stated otherwise, if α is a simple root, α = αi, we shortly denote xαi = xi, yαi = yi,
and hαi = hi.

Parabolic subgroups P containing B are parametrized by subsets I ⊆ ∆,
namely, a subset I ⊆ ∆ corresponds to the parabolic subgroup P such that

p = b⊕
⊕
α∈ΦI

gα,

where ΦI ⊆ Φ− denotes the set of the negative roots whose decomposition into a
sum of simple roots does not contain the roots αi, i ∈ I. In particular, maximal
parabolic subgroups correspond to one-element subsets I. Denote the subgroup
corresponding to {αi} by Pi. Every parabolic subgroup is conjugate to a parabolic
subgroup containing B.

Given a parabolic subgroup P containing B (in particular, P = B), denote by
P− the parabolic subgroup such that

p− = LieP− = t⊕
⊕

α:gα⊂p
g−α.

Then L = P ∩ P− is a Levi subgroup of P . We call it the standard Levi group of
P , and we call l the standard Levi subalgebra of p. If P corresponds to a subset
I ⊆ ∆ as described above, then the subgroup U such that

u =
⊕

α:−α/∈ΦI and α∈Φ+

gα

is the unipotent radical of P , and the subgroup U− whose Lie algebra equals

u− =
⊕

α∈Φ−\ΦI

gα

is the unipotent radical of P−. Denote the unipotent radical of B by U0, u0 =
LieU0.

Denote the character lattice of T by X. Let X+ be the subsemigroup of dominant
weights with respect to B. Denote the fundamental weight corresponding to a
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simple root αi by $i. Denote the highest-weight representation of a Lie algebra g
with highest weight λ by Vg(λ) or by V (λ) if it is clear which Lie algebra we are
talking about. Denote by vλ a (unique up to multiplication by a scalar) highest-
weight vector of this representation. If V is a representation of g, denote the set
of its weights by X(V ).

Denote the Grassmannian of k-dimensional subspaces in a vector space V by
Gr(k, V ). Denote the identity operator on a vector space V by idV , and denote the
k× k identity matrix by idk. If a vector space V is equipped with a multiplication
V ⊗ V → V , and v ∈ V , we denote by µv the operator of left multiplication by v,
i. e. µv : V → V , µvw = vw.

2. Automorphisms of generalized flag varieties

Lemma 8. (See also [6] and [7] for similar and more general results.) Let X be
a generalized flag variety. Then its automorphism group in terms of Definition 1
exists and is unique up to a unique isomorphism.

Proof. It is known [8, Chapter V, Theorem 1.4] that all generalized flag varieties
are Fano varieties, i. e. the highest exterior power of the tangent bundle on X
(which we denote by L = ΛmTX, m = dimX) is ample. Moreover, Theorem 1.4
in [8, Chapter V] says that L is very ample. Then L defines an embedding ι of X
into a projective space P(V ), where V = Γ(X,L)∗. Let G be the subgroup of all
elements of PGL(V ) that preserve ι(X).

Note first that ι(X) is not contained in any proper projective subspace of Y .
The contrary would mean that there is a non-zero linear function v on V (i. e. an
element of Γ(X,L)) that vanishes at all elements of V defined (up to multiplication
by a scalar) by points of X. In other words, v is a section of L such that at each
point x ∈ X the value of v in the fiber over x can be obtained by multiplication
of a basis vector of this fiber by zero. But then v is the zero section.

Hence, since X is irreducible, every proper projective subspace of P(V ) in-
tersects ι(X) by a subvariety of smaller dimension. If g ∈ G, g 6= 1G acts on
ι(X) trivially, then ι(X) is contained in the union of the projectivizations of the
eigenspaces of g, i. e, ι(X) is a union of subvarieties of smaller dimension, and this
is impossible. Therefore, G acts on ι(X) faithfully. We are going to prove that
G = Aut(X).

Given an algebraic automorphism of X, its differential is an algebraic vec-
tor bundle automorphism of TX. One checks directly that an algebraic action
of an algebraic group H on X gives rise to an algebraic action of H on TX
(and consequently on L) by vector bundle automorphisms. Since Γ(X,L) is fi-
nite dimensional, H also acts algebraically on it, and the map ι : X → P(V )
is H-equivariant by construction. The action H : V is linear by construction,
and for a linear algebraic action it is clear that it yields an algebraic group mor-
phism H → GL(V ) → PGL(V ). Since H preserves ι(X), we have a morphism
f : H → G. Since G acts on X faithfully, any morphism of abstract groups
g : H → G such that for every x ∈ X and h ∈ H one has h · x = g(h) · x co-
incides with f .

If G′ is another automorphism group, the isomorphism between G and G′ is
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established in the usual way: there exist unique morphisms f : G → G′ and
f ′ : G′ → G such that for every x ∈ X, g ∈ G and g′ ∈ G′ one has g · x = f ′(g′) · x
and g′ · x = f(g) · x. So f ′(f(g)) · x = g · x, but there exists only one morphism
h : G→ G such that h(g) ·x = g ·x, and both f ′ ◦f and the identity automorphism
of G are examples of such h, so f ′ ◦ f is the identity morphism on G. Similarly,
f ◦ f ′ is the identity morphism on G′.

The existence of the automorphism group reduces the problem of classifica-
tion of generically transitive actions (Ga)m : X to the problem of classification
of the subgroups of Aut(X)◦ that are isomorphic to (Ga)m and act generically
transitively on X.

The book [3] deals with smooth (real and complex) manifolds rather than al-
gebraic varieties, and a different definition of the automorphism group (or, more
exactly, of the Lie group structure on the abstract automorphism group) of a
smooth manifold is used there. Namely, a Lie group structure on an (abstract)
subgroup G of the (abstract) group of diffeomorphisms of a manifold M is called
[3, Chapter 1, §2.5] Lie transformation group if the action G : M is smooth in
terms of this Lie group structure and every Lie group action R : M such that
every r ∈ R acts on M with an automorphism that belongs to G gives rise to a
smooth map R→ G. It is proved in [9] that such a Lie group structure is unique if
it exists. By [10, Chapter 3, Theorem 1.1], if M is a complex manifold, the group
of all biholomorphic automorphisms of M is a Lie transformation group (i. e. the
desired Lie group structure exists). This Lie group is denoted by BihM .

These definitions and theorems don’t say anything about other groups acting
on M except R. So first we are going to show that the automorphism group as it
is defined in Definition 1 equipped with complex topology is a Lie transformation
group. Smoothness of the action is clear, so consider a smooth (with respect to
complex topology onX) action R : X by algebraic automorphisms. Every algebraic
automorphism of X leads to algebraic automorphisms of TX and L and hence to
a linear automorphism of Γ(X,L). So we have a smooth linear action R : V and
therefore a smooth embedding R→ G.

Now we use the following theorem from [3]:

Theorem 9. [3, Chapter 4, §15.4, Theorem 2] Let M = G/P be a flag manifold
for a connected complex semisimple lie group G acting on M faithfully. Let G =
G(1) × . . . × G(s) be the factorization of G into a product of simple subgroups,
and P (i) = G(i) ∩ P . Then M is G-isomorphic to M (1) × . . . × M (s), where
M (i) = G(i)/P (i), and this decomposition gives rise to an isomorphism

(BihM)◦ ' (BihM (1))◦ × . . .× (BihM (s))◦.

If G is simple, then (BihM)◦ is simple, and G = (BihM)◦ except for the following
cases:

(1) G = PSp2l(C), P = P1, M = P2l−1, (BihM)◦ = PSL2l(C).
(2) G is of type G2, P = P1, M = SO7(C)/P1, (BihM)◦ = SO7(C).
(3) G = SO2l−1(C), P = Pl−1, M = PSO2l(C)/Pl, (BihM)◦ = PSO2l(C).

We use this theorem as follows. Let G be a semisimple algebraic group G
whose center is trivial, and let P be a parabolic subgroup. We know that the
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group Aut(G/P ) exists and is a Lie transformation group being considered with
classical topology. By GAGA theorem, all biholomorphic automorphisms of G/P
are algebraic, so Bih(G/P ) consists of the same automorphisms as the abstract
automorphism group. Since the Lie transformation group structure is unique,
Bih(G/P ) as a Lie group coincides with Aut(G/P ) with classical topology. Since
the notion of a connected component is the same for smooth algebraic varieties
in Zariski topology and in classical topology, this is also true for Bih(G/P )◦ and
Aut(G/P )◦.

Now decompose G into a product of simple groups G = G(1) × . . . × G(s) and
set P (i) = P ∩ G(i). Similarly, we conclude that Aut(G(i)/P (i))◦ with classical
topology equals Bih(G(i)/P (i))◦. Clearly,

∏
i Aut(G(i)/P (i))◦ can be embedded

into Aut(G/P )◦ algebraically, and we see now from Theorem 9 that this is an
isomorphism.

Now consider the case when G is simple. First, Theorem 9 states that if (G,P )
is one of the pairs (PSp2l, P1), (group of type G2, P1), (SO2l−1, Pl−1) (these pairs
will be called exceptional in what follows), then G/P is isomorphic (respectively)
to P2l−1 = PSL2l/P1, SO7/P1 or PSO2l/Pl as a complex manifold, and hence,
by GAGA theorem, as an algebraic variety. And if (G,P ) is not an exceptional
pair (note that (PSL2l, P1), (SO7, P1) and (PSO2l, Pl) are not exceptional), then
Bih(G/P )◦ coincides with the set of automorphisms originating from the left action
G : G. Arguing as above, we see that Aut(G/P )◦ is the same set of automorphisms.

Therefore, the classification of the actions of (Ga)m on G/P , where m =
dimG/P and G is semisimple, is now reduced to the problem of classification of

the subgroups of G̃ isomorphic to (Ga)m acting generically transitively on G̃/P̃ ,

where G̃ is simple and the pair (G̃, P̃ ) is not exceptional.

3. Reduction from (Ga)m-actions to multiplications

Proof of Proposition 1. By definition of an automorphism group, effective (Ga)m-
actions on G/P yield embeddings (Ga)m → (Aut(G/P ))◦ = G, and a G-
conjugation of an action corresponds to a conjugation of the corresponding sub-
group in G. After a suitable conjugation we may suppose that (Ga)meP ⊆ G/P
is the open orbit. Denote the image of the embedding (Ga)m ↪→ G by A. The
orbit (Ga)meP ⊆ G/P is open if and only if the subset AP ⊆ G is open, and this
is equivalent to a + p = g. Since m = dim(G/P ), a + p = g implies a ∩ p = 0.

Clearly, if p ∈ P and a+ p = g, then (Ad p)a+ p = g. It suffices to prove that if
g is an arbitrary element of G such that (Ad g)a + p = g, then there exists p ∈ P
such that (Ad p)a = (Ad g)a. a defines a point in Gr(m, g), and the adjoint action
G : g leads to an action G : Gr(m, g), which we also denote by Ad. Denote the
orbit of a in Gr(m, g) under this action by X. Clearly, the subspaces defined by
the points of X are Lie subalgebras. Since PA is an open subset of G, the subset
(AdPA)a ⊆ X is also open, and, since (AdA)a = a, we conclude that (AdP )a is
an open subset of X.

Denote A1 = gAg−1. Then LieA1 = (Ad g)a. Then a similar argument using
A1 instead of A proves that (AdP )((Ad g)a) is an open subset of X. Since G is
connected, X is irreducible, and its open subsets (AdP )a and (AdP )((Ad g)a)
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intersect nontrivially, i. e. there exist p1, p2 ∈ P such that (Ad p1)a = (Ad p2g)a,
so (Ad p−1

2 p1)a = (Ad g)a.

Proof of Proposition 2. Consider again the point in Gr(m, g) defined by a and the
action G : Gr(m, g). Again denote the orbit of a under this action by X. We
already know that (AdP )a is an open subset of X.

Consider a maximal unipotent subalgebra u1 containing a. Since all maximal
unipotent subgroups are conjugate, there exists g ∈ G such that (Ad g)u1 = u−0 .
Then (Ad g)a ⊆ u−0 . It is clear from Bruhat decomposition of G that PU−0 is an
open subset of G, so (AdPU−0 )((Ad g)a) is an open subset of X. Therefore, the
subsets (AdP )a and (AdPU−0 )((Ad g)a) have a nonempty intersection, i. e. there
exist p1, p2 ∈ P , u0 ∈ U−0 such that (Ad p1)a = (Ad p2u0)(Ad g)a. Set p = p−1

2 p1,
then (Ad p)a = (Adu0)(Ad g)a ⊆ u−0 since (Ad g)a ⊆ u−0 .

Proof of Theorem 3. First, let a ⊆ u−0 be a commutative unipotent subalgebra
satisfying a ∩ p = 0 and a⊕ p = g. Consider the map ϕ : u− → l described in the
Introduction. Since l is a subalgebra of p, and u− is a commutative ideal of p, we
have 0 = [u+ϕ(u), v+ϕ(v)] = [u, ϕ(v)] + [ϕ(u), v] + [ϕ(u), ϕ(v)]. Here [u, ϕ(v)] +
[ϕ(u), v] ∈ u−, [ϕ(u), ϕ(v)] ∈ l, and since l∩u− = 0, we get [u, ϕ(v)]+ [ϕ(u), v] = 0
and [ϕ(u), ϕ(v)] = 0. Hence, [u, ϕ(v)] = [v, ϕ(u)], and the multiplication on u−

defined in the Introduction is commutative. Consider one more element w ∈ u−.
By Jacobi identity, 0 = [w, [ϕ(u), ϕ(v)]] = [[w,ϕ(u)], ϕ(v)] + [ϕ(u), [w,ϕ(v)]] =
[ϕ(v), [ϕ(u), w]] − [ϕ(u), [ϕ(v), w]]. In terms of multiplication this can be written
as v(uw) = u(vw), but we already know that the multiplication is commutative,
so (uw)v = u(wv), and the multiplication is associative. The possibility to write
multiplication operators in the form ad g|u− , where g ∈ l, follows directly from the
definitions of ϕ and of the multiplication. To prove nilpotency of the multiplication
operators, recall that by Proposition 2, there exists p ∈ P such that (Ad p)a ⊆ u−0 .
The corresponding linear map u− → l for the subalgebra (Ad p)a can be written as
u 7→ (Ad p)ϕ((Ad p−1)u), so (Ad p)ϕ((Ad p−1)u) ∈ u−0 and is a nilpotent element
of g. Since the adjoint action preserves the Jordan–Chevalley decomposition of
elements of g, ϕ((Ad p−1)u) is also a nilpotent element of g, so adϕ((Ad p−1)u)
is a nilpotent operator for every u ∈ u−. Since P preserves u−, adϕ(u) and
(adϕ(u))|u− are nilpotent operators for every u ∈ u−, and the latter is exactly the
operator of multiplication by u.

Now suppose that we have an l-compatible multiplication on u−. Then ev-
ery multiplication operator µu (u ∈ u−) can be written as ad g|u− for some
g ∈ l, and we set ϕ(u) = g. If a, b ∈ C, u, v ∈ u, then µau+bv = aµu +
bµv = (ad(aϕ(u) + bϕ(v)))|u− , and, since the representation l : u− is faithful,
ϕ(au + bv) = aϕ(u) + bϕ(v), so ϕ is linear. Since the multiplication is commuta-
tive, [ϕ(u), v] = uv = vu = [ϕ(v), u]. Since the multiplication is commutative and
associative, every two multiplication operators commute, so, since the represen-
tation is faithful, [ϕ(u), ϕ(v)] = 0. Using the commutativity of u−, we conclude
that [u+ϕ(u), v+ϕ(v)] = [u, ϕ(v)] + [ϕ(u), v] + [ϕ(u), ϕ(v)] = 0, and the subspace
a = {u+ ϕ(u) | u ∈ u−} is in fact a commutative subalgebra.

All elements of l of the form ϕ(u) act in its representation u− by nilpotent
operators. Moreover, since [ϕ(u), ϕ(v)] = 0 for all u, v ∈ u−, all elements of the
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form ϕ(u) form a (commutative) unipotent subalgebra of l. All maximal unipotent
subalgebras are conjugate, so there exists an element l ∈ L such that (Ad l)ϕ(u−) ⊆
u−0 ∩ l. But then (Ad l)a ⊆ (Ad l)u− + (Ad l)ϕ(u−) = u− + (Ad l)ϕ(u−) ⊆ u−0 , so
(Ad l)a is a unipotent subalgebra of g, and a is also a unipotent subalgebra of g.

4. General facts about l-compatible multiplications

In this section we fix a reductive group L and its representation V . Then V
is also a representation of l, and we denote the corresponding morphism of Lie
algebras l→ gl(V ) by ρ.

Proof of Proposition 4. First, suppose that l is a semisimple algebra and V is an
irreducible representation.

Lemma 10. Let l be a semisimple algebra, l = l1⊕. . .⊕ls be its decomposition into
a sum of simple summands, and V be an irreducible representation of l. Suppose
that there exists a nontrivial l-compatible multiplication on V .

Then there exists an index k such that liV = 0 if i 6= k.

Proof. Denote by ρ : l→ gl(V ) the corresponding morphism of Lie algebras. Every
irreducible representation of a semisimple Lie algebra can be written as a tensor
product of irreducible representations of its simple summands, so let V = V1 ⊗
. . . ⊗ Vs, where Vi is an irreducible representation of li, be such a decomposition.
Denote by I the set of indices i such that Vi is nontrivial. It is sufficient to prove
that I contains exactly one element.

Given a vector v ∈ V , denote by ϕ(v) an element of
⊕

i∈I li such that vw =
ρ(ϕ(v))w for every w ∈ V . The remaining simple summands of l are in the kernel
of ρ, so such an element ϕ(v) exists. All representations Vi are nontrivial and
hence faithful, so V is faithful as a representation of

⊕
i∈I li. Therefore, ϕ(v) is

uniquely determined and, as we have seen in the proof of Theorem 3, this implies
that ϕ is a linear map. It cannot be a zero map, otherwise the multiplication
would be trivial. Choose an index k ∈ I such that there exists v ∈ V such that
the projection (in terms of the decomposition l = l1 ⊕ . . . ⊕ ls) of ϕ(v) to lk is

not equal to zero. Denote l̃ =
⊕

i∈I\{k} li, W =
⊗

i 6=k Vi. Then Vk is a faithful

irreducible representation of lk and W is an irreducible representation of l̃. If W is
trivial, then we are done. So in the sequel suppose that dimW > 1, then W is also
faithful. Denote the corresponding homomorphisms of Lie algebras lk → gl(V )

and l̃→ gl(W ) by ρVk and ρW , respectively.
We are going to prove that ϕ(V ) ⊆ lk. Assume the contrary. Then there exists

a vector v ∈ V such that ϕ(v) = x+ y, where x ∈ lk, y ∈ l̃ and x 6= 0, y 6= 0.
Consider now an arbitrary vector w ∈ V and write ϕ(w) = x′ + y′, where

x′ ∈ lk, y′ ∈ l̃. Then ρ(x′+ y′) = ρVk(x′)⊗ idW + idVk ⊗ ρW (y′). Since lk and l̃ are
semisimple Lie algebras, tr ρVk(x′) = tr ρW (y′) = 0. We have the following vector
space decomposition of gl(V ):

gl(V ) = gl(Vk)⊗ gl(W ) =

〈idVk〉 ⊗ 〈idW 〉 ⊕ 〈idVk〉 ⊗ sl(W )⊕ sl(Vk)⊗ 〈idW 〉 ⊕ sl(Vk)⊗ sl(W ),
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and we see that the operator ρ(x′ + y′) is in the sum of the second and the third
summand of this decomposition. In other words, for every w ∈ V , the operator of
multiplication by w is an element of 〈idVk〉 ⊗ 〈idW 〉 ⊕ 〈idVk〉 ⊗ sl(W ) ⊂ gl(V ).

In particular, this holds for w = v2. Since the multiplication on V is associative,
µv2 = (ρ(x+y))2 = (idVk⊗ρW (y)+ρVk(x)⊗idW )2 = idVk⊗(ρW (y)2)+(ρVk(x)2)⊗
idW + 2ρVk(x) ⊗ ρW (y). We know that x 6= 0 and y 6= 0 and that ρVk and ρW
are injective linear maps, so the last summand is not zero and is an element of
sl(Vk)⊗ sl(W ) ⊂ gl(V ), and this is a contradiction.

Thus, ϕ(V ) ⊆ lk. Denote d = dimW . Recall that we have assumed that d > 1.
Choose a basis e1, . . . , ed of W . Then V can be decomposed into a sum of lk-
invariant subspaces V ′j = 〈ej〉 ⊗ Vk, 1 ≤ t ≤ d. These subspaces are isomorphic to
Vk as lk-representations. Assume that there exists an index j and a vector v ∈ V ′j
such that µv 6= 0. Then ϕ(v) 6= 0, and ϕ(v) ∈ lk acts nontrivially on all subspaces
Vj′ , 1 ≤ j′ ≤ d. In particular, there exists an index j′ 6= j and a vector w ∈ Vj′
such that ϕ(v)w 6= 0. Since Vj′ is lk-stable, ϕ(v)w ∈ Vj′ . In terms of multiplication
this means that vw 6= 0, vw ∈ Vj′ . But wv = vw, and by a similar argument we
can conclude that wv ∈ Vj , and this is a contradiction.

We are ready to prove Proposition 4 in the whole generality. Let V = V1⊕. . .⊕Vl
be the decomposition of V into irreducible summands. Choose two indices i 6= j,
1 ≤ i, j ≤ t and choose arbitrary v ∈ Vi. Since the multiplication on V is l-
compatible, there exists an element ϕ(v) ∈ l such that µv = ρ(ϕ(v)). Similarly,
choose arbitrary w ∈ Vj and denote by ϕ(w) an element of l such that µw =
ρ(ϕ(w)). Vj is an l-stable subspace of V , so vw = ρ(ϕ(v))w ∈ Vj . On the other
hand, ρ(l)Vi ⊆ Vi, so wv = ρ(ϕ(w))v ∈ Vi. But vw = wv, hence vw = 0.
Therefore, ViVj = 0 for each pair of indices i 6= j, 1 ≤ j ≤ t. Let r be the number
of indices i (1 ≤ i ≤ t) such that ViVi 6= 0. Without loss of generality, ViVi 6= 0 for
1 ≤ i ≤ r, and ViVi = 0 for r < i ≤ t.

Denote by T0 the center of L. Let t0 = Lie(T0). Let v ∈ V , then there exists an
element ϕ(v) ∈ l such that ρ(ϕ(v)) = µv. l as a vector space can be decomposed
into the direct sum of [l, l] and t0. Let ϕ(v) = x + y, where x ∈ [l, l], y ∈ t0. By
Schur’s lemma, y acts on each Vi as a scalar operator. Since [l, l] is a semisimple
algebra, x acts on each Vi as an operator with trace 0. ρ(ϕ(v)) is a nilpotent
operator since it is the operator of multiplication by v, so its restriction to each V
also has trace 0. Hence, ρ(y)|Vi = (ρ(ϕ(v))−ρ(x))|Vi is a scalar operator with trace
0, i. e. ρ(y)|Vi = 0 for each i, so ρ(y) = 0, and ρ(x) = µv. Therefore, for every
v ∈ V there exists an element of [l, l] that acts on V exactly as µv. (Previously we
only required the existence of such an element in l.)

Now we can apply Lemma 10 to the algebra [l, l] and to each of the represen-
tations Vi, 1 ≤ i ≤ r. Decompose [l, l] into a direct sum of simple subalgebras,
[l, l] = l1 ⊕ . . . ⊕ ls. By Lemma 4, for each i (1 ≤ i ≤ r) there exists exactly one
index k such that lk acts nontrivially on Vi. Choose v ∈ Vi so that µv 6= 0. Then
there exists xk ∈ lk, xk 6= 0, that acts on V as µv. (Despite our usual agreement,
here xk do not have to be Chevalley generators corresponding to simple roots.)
Choose an index j, 1 ≤ j ≤ t, j 6= i. The action of lk on Vj is either trivial or
faithful. If it is faithful, ρ(xk)Vj 6= 0, ρ(xk) = µv, and ViVj = 0, so this is a contra-
diction, and lk acts trivially on Vj . In particular, we see that if i 6= j, 1 ≤ i, j ≤ r,
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and lk and lk′ are the direct summands that act nontrivially on Vi and on Vj ,
respectively, then k 6= k′. In other words, s ≥ r and without loss of generality we
may assume that the only summand that acts nontrivially on Vi (1 ≤ i ≤ r) is li.
The summands lj with j > r must act trivially on all subrepresentations Vi with
1 ≤ i ≤ r, and they may act arbitrarily on subrepresentations Vi with r < i ≤ t.

Proof of Proposition 5. Choose an element v ∈ V such that µv 6= 0. Since µv is a
nilpotent operator, there exists k ∈ N such that (µv)

k 6= 0, but (µv)
2k = 0. The

multiplication is associative, so (µv)
k = µvk . Hence, there exists x ∈ l such that

ρ(x) 6= 0, but ρ(x)2 = 0.
Until the end of the proof, we use for l the notation for the root system, subalge-

bras, sl2-triples, and the fundamental weights that we have introduced in Section
1 for the Lie algebra of an arbitrary simple group G. Denote the highest root of Φ
by α. x is a nilpotent element of l, therefore its orbit closure contains yα. Hence,
ρ(yα)2 = 0. In particular, if we decompose V into a direct sum of irreducible rep-
resentations of sl2 = 〈xα, yα, hα〉, then the dimension of any direct summand is at
most 2. So, the only possible eigenvalues of ρ(hα) are −1, 0, and 1. In particular,
λ(hα) is the eigenvalue of ρ(hα) corresponding to the highest weight subspace of
V , so λ(hα) can be equal to 1 or 0. Write λ =

∑
ai$i. Note that all coefficients

ai cannot vanish simultaneously, otherwise V is a trivial representation, ρ(l) = 0,
and the multiplication on V has to be trivial.

Fix an invariant scalar multiplication (·, ·) on l. It identifies t and t∗, and if
β ∈ Φ, then hβ is identified with

2β

(β, β)
.

So, all vectors hβ (for all roots β ∈ Φ) form a root system dual to Φ in t. The
set of vectors hβ for simple positive roots β can be chosen as a simple root set for
this dual root system. After this choice, hα becomes the highest short root of this
system. Write hα =

∑
bjhαj . All bi are positive integers (see [11, Section 12.2,

Table 2]). We have λ(hα) =
∑
ai$i(hα) ≤ 1. Recall that by the definition of a

fundamental weight, $i(hαj ) = δij , so λ(hα) =
∑
aibi. Therefore, exactly one of

the coefficients ai is nonzero, this coefficient aj must be 1 (i. e. λ = $j), and the
index j must satisfy bj = 1.

5. Existence of l-compatible multiplications

In this section, l = LieL is a simple Lie algebra, and we use for it the notation
we introduced in Section 1 for an arbitrary simple Lie algebra g. Let V be an
irreducible representation of L satisfying the conditions of Proposition 5. Denote
the corresponding morphism of Lie algebras l→ gl(V ) by ρ.

When we prove that for a particular simple algebra and its irreducible repre-
sentation, nontrivial l-compatible multiplications do not exist, we will use one of
the following two approaches.

First, any multiplication V × V → V is determined by its structure constant
tensor, which is an element of V ∗ ⊗ V ∗ ⊗ V . A multiplication is commutative if
the structure constant tensor belongs to S2(V ∗)⊗ V ⊆ V ∗ ⊗ V ∗ ⊗ V . Denote by
R(l) the algebra l understood as the adjoint representation of l. Then ρ : R(l) →
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gl(V ) = V ∗ ⊗ V is an l-equivariant homomorphism of representations. Hence,
V ∗⊗V ∗⊗V contains a subrepresentation isomorphic to V ∗⊗R(l). The condition
requiring that each (left) multiplication operator on V coincide with an operator
of the form ρ(x) (x ∈ l) means in these terms that the structure constant tensor
is an element of this subrepresentation. Therefore, if the subspaces S2(V ∗) ⊗ V
and V ∗ ⊗ R(l) intersect trivially in V ∗ ⊗ V ∗ ⊗ V , then there are no nontrivial
l-compatible multiplications on V .

To prove that these subspaces intersect trivially, one can first decompose V ∗ ⊗
R(l) into a sum of irreducible subrepresentations and then check that highest
weight vectors of all these irreducible subrepresentations are outside S2(V ∗)⊗ V .
If this is true, then the whole subrepresentations intersect S2(V ∗)⊗V trivially. If,
additionally, there are no isomorphic representations among them, then by Schur’s
lemma, V ∗⊗R(l)∩S2(V ∗)⊗V = 0. In other words, we have the following lemma:

Lemma 11. Decompose V ∗⊗R(l) into a sum of irreducible representations. Sup-
pose that there are no isomorphic subrepresentations among them. Let vi be highest
weight vectors of these subrepresentations, and let wi be their images under the em-
bedding V ∗⊗R(l) ↪→ V ∗⊗V ∗⊗V described above. If wi /∈ S2(V ∗)⊗V ⊆ V ∗⊗V ∗⊗V
for all i, then there are no nontrivial l-compatible multiplications on V .

To test whether a vector wi is an element of S2(V ∗)⊗ V , one can consider the
canonically corresponding map V ∗ → V ∗ ⊗ V ∗. wi ∈ S2(V ∗)⊗ V if an only if the
image of this map is a subspace of S2(V ∗).

Second, one can argue as follows. Since the representation l : V is faithful, given
a vector v ∈ V , there exists exactly one element x ∈ l such that ρ(x) = µv. As in
the second part of the proof of Theorem 3, we denote this x by ϕ(v). Again, for
all v, w ∈ V , a, b ∈ C we have ρ(ϕ(av + bw)) = µav+bw = aµv + bµw = aρ(ϕ(v)) +
bρ(ϕ(w)), and since the representation is faithful, ϕ(av + bw) = aϕ(v) + bϕ(w),
so ϕ is a linear map. Since the multiplication is commutative and associative,
ϕ(V ) is a commutative subalgebra in l, and since all multiplication operators are
nilpotent, ϕ(V ) is a unipotent subalgebra. After a suitable conjugation by an
element of L we may suppose that ϕ(V ) is a subalgebra of a prefixed maximal
unipotent subalgebra. We will suppose that

ϕ(V ) ⊆ u0 =
⊕
α∈Φ+

lα.

On the other hand, given any linear map ϕ : V → u0, one can define a multi-
plication on V by vw = ρ(ϕ(v))w. Choose bases in V and in u0, then linear maps
between V and u0 are determined by (dimV )× (dim u0)-matrices. ρ|u0 can also be
written as a (fixed) element of (u0)∗ ⊗ V ∗ ⊗ V . A multiplication is commutative
if and only if ρ(ϕ(v))w = ρ(ϕ(w))v for all v, w ∈ V . This equation is bilinear in v
and w, so it is sufficient to satisfy it for v and w being elements of the basis of V we
have chosen. And for fixed v and w this equation can be seen as a linear equation
in the entries of the matrix defining ϕ. A multiplication is associative if and only
if ρ(ϕ(ρ(ϕ(u))v))w = ρ(ϕ(u))ρ(ϕ(v))w for all u, v, w ∈ V . Again, this equation
is trilinear in u, v, w, and if u, v, w are fixed, this is a homogeneous equation of
degree 2 in the coefficients of the matrix defining ϕ. All operators of the form ρ(x)
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with x ∈ u0 are nilpotent. Therefore, we have identified the set of l-compatible
multiplications on V such that µv ∈ ρ(u0) for all v ∈ V with a closed cone in
V ∗ ⊗ u0. Denote this cone by X.

The normalizer of u0 in L (denote it by B) acts canonically on V ∗ ⊗ u0. The
identification between the space of structure constant tensors of multiplications
on V such that all (left) multiplication operators belong to ρ(u0) and V ∗ ⊗ u0

described above is equivariant under this action. The conditions in the definition
of l-compatibility are l-invariant, therefore B preserves X. Hence, B acts on
the projectivization of X in P(V ∗ ⊗ u0). B is a Borel subgroup of L, so its
action on a projective variety always has a fixed point, in particular, there is a
B-fixed point in X. So, X contains a highest weight vector for an irreducible
subrepresentation of the representation of L in V ∗ ⊗ R(l). Therefore, if there
exists a nontrivial l-compatible multiplication on V , then there exists a nontrivial
l-compatible multiplication on V such that the map ϕ : V → l constructed above
maps V to u0 and is a highest weight vector in an irreducible subrepresentation
of the l-module V ∗ ⊗ R(l). In the sequel we suppose that ϕ satisfies these two
conditions. Denote the weight of ϕ in V ∗ ⊗R(l) by κ.

Let −λ∗ be the lowest weight of V , v−λ∗ ∈ V be a lowest weight vector. Then
ϕ(v−λ∗) ∈ lγ , where γ = κ− λ∗.

Suppose first that ϕ(v−λ∗) = 0. Let us prove that in this case ϕ = 0. Indeed, ϕ
is a highest weight vector in V ∗⊗ l, so u0 ·ϕ = 0. This means that for every u ∈ u0

and for every v ∈ V , we have −ϕ(ρ(u)v) + (adu)(ϕ(v)) = 0. In other words, we
have the following equality of linear maps from V to l: (adu) ◦ ϕ = ϕ ◦ ρ(u). As
a vector space, V is generated by the images of v−λ∗ under arbitrary products of
operators of the form ρ(u), where u ∈ u0. Then ϕ(V ) is generated by the images of
ϕ(v−λ∗) under products of operators of the form ad(u), u ∈ u0. But ϕ(v−λ∗) = 0,
so ϕ(V ) = 0, i. e. ϕ = 0.

Now suppose that ϕ(v−λ∗) 6= 0. Then γ ∈ Φ ∪ {0}. Moreover, in fact γ ∈ Φ+

since we have supposed that ϕ(V ) ⊆ u0. Under the assumptions we made, we
prove the following lemma.

Lemma 12. Let l be a simple Lie algebra, λ ∈ X+ be a dominant weight and
V = Vl(λ). Suppose that there exists a nontrivial l-compatible multiplication on V .
Then there exists γ ∈ Φ+ such that

(1) γ+λ∗ is the highest weight of an irreducible subrepresentation of V ∗⊗R(l).

(2) There exist no weights ν ∈ X(V ) such that γ+ ν ∈ X(V ) and ν + λ∗+ γ /∈
Φ+.

Proof. Assume the contrary, i. e. assume that there exists a weight ν ∈ X(V ) such
that γ+ν ∈ X(V ) and ν+λ∗+γ /∈ Φ+. Denote the corresponding weight space by
Vν ⊆ V . Since γ ∈ Φ+ is a positive root such that γ+ν ∈ X(V ), sl2 representation
theory implies that ker(ρ(lγ)|Vν ) is a subspace of codimension 1 in Vν . Choose an
arbitrary vector wν ∈ Vν outside this kernel.

ϕ is a vector of weight κ in V ∗⊗ l, so ϕ(Vν) ⊆ lν+κ = lν+λ∗+γ . But ν+λ∗+γ /∈
Φ+, so ϕ(Vν) = 0. In particular, wνv−λ∗ = ρ(ϕ(wν))v−λ∗ = 0. On the other hand,
wνv−λ∗ = ρ(ϕ(v−λ∗))wν 6= 0 according to our choice of wν . This is a contradiction.
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Now we are going to consider types of simple Lie algebras and the corresponding
fundamental weights satisfying Proposition 5 case by case. If there exists a diagram
automorphism of a Lie algebra that interchanges two fundamental weights, we
consider only one of them.

5.1. Algebra l of type Al

It is sufficient to consider fundamental weights $1, $l−2, and $p, where 2 < p ≤
dl/2e.

We need an explicit description for a root system of type Al. Consider a Eu-
clidean space E with an orthonormal basis {ε̃i} (1 ≤ i ≤ l + 1), its subspace
〈ε̃1 + . . . + ε̃l+1〉, and the orthogonal complement to this subspace. Denote the
orthogonal projection E → 〈ε̃1 + . . .+ ε̃l+1〉⊥ by q. Then vectors εi = q(ε̃i) satisfy
(εi, εi) = l/(l + 1) and (εi, εj) = −1/(l + 1). We construct a root system of type
Al as follows. Φ = {εi − εj | 1 ≤ i, j ≤ l, i 6= j}. For a set of positive roots we
can take Φ+ = {εi − εj | 1 ≤ i < j ≤ l}, then ∆ = {εi − εi+1 | 1 ≤ i ≤ l}.
The corresponding fundamental weights can be expressed as $i = ε1 + . . . + εi
(1 ≤ i ≤ l).

5.1.1. λ = $1. Let SLl+1 act in its tautological representation V and preserve a
highest degree skew-symmetric form ω 6= 0 on V . A nilpotent operator on V always
has trace 0, so the only essential conditions a multiplication on V should satisfy
to be l-compatible are commutativity, associativity, and multiplication operator
nilpotency. To classify l-compatible multiplications up to the action of SLl+1, we
have to consider two cases.

Case 1. The action of SLl+1 enables one to multiply the structure constant
tensor of the multiplication in question by any complex number. Then the SLl+1-
orbit of this multiplication coincides with its GLl+1-orbit, since the central torus
of GLl+1 can only multiply the structure constant tensor by a scalar. These
multiplications are in one-to-one correspondence with isomorphism classes of com-
mutative associative l + 1-dimensional algebras with all multiplication operators
being nilpotent.

Case 2. Using the action of SLl+1, one can only multiply the structure constant
tensor of the multiplication in question by finitely many complex numbers. Then
the GLl+1-orbit of this multiplication consists of infinitely many SLl+1-orbits,
which can be parametrized as follows. Given an associative commutative l + 1-
dimensional algebra A with all multiplication operators being nilpotent, choose a
highest degree skew-symmetric form ν on A and identify A with the vector space V
so that ν is identified with ω. This condition does not determine an isomorphism
between A and V uniquely, and possible isomorphisms differ exactly by the action
of elements of SLl+1. Therefore, in this case multiplications are in one-to-one
correspondence with isomorphism classes of pairs of a commutative associative
l+ 1-dimensional algebra A with nilpotent multiplication operators and a nonzero
highest degree skew-symmetric form on A, where an isomorphism preserves the
form as well as the multiplication.

Observe that the possibility to multiply the structure constant tensor by any
complex number depends only on the isomorphism class of l + 1-dimensional al-
gebras, it does not depend on the isomorphism we choose between an algebra and
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the SLl+1-module V . So, given such an isomorphism class of algebras, one can
determine whether Case 1 or Case 2 takes place and whether it is necessary to
choose a highest degree skew-symmetric form on an algebra from this class.

Now we are ready to give a detailed description of L-isomorphism classes of
multiplications in cases when L is a reductive but not necessarily simple algebraic
group, and the decomposition of [l, l] into a sum of simple summands contains
several components of type A. To define a multiplication on V up to the L-action,
we first choose the irreducible components of V where a simple subalgebra of type
A acts nontrivially (see Proposition 4) and where we are going to define a non-zero
multiplication such that Case 2 from the above classification will hold, i. e. where
it will only be possible to multiply the structure constant tensor by finitely many
complex numbers. Denote these components by V1, . . . , Vk, and let n1, . . . , nk
be their dimensions. Choose k commutative associative algebras with nilpotent
multiplication operators of dimensions n1, . . . , nk so that Case 2 holds for each of
them. Let the central torus of L act on Vi via a character χi. Then it acts on
ΛniV ∗i via −niχi. We have to choose k nonzero highest degree skew-symmetric
forms up to the action of the torus, i. e. we have to choose an orbit of the torus
in a k-dimensional space

W = ⊕ki=1Λni(V ∗i ),

so that each coordinate of (every) point of the orbit is nonzero. Such orbits are
parametrized by values of a tuple of algebraically independent Laurent monomi-
als that generate the lattice of all Laurent monomials in the coordinates on W
invariant under the action of the torus.

For example, if L = GLn and V is a tautological representation of V (we
will also see this case later), then the central torus is one-dimensional, and it
acts transitively on the set of nonzero vectors of ΛnV ∗. Hence, there are no
nontrivial invariant Laurent monomials, and the gln-compatible multiplications up
to the action of GLn are in one-to-one correspondence with isomorphism classes
of n-dimensional associative commutative algebras with nilpotent multiplication
operators.

Example 1. An example of sl18-compatible multiplication such that it is only
possible to multiply the structure constant tensor by finitely many scalars.

Consider the subalgebra (without unity) in C[x, y]/(x5 + y5 − x3y3, x4y, xy4)
generated by x and y. Denote it by A. This is an algebra of dimen-
sion 18, it has the following basis: x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2,
xy3, y4, x2y3, x3y2, x5, y5. In what follows, by the degree of a monomial we un-
derstand its total degree in x and y. Consider an automorphism from the identity
component of the group of automorphisms of A.

Every automorphism of A is determined by the images of x and y. Suppose
that x is mapped to ax + by + (terms of higher degree) and y is mapped to cx +
dy + (terms of higher degree). The matrix(

a c
b d

)



(Ga)m-ACTIONS ON FLAG VARIETIES AND NILP. MULTIPLICATIONS 19

cannot be degenerate, otherwise the intersection of the image of the automor-
phism and the subspace spanned by x and y is at most one-dimensional. This
automorphism maps x5 to a5x5 + 10a3b2x3y2 + 10a2b3x2y3 + b5y5 + αx3y3 =
(a5 + α)x5 + 10a3b2x3y2 + 10a2b3x2y3 + (b5 + α)y5, where α is a complex
number, y5 is mapped to c5x5 + 10c3d2x3y2 + 10c2d3x2y3 + d5y5 + βx3y3 =
(c5 + β)x5 + 10c3d2x3y2 + 10c2d3x2y3 + (c5 + β)y5, where β ∈ C, and x3y3 is
mapped to γx3y3 = γx5 + γy5, where γ ∈ C. The sum of these three monomials
must equal zero in A. In particular, a3b2 = −c3d2 and a2b3 = −c2d3. Assume first
that there are no zeros among a, b, c, d. Then (a3b2)/(a2b3) = (−c3b2)/(−c2d3),
and a/b = c/d. Hence, ac = bd, and the matrix above is degenerate. Therefore, at
least one of the numbers a, b, c, d equals zero. But if c = 0 or d = 0, then a3b2 = 0,
so a = 0 or b = 0. So we conclude that at least one of the numbers a, b equals
zero. Then −c2d3 = 0, and at least one of the numbers c, d equals zero. If a = 0
and c = 0, then the matrix is degenerate, and if b = 0 and d = 0, the matrix is
also degenerate. The only two remaining possibilities are a = d = 0 or b = c = 0.
These two sets of automorphisms of A are disjoint, so the identity component of
the group of automorphisms is a subset of one of them. For the identity auto-
morphism we have b = c = 0, so these equalities also hold for any automorphism
from the identity component. Note that a 6= 0 and d 6= 0, otherwise the matrix is
degenerate.

Now we can write that x is mapped to ax + a1x
2 + a2xy + a3y

2 +
(terms of higher degree), and y is mapped to dy + d1y

2 + d2xy + d3x
2 +

(terms of higher degree). Observe that each monomial of degree at least 7 equals
zero in A. Indeed, such a monomial is divisible by one of the following mono-
mials: x4y, xy4, x7, or y7. The first two equal zero in A by the definition
of A, and for x7 we have: x7 = −x2y5 + x5y3 = 0 since xy4 = x4y = 0.
The calculation for y7 is similar. Hence, the image of x5 (resp. y5) does
not depend on the terms of degree at least 3 in the image of x (resp. y).
So, x5 is mapped to a5x5 + 5a4x4(a1x

2 + a2xy + a3y
2) = a5x5 + 5a4a1x

6 =
a5x5 + 5a4a1(−xy5 + x4y3) = a5x5. Similarly, y5 is mapped to d5y5. x3y3 is
mapped to a3d3x3y3 = a3d3x5 + a3d3y5 (the other terms are of degree at least 7).
Hence, a5x5 + d5y5 − a3d3x5 − a3d3y5 = 0. x5 and y5 are elements of the basis of
A we chose, so a5 = a3d3 = d5. Hence, a2 = d3, a3 = d2, and a2/a3 = d3/d2. In
other words, a−1 = d. Now we can write a5 = 1, and, since the automorphism un-
der consideration belongs to the identity component of the automorphism group,
a = 1. So, d = 1, and the matrix of the automorphism with respect to the basis
we chose is lower unitriangular. In other words, the identity component of the
automorphism group of A is inside SL18.

Now suppose that h ∈ SL18 multiplies the structure constant tensor by t ∈ C
(t 6= 0). There exists a scalar matrix g ∈ GL18 that also multiplies the structure
constant tensor by t, namely, g = t−1idA. Then gh−1 stabilizes the structure
constant tensor, i. e. gh−1 is an automorphism of A. Denote the number of
connected components of the automorphism group by k. Then (gh−1)k is an
element of the identity component of the automorphism group. So, since g is a
scalar matrix, gkh−k ∈ SL18, gk ∈ SL18, g18k = idA, and t is a root of unity of
degree 18k. There are only finitely many possibilities for t.
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Example 2. An example of sl2-compatible multiplication such that it is possible
to multiply the structure constant tensor by any complex number.

Consider an algebra with a basis {x, y} and the multiplication defined by x2 = y,
xy = yx = x2 = 0. Clearly, this multiplication is sl2-compatible. The linear
operator defined by x 7→ tx, y 7→ t−1y has determinant 1 and multiplies the
structure constant tensor by t−3.

5.1.2. λ = $l−2, l > 2. We prove that nontrivial l-compatible multiplications do
not exist using Lemma 11. Set l = sll+1, V ∗ = Λ2W , where W is a tautological
sll+1-module. Let e1, . . . , el+1 be a basis of W . Unless this leads to ambiguity, we
use the same notation for linear operators on W and for elements of l. We have
the following Chevalley generators of l = sl(W ): xi = ei ⊗ e∗i+1, yi = ei+1 ⊗ e∗i ,
and hi = ei ⊗ e∗i − ei+1 ⊗ e∗i+1. We also have the following basis of V ∗: {ei ∧ ej |
1 ≤ i < j ≤ l + 1}. The embedding R(l) ↪→ V ∗ ⊗ V maps ei ⊗ ej ∈ l to∑
k 6=i,j ei ∧ ek ⊗ (ej ∧ ek)∗.
From [12, Table 5], we see that V ∗ ⊗ R(l) ∼= V ($1 + $2 + $l) ⊕ V (2$1) ⊕

V ($3 +$l)⊕V ($2). Let us find highest weight vectors of the irreducible subrep-
resentations.

1. Clearly, e1∧ e2⊗ e1⊗ e∗l+1 ∈ V ∗⊗R(l) is a vector of weight 2ε1 + ε2− εl+1 =
$1 + $2 + $l, so it is a highest weight vector in V ($1 + $2 + $l) ⊂ V ∗ ⊗ R(l).
The embedding R(l) ↪→ V ∗ ⊗ V maps this vector to

l∑
k=2

(e1 ∧ e2)⊗ (e1 ∧ ek)⊗ (el+1 ∧ ek)∗,

and this is not an element of S2(V ∗)⊗ V since l > 2.

2. v =
∑l+1
i=2 e1 ∧ ei ⊗ e1 ⊗ e∗i is annihilated by u0. Indeed, xj annihilates all

summands except for the ones with i = j and i = j + 1, and e1 ∧ ej ⊗ e1 ⊗ e∗j +
e1 ∧ ej+1 ⊗ e1 ⊗ e∗j+1 is moved to −e1 ∧ ej ⊗ e1 ⊗ e∗j+1 + e1 ∧ ej ⊗ e1 ⊗ e∗j+1 = 0.
v is a vector of weight 2ε1 + εi − εi = 2$1, so it is a highest weight vector of the
subrepresentation V (2$1) ⊂ V ∗⊗R(l). The embedding R(l) ↪→ V ∗⊗V maps this
vector to

l+1∑
i=2

(e1 ∧ ei)⊗
∑

j 6=i,1<j≤l+1

(e1 ∧ ej)⊗ (ei ∧ ej)∗

=
∑

1<i<j≤l+1

(e1 ∧ ei ⊗ e1 ∧ ej − e1 ∧ ej ⊗ e1 ∧ ei)⊗ (ei ∧ ej)∗ ∈ Λ2(V ∗)⊗ V,

and Λ2(V ∗)⊗ V ∩ S2(V ∗)⊗ V = 0.
3. Let us check that v = e1∧e3⊗e2⊗e∗l+1−e2∧e3⊗e1⊗e∗l+1−e1∧e2⊗e3⊗e∗l+1

is annihilated by u0. Clearly, v is annihilated by all xi with i > 2. x1 moves v to
e1 ∧ e3 ⊗ e1 ⊗ e∗l+1 − e1 ∧ e3 ⊗ e1 ⊗ e∗l+1 − e1 ∧ e1 ⊗ e3 ⊗ e∗l+1 = 0, and x2 moves v
to e1 ∧ e2 ⊗ e2 ⊗ e∗l+1 − e2 ∧ e2 ⊗ e1 ⊗ e∗l+1 − e1 ∧ e2 ⊗ e2 ⊗ e∗l+1 = 0.
v is a vector of weight ε1+ε2+ε3−εl+1 = $3+$l, so it is a highest weight vector

in V ($3 + $l) ⊂ V ∗ ⊗ R(l). To check that the image of v under the embedding
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R(l) ↪→ V ∗ ⊗ V is not an element of S2(V ∗) ⊗ V , we check that it defines a map
V ∗ → V ∗ ⊗ V ∗ whose image is not in S2(V ∗). Indeed, by applying this map to
el∧el+1 ∈ V ∗, we get (e1∧e3)⊗(el∧e2)−(e2∧e3)⊗(el∧e1)−(e1∧e2)⊗(el∧e3) /∈
S2(V ∗). (For l = 3, we have (e1 ∧ e3)⊗ (el ∧ e2)− (e2 ∧ e3)⊗ (el ∧ e1)− (e1 ∧ e2)⊗
(el ∧ e3) = (e1 ∧ e3)⊗ (e3 ∧ e2)− (e2 ∧ e3)⊗ (e3 ∧ e1) ∈ Λ2(V ∗).)

4. We are going to check that the following vector is annihilated by u0:

v =

l+1∑
i=3

(e1 ∧ ei ⊗ e2 ⊗ e∗i − e2 ∧ ei ⊗ e1 ⊗ e∗i +
l − 3

2
e1 ∧ e2 ⊗ ei ⊗ e∗i )

+
l − 1

2
e1 ∧ e2 ⊗ (e1 ⊗ e∗1 + e2 ⊗ e∗2).

Indeed, xj with j ≥ 3 annihilates each individual summand except the ones with
i = j and with i = j + 1, and it brings

(e1 ∧ ej ⊗ e2 ⊗ e∗j − e2 ∧ ej ⊗ e1 ⊗ e∗j +
l − 3

2
e1 ∧ e2 ⊗ ej ⊗ e∗j )

+ (e1 ∧ ej+1 ⊗ e2 ⊗ e∗j+1 − e2 ∧ ej+1 ⊗ e1 ⊗ e∗j+1 +
l − 3

2
e1 ∧ e2 ⊗ ej+1 ⊗ e∗j+1)

to

− e1 ∧ ej ⊗ e2 ⊗ e∗j+1 + e2 ∧ ej ⊗ e1 ⊗ e∗j+1 −
l − 3

2
e1 ∧ e2 ⊗ ej ⊗ e∗j+1

+ e1 ∧ ej ⊗ e2 ⊗ e∗j+1 − e2 ∧ ej ⊗ e1 ⊗ e∗j+1 +
l − 3

2
e1 ∧ e2 ⊗ ej ⊗ e∗j+1 = 0.

The only two summands that are not annihilated by x2 are the summand with
i = 3 and the last summand (outside the summation sign). x2 brings them to

e1 ∧ e2 ⊗ e2 ⊗ e∗3 +
l − 3

2
e1 ∧ e2 ⊗ e2 ∧ e∗3

and

− l − 1

2
e1 ∧ e2 ⊗ e2 ⊗ e∗3,

respectively. The sum of these two expressions is zero. Finally, if we apply x1 to
v, we get

l+1∑
i=3

(e1 ∧ ei ⊗ e1 ⊗ e∗i − e1 ∧ ei ⊗ e1 ⊗ e∗i ) +
l − 1

2
e1 ∧ e2 ⊗ (e1 ⊗ e∗2 − e1 ⊗ e∗2) = 0.

v is a vector of weight ε1 + ε2 = $2, so it is a highest weight vector in V ($2) ⊂
V ∗ ⊗R(l). Denote its image under the embedding R(l) ↪→ V ∗ ⊗ V by w. Then w
induces a linear map from V ∗ to V ∗ ⊗ V ∗, and w ∈ S2(V ∗)⊗ V if and only if the
image of this map is a subspace of S2(V ∗) ⊂ V ∗ ⊗ V ∗. But the map induced by
w maps el ∧ el+1 to e1 ∧ el ⊗ e2 ∧ el+1 + e1 ∧ el+1 ⊗ e2 ∧ el − e2 ∧ el ⊗ e1 ∧ el+1 −
e2 ∧ el+1 ⊗ e1 ∧ el + (l− 3)e1 ∧ e2 ⊗ el ∧ el+1 /∈ S2(V ∗). (Again, this is an element
of Λ2(V ∗) if l = 3.)
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5.1.3. λ = $p, where 2 < p ≤ dl/2e. In this case there exist no nontrivial
multiplications, and we are going to prove this by a contradiction with Lemma
12. We have X(V ) = {εk1 + . . . + εkp | 1 ≤ k1 < k2 < . . . < kp ≤ l + 1}
and λ∗ = $l+1−p = −εl+2−p − . . . − εl+1. From [12, Table 5], we see that
V ∗⊗R(l) ∼= V ($1 +$l+1−p+$l)⊕V ($1 +$l−p)⊕V ($l+2−p+$l)⊕V ($l+1−p).
So, in Lemma 12, there are four possibilities for λ∗ + γ:

1. λ∗ + γ = $1 + $l+1−p + $l, then γ = $1 + $l = ε1 + εl+1, and for
ν = ε2 + . . . + εp + εl+1 we have ν + γ = ε1 + . . . + εp ∈ X(V ) and ν + γ + λ∗ =
ε1 + . . .+ εp − εl+2−p − . . .− εl+1 /∈ Φ+.

2. λ∗ + γ = $l+2−p + $l, then γ = $l+2−p − $l+1−p + $l = εl+2−p − εl+1.
Set ν = ε1 + . . . + εp−1 + εl+1. We have ν + γ = ε1 + . . . + εp−1 + εl+2−p. We
chose p so that 2p ≤ l + 1 < l + 3, so p − 1 < l + 2 − p, and ν + γ ∈ X(V ). On
the other hand, ν + γ + λ∗ = ε1 + . . . + εp−1 + εl+2−p − εl+2−p − . . . − εl+1 =
ε1 + . . .+ εp−1 − εl+3−p − . . .− εl+1 /∈ Φ since p > 2.

3. λ∗ + γ = $1 + $l−p, γ = $1 + $l−p − $l+1−p = ε1 − εl+1−p. Take
ν = ε2 + . . . + εp−1 + εl+1−p + εl+1 ∈ X(V ) since 2p − 1 < l + 1. Then ν + γ =
ε1 + . . .+εp−1 +εl+1 ∈ X(V ) and ν+γ+λ∗ = $1 + . . .+εp−1−εl+2−p− . . .−εl /∈ Φ
since p > 2.

4. λ∗ + γ = $l+1−p is the highest weight of an irreducible subrepresentation of
V ∗ ⊗R(l), but in this case γ = 0 /∈ Φ+, so this γ cannot be the a weight γ whose
existence is guaranteed by Lemma 12.

So, in each case we have a contradiction with Lemma 12, therefore in this case
nontrivial l-compatible multiplications do not exist.

5.2. Algebras l of type Bl (l ≥ 2) and Dl (l ≥ 4)

The dual root system to a root system of type Bl is a root system of type Cl, and
the highest short root of Cl is α1 + 2(α2 + . . .+ αl−1) + αl, see [11, Section 12.2,
Table 2]. Proposition 5 implies that it is sufficient to consider the highest weight
representations with highest weights $1 and $l. Lie algebras of types Bl and Cl
are isomorphic, and this isomorphism identifies the highest weight representations
of a Lie algebra of type Bl with highest weights $1 and $2 with the highest
weight representations of a Lie algebra of type Cl with highest weights $2 and $1,
respectively. We are going to consider the representation of a type Bl Lie algebra
with highest weight $2 later as the representation of a type Cl Lie algebra with
highest weight $1.
Dl is a self-dual root system. All its roots have the same length, and the

highest root is α1 + 2(α2 + . . . + αl−2) + αl−1 + αl, see [11, Section 12.2, Table
2]. By Proposition 5, we have to consider weights ϕ1, $l−1, and $l. There
exists a diagram automorphism that interchanges simple roots αl−1 and αl, so it
interchanges representations V ($l−1) and V ($l). Hence, it suffices to consider
only one of the representations V ($l−1) and V ($l). We will consider V ($l).

To deal with the irreducible representations with highest weight $l for both
algebra types Bl and Dl, we need an exact construction for these root systems.
Let ε1, . . . , εl be the orthonormal basis of an l-dimensional Euclidean space. By
coordinates of vectors from this space we understand their coordinates with respect
to this basis, unless stated otherwise. All vectors of the form εi+εj , εi−εj ,−εi−εj
(i 6= j) form a root system of type Dl. The vectors εi + εj , εi − εj (i < j) form a
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positive root subsystem. To construct a root system of type Bl, take all vectors
we took for Dl and all vectors ±εi. The vectors εi together with the positive root
subsystem of Dl we chose form a positive root subsystem of Bl. For both root
systems, we have $1 = ε1, $2 = ε1 + ε2, and $l = (ε1 + . . . + εl)/2. For both
algebra types, $2 is the highest weight of the adjoint representation.

5.2.1. λ = $1, l ≥ 2 if l is of type Bl. Let V be a vector space of dimension 2l (if
l is of type Dl) or 2l + 1 (if l is of type Bl), and let ω be a nonsingular bilinear
form on V . Then l acts on V by skew-symmetric operators, and ρ(l) consists of
all operators skew-symmetric with respect to ω.

We prove that nontrivial l-compatible multiplications do not exist. Assume
that we have an l-compatible multiplication on V . Define a trilinear form c
by c(u, v, w) = ω(uv,w) (u, v, w ∈ V ). For each u ∈ V , µu is a skew-
symmetric operator. We have c(u, v, w) = ω(uv,w) = ω(µuv, w) = −ω(v, µuw) =
−ω(v, uw) = −ω(uw, v) = −c(u,w, v). Since the multiplication is commutative,
we have c(u, v, w) = ω(uv,w) = ω(vu,w) = c(v, u, w). Therefore, c(u, v, w) =
−c(u,w, v) = −c(w, u, v) = c(w, v, u) = c(v, w, u) = −c(v, u, w) = −c(u, v, w), so
c(u, v, w) = 0, and c = 0.

5.2.2. Algebra l of type Bl, λ = $l, l ≥ 3. There are no nontrivial l-compatible
multiplications. We use Lemma 12. The Weyl group is generated by all permuta-
tions of the basis vectors and by all reflections that map εi to −εi and keep all other
basis vectors unchanged. The orbit of $l under the action of these group consists
of all vectors such that all their coordinates equal ±1/2. Since dimV ($l) = 2l

(see [12, Table 5]), these weights are all weights of V ($l). The Dynkin diagram of
type Bl has no nontrivial automorphisms, so λ∗ = λ, and we see from [12, Table 5]
that V ∗ ⊗R(l) ∼= V ($2 +$l)⊕ V ($1 +$l)⊕ V ($l). We have three possibilities
for λ∗ + γ.

1. λ∗ + γ = $2 + $l, γ = $2 = ε1 + ε2. Set ν = (−ε1 − ε2 + ε3 + . . . + εl)/2,
then ν + γ = (ε1 + . . .+ εl)/2 ∈ X(V ) and ν + γ + λ∗ = ε1 + . . .+ εl /∈ Φ+.

2. λ∗ + γ = $1 +$l, γ = $1 = ε1. In this case set ν = (−ε1 + ε2 + . . .+ εl)/2,
then ν + γ = (ε1 + . . .+ εl)/2 ∈ X(V ) and ν + γ + λ∗ = ε1 + . . .+ εl /∈ Φ+.

3. If λ∗ + γ = $l, then γ = 0 /∈ Φ+.

5.2.3. Algebra l of type Dl, λ = $l, l ≥ 4. Again there are no nontrivial l-
compatible multiplications, and again we use Lemma 12 to prove this. If l = 4, then
there exists a diagram automorphism of l that interchanges V ($l) and V ($1), and
the case λ = $1 was considered earlier, so we may suppose that l ≥ 5. This time
the Weyl group is generated by all permutations of the basis vectors and by all re-
flections that map εi to −εi, εj to −εj and keep all other basis vectors unchanged.
The orbit of $l consists of all vectors such that all their coordinates equal ±1/2,
and the number of coordinates equal to −1/2 is even. This time dimV ($l) = 2l−1,
so again these vectors are all weights of V ($l). In particular, the lowest weight is
(−ε1− . . .− εl)/2 = −$l if l is even, and is (−ε1− . . .− εl−1 + εl)/2 = −$l−1 if l
is odd. Hence, λ∗ = $l if l is even, and λ∗ = $l−1 if l is odd. Denote ζ = $l if l is
odd, and ζ = $l−1 is l is even. In other words, λ∗ 6= ζ and {λ∗, ζ} = {$l−1, $l}.
Using [12, Table 5], we find that V ∗ ⊗ R(l) ∼= V ($2 + λ∗) ⊕ V ($1 + ζ) ⊕ V (λ∗).
We have to consider three cases.



24 ROSTISLAV DEVYATOV

1. λ∗ + γ = $2 + λ∗, γ = $2. Set ν = (−ε1 − ε2 + ε3 + . . . + εl)/2, then
ν + γ = (ε1 + . . .+ εl)/2 ∈ X(V ). If l is even, ν + γ + λ∗ = ε1 + . . .+ εl, and if l is
odd, ν + γ + λ∗ = ε1 + . . .+ εl−1. In both cases, this is not a positive root.

2. λ∗ + γ = $1 + ζ, γ = $1 + ζ − λ∗. Observe that ζ − λ∗ = −(−1)lεl,
so γ = $1 − (−1)lεl. Set ν = (−ε1 − (−1)lε2 + ε3 + . . . + εl−1 + (−1)lεl)/2,
then ν + γ = (ε1 − (−1)lε2 + ε3 + . . . + εl−1 − (−1)lεl)/2 ∈ X(V ). If l is even,
then ν + γ + λ∗ = ε1 + ε3 + ε4 + . . . + εl−1 /∈ Φ since l > 4. If l is odd, then
ν + γ + λ∗ = ε1 + ε2 + . . .+ εl−1 /∈ Φ.

3. If λ∗ + γ = $l, then γ = 0 /∈ Φ+.

5.3. Algebra l of type Cl (l ≥ 2)

Let E be a Euclidean space with an orthogonal basis ε1, . . . , εl. Vectors of the
form εi + εj , −εi − εj , εi − εj (i 6= j), and ±2εi form a root system of type
Cl. Vectors εi − εj (1 ≤ i < j ≤ l) and εi + εj (1 ≤ i, j ≤ l) form a system
of positive roots Φ+. The corresponding fundamental weights can be written as
$i = ε1 + . . . + εi. The dual root system is Bl, and its highest short root equals
αBl1 + αBl2 + . . .+ αBll , where αBli are simple roots of Bl. So, we have to consider
all fundamental representations of l. If l = 2, then we have already considered
the case of the first fundamental representation of an algebra of type B2, which
is isomorphic to the case second fundamental representation of an algebra of type
C2, so we do not have to consider this case again.

5.3.1. λ = $1, l ≥ 2. In this case, nontrivial l-compatible multiplications exist,
and we will construct them.

Let V be a vector space of dimension 2l. Choose a basis e1, . . . , el, e−1, . . . , e−l
of V , and let ω be the skew-symmetric bilinear form defined by ω =

∑
(e∗i ⊗

e∗−i − e∗−i ⊗ e∗i ). We can identify l with the Lie algebra sp(V ) of all operators
V → V that preserve ω. Then V becomes the first fundamental representation of
l. All upper-triangular matrices in sp(V ) form a maximal solvable subalgebra with
a Cartan subalgebra formed by all diagonal matrices in sp(V ) and the maximal
unipotent subalgebra formed by all upper-unitriangular matrices in sp(V ). After
these identifications, Chevalley generators can be written as xi = ei ⊗ e∗i+1 −
e−(i+1) ⊗ e∗−i, yi = ei+1 ⊗ e∗i − e−i ⊗ e∗−(i+1), hi = ei ⊗ e∗i − ei+1 ⊗ e∗i+1 − e−i ⊗
e∗−i + e−(i+1) ⊗ e∗−(i+1). In particular, all xi generate the unipotent subalgebra of

all upper-unitriangular matrices in sp(V ).
The form ω identifies V and V ∗ (v ∈ V is identified with ω(v, ·) ∈ V ∗). Hence,

we can identify V ∗ ⊗ V ∗ ⊗ V with V ∗ ⊗ V ∗ ⊗ V ∗, and structure tensor of (non
necessarily l-compatible) multiplications on V are in one-to-one correspondence
with trilinear forms on V . Given a multiplication, the corresponding form c is
defined as follows: c(u, v, w) = ω(uv,w). Let us reformulate the definition of
l-compatibility in terms of the corresponding trilinear form.

Commutativity is equivalent to the equality ω(uv,w) = ω(vu,w) for all u, v, w ∈
V since ω is nondegenerate. In terms of c this means that c(u, v, w) = c(v, u, w).
An operator µu acts as an element of l if and only if it is skew-symmetric with
respect to ω, i. e. ω(µuv, w) = −ω(v, µuw). In other words (using the skew sym-
metry of ω) we can write ω(uv,w) = ω(uw, v). In terms of c this means that
c(u, v, w) = c(u,w, v). Hence, a multiplication is commutative and all multiplica-
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tion operators act as elements of l if and only if c is a totally symmetric trilinear
form. So, in what follows we will consider only totally symmetric trilinear forms
c.

If a multiplication is commutative and associative and all multiplication op-
erators are skew-symmetric, then for all u, v, w, z ∈ V we have ω(uvw, z) =
−ω(vw, uz) = −ω(wv, uz) = ω(v, wuz) = ω(v, (wu)z) = −ω((wu)v, z) −
ω(uvw, z), therefore uvw = 0 for every triple u, v, w ∈ V . And vice versa, if a
multiplication is commutative and every product of the form u(vw) equals zero,
then every product of the form (uv)w equals w(uv) = 0, so the multiplication is
also associative. We also see that the nilpotency of multiplication operators in
case of this representation follows from the other three conditions in the definition
of l-compatibility.

Now suppose that we deal with an l-compatible multiplication. Let X be the
linear span of all products of the form uv (u, v ∈ V ). As we already know, uvw = 0
for all u, v, w ∈ V , so for all u, v, w, z ∈ V we have ω(uv,wz) = −ω(uvw, z) = 0,
hence X is an isotropic subspace. Denote the ω-orthogonal complement of X by Y .
If u ∈ Y and v, w ∈ V , then vw ∈ X, and ω(uv,w) = ω(vu,w) = −ω(u, vw) = 0,
hence uv = 0 for all u ∈ Y , v ∈ V . In other words, µu = 0 if u ∈ Y . We have the
following condition for the form c: if u ∈ Y , v, w ∈ V , then c(u, v, w) = ω(uv,w) =
0, so c(Y, V, V ) = 0.

Now suppose that c is a totally symmetric trilinear form on V , and Y ′ is a
coisotropic subspace of V such that c(Y ′, V, V ) = 0. (We do not assume now a
priori that the corresponding multiplication is associative, but we already know
that since c is symmetric, the corresponding multiplication is commutative and
the multiplication operators are skew-symmetric.) Then for all u ∈ Y ′, v, w ∈ V
we can write ω(uv,w) = c(u, v, w) = 0, so µu = 0. Denote by X ′ the ω-orthogonal
complement of Y ′. Since c is symmetric, we can also write c(V, V, Y ′) = 0, so
if u, v ∈ V and w ∈ Y ′, then ω(uv,w) = c(u, v, w) = 0, so ω(uv, Y ′) = 0, and
uv ∈ X ′. Y ′ is coisotropic, so ω(X ′, X ′) = 0. Now, using the skew symmetry of all
multiplication operators, we see that for all u, v, w, z ∈ V , one has ω(u(vw), z) =
−ω(vw, uz) = 0, so u(vw) = 0, and the multiplication is associative.

Therefore, l-compatible multiplications on V are in bijection with trilinear sym-
metric forms c on V such that there exists a coisotropic subspace Y ⊆ V such that
c(Y, V, V ) = 0.

The action of Sp2l on V can move any coisotropic subspace Y to an isotropic
subspace containing Z = 〈e1, . . . , el〉, and if a subspace of V contains Z, it is always
coisotropic. Therefore, we have a bijection between the l-compatible multiplica-
tions up to the action of Sp2l and the trilinear forms c on V such that c(Z, V, V ) = 0
up to the action of the (maximal) subgroup of Sp2l that preserves Z. This sub-
group is exactly the parabolic subgroup of Sp2l that we have previously denoted
by Pl. The symmetric trilinear forms on V such that c(Z, V, V ) = 0 are canonically
identified with symmetric trilinear forms on V/Z. If g is an element of the unipo-
tent radical of Pl, then the action of g on V/Z is trivial, so for every u, v, w ∈ V
we have (gc)(u, v, w) = c(g−1u, g−1v, g−1w) = c(u + u′, v + v′, w + w′), where
u′, v′, w′ ∈ Z, and (gc)(u, v, w) = c(u, v, w). The quotient of Pl modulo its unipo-
tent radical equals GL(V/Z), and finally we get the following parametrization:
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the l-compatible multiplications on V up to the action of Sp2l are parametrized by
the trilinear symmetric forms on V/Z up to the action of GL(V/Z). This action
enables one to multiply any trilinear form, and therefore the structure constant
tensor of the corresponding multiplication, by any scalar, so the action of a central
torus of a reductive group with one of its simple components of type Cl does not
change the answer.

5.3.2. λ = $p, l ≥ 3, p ≥ 2. In this case there are no nontrivial l-compatible
multiplications, and we use Lemma 12 to prove this. The Dynkin diagram of type
Cl has no nontrivial automorphisms, hence λ∗ = λ. The Weyl group is generated
by permutations of vectors εi and by reflections that map εi to −εi and keep all
other basis vectors unchanged. Hence, X(V ) at least contains all possible linear
combinations of p of the basis vectors εi with coefficients ±1. Using [12, Table 5],
we find that V ∗⊗R(l) ∼= V (2$1 +$p)⊕V ($1 +$p−1)⊕V ($p)⊕V ($1 +$p+1),
and the last summand is present only if p < l. All irreducible components are
different, and we have to consider four cases.

1. λ∗ + γ = 2$1 + $p, γ = 2$1 = 2ε1. Set ν = −ε1 + ε2 + . . . + εp, then
ν + γ = ε1 + . . .+ εp ∈ X(V ) and ν + γ + λ∗ = 2(ε1 + . . .+ εp) /∈ Φ+.

2. λ∗ + γ = $1 + $p−1, γ = $1 + $p−1 − $p = ε1 − εp. If p > 2, we
can take ν = −ε1 + ε2 + . . . + εp, then ν + γ = ε2 + . . . + εp−1 ∈ X(V ) and
ν+γ+λ∗ = ε1 + 2(ε2 + . . .+ εp−1) + εp /∈ Φ+. If p = 2, we take ν = ε2 + ε3 (recall
that l ≥ 3), then ν + γ = ε1 + ε3 ∈ X(V ) and ν + γ + λ∗ = 2ε1 + ε2 + ε3 /∈ Φ+.

3. λ∗+γ = $1+$p+1. This case is only possible if p < l. Then γ = $1+$p+1−
$p = ε1 + εp+1. Set ν = −ε1 + ε2 + . . .+ εp, then ν + γ = ε2 + . . .+ εp+1 ∈ X(V )
and ν + γ + λ∗ = ε1 + 2(ε2 + . . .+ εp) + εp+1 /∈ Φ+.

4. If λ∗ + γ = $p, then γ = 0 /∈ Φ+.

5.4. Algebra l of type E6

E6 is a self-dual root system, and the highest root equals α1 + 2α2 + 2α3 + 3α4 +
2α5 +α6 (see [11, Section 12.2, Table 2]), where α1, . . . , α6 are simple roots. There
exists an outer automorphism of l that interchanges V ($1) and V ($6), so it is
sufficient to consider the case V = V ($1).

To construct the root system and the weight system for l we use a model as-
sociated with a grading as described in [13, Chapter 5, §2]. The extended simple
root system for l consists of the simple roots α1, . . . , α6 and the lowest (negative)
root α′ = −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6, which is orthogonal to all simple
roots except α2. Consider the grading on l corresponding to an inner automor-
phism and defined by label 1 at α2 and by labels 0 at all other simple roots and
at the lowest root (see [13, Chapter 3, §3.7]). The zeroth graded component is
isomorphic to sl6 ⊕ sl2 as a lie algebra. The construction of a grading also pro-
vides a system of simple roots for the zeroth graded component, in this case the
simple roots of sl6 are α1, α3, α4, α5, α6, and the simple root of sl2 is α′. The first
graded component is an irreducible representation of the zeroth graded compo-
nent, and its lowest weight is α2. Hence, the first graded component is isomorphic
to Vsl6($3)⊗ Vsl2($1) = Λ3(C6)⊗ C2 as a representation of sl6 ⊕ sl2.

These data enable us to construct a root system of type E6. Consider a
Euclidean space E with an orthogonal basis ε̃1, . . . , ε̃6 and its subspace E′ =
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〈ε̃1 + . . . + ε̃6〉⊥. Denote the orthogonal projection E → E′ by q. Denote
εi = q(ε̃i/

√
2), then ε1 + . . . + ε6 = 0, (εi, εi) = 5/12, and (εi, εj) = −1/12 if

i 6= j. Consider also a one-dimensional Euclidean space with an orthonormal basis
ζ1. Then a root system of type E6 consists of the following vectors in E′ ⊕ 〈ζ1〉:
εi− εj (i 6= j), ±ζ1, and εi + εj + εk± ζ1/2 (i, j, and k are three different indices).
One checks easily that the length of each of these vectors is 1. Here α1 = ε1 − ε2,
αi = εi−1 − εi for i = 3, 4, 5, 6, α′ = ζ1, and α2 = ε4 + ε5 + ε6 − ζ1/2 (the lowest
weight of Λ3(C6)⊗ C2).

To describe X(Vl($1)), consider a Lie algebra g of type E7. Fix a Cartan
subalgebra and the corresponding root system of g. This root system contains a
root system of type E6, so l can be embedded into g so that the chosen Cartan
subalgebras, the chosen Borel subalgebras and the corresponding root systems are
also embedded. Then simple roots are mapped to simple roots. Without loss of
generality we may assume that this embedding preserves scalar multiplication. So
we may use the same notation for the simple roots of E7 and for the simple roots of
E6, i. e. we may denote the simple roots of E7 by αi (1 ≤ i ≤ 7), then the simple
root system of E6 chosen previously is exactly {α1, . . . , α6}. Denote the parabolic
subalgebra of g corresponding to α7 by p. The semisimple part of the standard
Levi subalgebra of p is exactly l. Denote the unipotent radical of p by u. The
highest root of E7 equals α = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 +α7. The scalar
product of α and any simple root of E7 except α1 equals 0, and (α, α1) = 1/2
(recall that we initially chose the root system of type E6 so that all roots are
of length 1). There are 36 positive roots in E6 and 63 positive roots in E7, so
dim u = 27. But dimV = 27 (see [12, Table 5]), so u is isomorphic to dimV as
a representation of l. Therefore, the numerical label of a weight of V at a root
of l can be computed as twice the scalar product of the root of E7 corresponding
to this weight (its decomposition into a linear combination of simple roots of E7

contains α7 with coefficient 1) and the root of E6 considered as a root of E7.

The embedding sl6 ⊕ sl2 ⊂ l enables us to consider u as a representation of
sl6 ⊕ sl2. Let us decompose it into a sum of irreducible sl6 ⊕ sl2-representations.
E7 has a root subsystem of type A6 generated by α1, α3, α4, α5, α6, α7. Hence,
β1 = α1 + α3 + α4 + α5 + α6 + α7 is a root of E7. (αi, β1) ≥ 0 if i 6= 2, so
(αi + β1, αi + β1) > 1 if i 6= 2, and this is not a root of E7. Also, if we add α′

to β1, we get a linear combination of roots αi where some coefficients are positive
and some are negative, so this sum cannot be a root of E7. Therefore, gβ1 is the
highest weight subspace of an irreducible sl6⊕sl2-subrepresentation in u. The only
nonzero numerical label of β1 at the chosen simple roots for sl6 is the one at α1,
and this numerical label equals 1. The numerical label of β1 at α′ also equals 1,
hence this irreducible representation is isomorphic to C6 ⊗ C2.

E7 also has a root subsystem of type A4 generated by α1, α3, α4, α2, so α′′ =
α1 + α2 + α3 + α4 is a root of E7. The reflection defined by α′′ maps α to
α−α′′ = α1 +α2 +2α3 +3α4 +3α5 +2α6 +α7, so this is also a root of E7. Denote
it by β2. Again, if i 6= 2, then (αi, β2) > 0 and (αi + β2, αi + β2) > 1, so αi + β2

cannot be a root of E7. And again α′ + β2 is a linear combinations of roots αi
where some coefficients are positive and some are negative, so α′+β2 is not a root
of E7. Again we conclude that gβ2

is the highest weight subspace of an irreducible
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sl6 ⊕ sl2-subrepresentation in u. The only nonzero numerical label of β2 at the
chosen simple roots for sl6 is the one at α5, and this numerical label equals 1.
The numerical label of β2 at α′ equals zero, so this irreducible subrepresentation
is isomorphic to Λ2(C6)∗, and sl2 acts trivially on it. Therefore, weights of V are
−εi − εj (1 ≤ i < j ≤ 6) and εi ± ζ1/2 (1 ≤ i ≤ 6).

The highest weight of V as an l-module is λ = $1 = ε1 − ζ1/2. The lowest
weight is ε6 + ζ1/2 since for none of the simple roots αi, ε6 + ζ1/2−αi is a weight
of V . So, λ∗ = −ε6 − ζ1/2. By computing scalar products, one checks directly
that λ∗ = $6.

Now we are ready to apply Lemma 12. From [12, Table 5] we see that V ∗⊗R(l) ∼=
V ($2 +$6) + V ($3) + V ($6). We have to consider three cases.

1. λ∗ + γ = $2 + $6, γ = $2. One can check directly that $2 = −ζ1. Take
ν = ε1 + ζ1/2, then ν + γ = ε1 − ζ1/2 ∈ X(V ) and ν + γ + λ∗ = ε1 − ε6 − ζ1 /∈ Φ.

2. λ∗ + γ = $3, and again one can check by computing scalar products that
$3 = ε1 + ε2− ζ1. So, γ = ε1 + ε2 + ε6− ζ1/2, and we can set ν = −ε2− ε6. Then
ν + γ = ε1 − ζ1/2 ∈ X(V ) and ν + γ + λ∗ = ε1 − ε6 − ζ1 /∈ Φ.

3. If λ∗ + γ = $6, then γ = 0 /∈ Φ+.

5.5. Algebra l of type E7

E7 is also a self-dual root system, and the highest root equals 2α1 + 2α2 + 3α3 +
4α4 +3α5 +2α6 +α7. We have to consider V = V ($7). Without loss of generality,
suppose that the length of each root is 1. Again, we use a model associated with
a grading to describe a root system of type E7. Denote the lowest root of E7

by α′. We have (α′, αi) = 0 for i 6= 1, (α′, α1) = −1/2. Consider the grading
on l corresponding to an inner automorphism and defined by label 1 at α2 and
by labels 0 at α′ and at all αi, where i 6= 2. The zeroth graded component is
isomorphic to sl8, and its simple roots defined by the grading construction are:
α′, α1, α3, α4, α5, α6, α7. The first grading component as a representation of the
zeroth graded component is isomorphic to Λ4(C8).

To construct a root system of type E7, consider a Euclidean space E with
an orthonormal basis ε̃1, . . . , ε̃8 and its subspace E′ = 〈ε̃1 + . . . + ε̃8〉⊥. Denote
the orthogonal projection E → E′ by q. Denote εi = q(ε̃i/

√
2). One check

directly that (εi, εi) = 7/16, (εi, εj) = −1/16 if i 6= j, and ε1 + . . . + ε8 = 0.
A root system of type E7 consists of all vectors of the form εi − εj (i 6= j) and
εi+ εj + εk + εl (all four indices are different). For the simple roots of E7 provided
by the grading construction we have α1 = ε2−ε3, αi = εi−εi+1 for 3 ≤ i ≤ 7, and
α′ = −2α1−2α2−3α3−4α4−3α5−2α6−α7 = ε1− ε2, so α2 = ε5 + ε6 + ε7 + ε8.
One checks easily that all these vectors are of length 1.

To find X(V ($7)), consider a Lie algebra g of type E8. Its root system contains
a subsystem of subsystem of type E7, so we can choose a Borel subalgebra and a
Cartan subalgebra in g and identify l with a subalgebra of g so that the chosen
Borel (resp. Cartan) subalgebra of l is embedded into the chosen Borel (resp.
Cartan) subalgebra of g. With this embedding, the simple roots α1, . . . , α7 of l
are mapped to the simple roots α1, . . . , α7 of g, so we can use the same notation
for them (and denote the remaining simple root of g by α8). The highest root of
E8 is 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8, and the reflection defined
by α8 maps it to β = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + α8, so β is
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also a root of E8. There are 120 positive roots in E8, and 63 of them are positive
roots of E7, so their decomposition into a linear combination of α1, . . . , α8 does not
actually contain α8. We know one root in E8 whose decomposition into a linear
combination of simple roots contains α8 with coefficient 2, namely the highest root.
Hence, there are at most 56 positive roots in E8 whose decomposition into a linear
combination of simple roots contains α8 with coefficient 1. Denote the direct sum
of the corresponding root subspaces in g by W . Clearly, l ⊂ g preserves W . A
direct calculation shows that (αi, β) = 0 for 1 ≤ i ≤ 6 and (α7, β) = 1/2. So,
αi + β is not a root if 1 ≤ i ≤ 7, and hence gβ is a highest weight subspace for the
action of l on W . It also follows from the values of these scalar products that gβ is
a subspace of weight $7 in terms of the l-action. But we know that dimV = 56,
so V is isomorphic to W as an l-representation, and we can identify them.

Now let us decompose V into a sum of irreducible sl8-representations. E8

has a subsystem of type A7, its simple roots are α1, α3, α4, α5, α6, α7, α8. Hence,
β1 = α1 + α3 + α4 + α5 + α6 + α7 + α8 is a root of E8. It has nonnegative scalar
products with αi if i = 1 or 3 ≤ i ≤ 8, hence (αi + β1, αi + β1) > 1 and αi + β1 is
not a root of E8. The decomposition of α′+β1 into a sum of simple roots contains
α8 with coefficient 1 and α2 with coefficient −2, so α′+β1 also is not a root of E8.
Therefore, gβ1 is a highest weight subspace of an irreducible sl8-subrepresentation
of V . β1 is orthogonal to all simple roots of sl8 except α2, and (β1, α1) = 1/2, so
this irreducible subrepresentation is isomorphic to Λ2(C8).

In the previous section we have seen that α1 +α2 + 2α3 + 3α4 + 3α5 + 2α6 +α7

is a root of E7. α6 +α7 +α8 is a root of A7 ⊂ E8. We have (α1 +α2 +2α3 +3α4 +
3α5+2α6+α7, α6+α7+α8) = −1/2, so the reflection defined by α6+α7+α8 maps
α1+α2+2α3+3α4+3α5+2α6+α7 to β2 = α1+α2+2α3+3α4+3α5+3α6+2α7+α8.
Now, (β2, αi) = 0 for i = 1, 3, 4, 5, 7, 8, (β2, α6) = 1/2, and (β2, α

′) = 0. Hence,
(β2 + αi, β2 + αi) > 1 for i 6= 2, (β2 + α′, β2 + α′) > 1, and β2 + αi for i 6= 2 and
β2 + α′ are not roots of E8. We see that gβ2

is a highest weight subspace of an
irreducible sl8-subrepresentation of V , and that this subrepresentation is Λ2(C8)∗.
Finally, dim Λ2(C8) = dim Λ2(C8)∗ = 28, dimV = 56, so Λ2(C8) and Λ2(C8)∗ are
all irreducible sl8-subrepresentations of V . Therefore, X(V ) consists of all vectors
of the form ±(εi + εj) (1 ≤ i < j ≤ 8).

Now we prove that there are no nontrivial l-compatible multiplications on V
using Lemma 12. The Dynkin diagram of typeBl has no nontrivial automorphisms,
so λ∗ = λ = $7. From [12, Table 5] we see that V ∗⊗R(l) ∼= V ($1 +$7)⊕V ($2)⊕
V ($7). A direct calculation of scalar products shows that $1 = ε2−ε1, $2 = 2ε1,
and $7 = ε1 + ε8. We have to consider three cases.

1. γ+λ∗ = $1 +$7, γ = $1 = ε2− ε1. Set ν = ε1 + ε3, then ν+ γ = ε2 + ε3 ∈
X(V ) and ν + γ + λ∗ = 2ε1 + ε2 + ε3 /∈ Φ.

2. γ+λ∗ = $2, γ = $2−$7 = ε1− ε8. Set ν = ε7 + ε8, then ν+ γ = ε1 + ε7 ∈
X(V ) and ν + γ + λ∗ = 2ε1 + ε7 + ε8 /∈ Φ.

3. If γ + λ∗ = $7, then γ = 0 /∈ Φ+.

5.6. Algebra l of type E8

E8 is a self-dual root system, all roots have equal lengths, and the highest root
equals 2α1+3α2+4α3+6α4+5α5+4α6+3α7+2α8. All coefficients here are grater
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than 1, so by Proposition 5, any l-compatible multiplication on any l-module is
trivial.

5.7. Algebra l of type F4

A root system Φ of type F4 is isomorphic to its dual Φ∨, but roots have different
lengths. Roots of Φ∨ corresponding to (any) simple root system of Φ also form
a system of simple roots, but if Cartan matrices for these simple roots are the
same, then the first (resp. second, third, fourth) simple root of Φ corresponds
to the fourth (resp. third, second, first) simple root of Φ∨. So, choose a simple
root system α1, α2, α3, α4 in Φ, and denote the corresponding roots of Φ∨ by
β4, β3, β2, β1, respectively. Then β1, β2, β3, β4 is a simple root system in Φ∨, and
the corresponding Cartan matrix is the same as for α1, α2, α3, α4. In particular,
the highest short root equals β1 + 2β2 + 3β3 + 2β4, so, since β1 corresponds to α4,
by Proposition 5 we only have to consider V = V (λ), where λ = $4.

We use an explicit construction for F4 (see [11, §12]). Consider a Euclidean
space with an orthonormal basis ε1, ε2, ε3, ε4. Then a root system of type F4 is
formed by all vectors ±εi, ±εi±εj , (i 6= j), and (±ε1±ε2±ε3±ε4)/2 (in all cases
the signs may be chosen independently). As a system of simple roots, we can take
α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = (ε1 − ε2 − ε3 − ε4)/2. Then a direct
check shows that $4 = ε1. Hence, X(V ) consists of all short roots and 0. Another
direct computation shows that $1 = ε1 + ε2 and $3 = (3ε1 + ε2 + ε3 + ε4)/2.

We use Lemma 12 to prove that there are no nontrivial l-compatible multi-
plications. The Dynkin diagram of type F4 has no nontrivial automorphisms, so
λ∗ = λ. From [12, Table 5] we see that V ∗⊗R(l) ∼= V ($1 +$4)⊕V ($3)⊕V ($4).
We have to consider three cases.

1. γ + λ∗ = $1 +$4, γ = $1 = ε1 + ε2. Set ν = −ε2, then ν + γ = ε1 ∈ X(V )
and ν + γ + λ∗ = 2ε1 /∈ Φ.

2. γ + λ∗ = $3, γ = $3 − $4 = (ε1 + ε2 + ε3 + ε4)/2. Set ν = 0, then
ν+γ = γ = (ε1+ε2+ε3+ε4)/2 ∈ X(V ), ν+γ+λ∗ = $3 = (3ε1+ε2+ε3+ε4)/2 /∈ Φ.

3. If γ + λ∗ = $4, then γ = 0 /∈ Φ+.

5.8. Algebra l of type G2

The usage of Lemma 5 in this case is similar to the previous case. Namely, if Φ is
a root system of type G2, then the dual root system Φ+ is also of type G2, and if
α1 and α2 are simple roots of Φ, then the corresponding roots of Φ∨ also form a
simple root system, but if Cartan matrices for these simple root systems are the
same, then the first (resp. second) simple root of Φ corresponds to the second
(resp. the first) simple root of Φ∨. So, denote the root of Φ∨ corresponding to
α1 ∈ Φ (resp. to α2 ∈ Φ) by β2 (resp. by β1). Then the highest short root of Φ∨

is 2β1 + β2, and by Lemma 5 we have to consider V = V (λ), where λ = $1.
A root system of type G2 can be constructed as the union a root system of type

A2 and sums of two roots from A2 such that the angle between them is π/3. More
exactly, consider a Euclidean space E with an orthonormal basis ε̃1, ε̃2, ε̃3 and its
subspace E′ = 〈ε̃1 + ε̃2 + ε̃3〉⊥. Denote the orthogonal projection E → E′ by q and
εi = q(ε̃i). Then all vectors εi−εj (i 6= j) form a root system of type Al. The angle
between ε1−ε2 and ε1−ε3 equals π/3, and ε1−ε2+ε1−ε3 = 3ε1−ε1−ε2−ε3 = 3ε1

is one of the roots of G2. The remaining roots can be obtained by the action of
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the Weyl group of A2, they equal ±3εi. A system of positive roots is formed by
εi−εj , where 1 ≤ i < j ≤ 3, 3ε1, 3ε2, and 3ε1 +3ε2 = −3ε3. The resulting system
of simple roots consists of α1 = ε1 − ε2 and α2 = 3ε2. The fundamental weights
can be written as $1 = ε1 − ε3, ε2 = −3ε3. Hence, X(V ($1)) consists of all short
roots and 0.

Again we use Lemma 12 to prove that there are no nontrivial l-compatible
multiplications. The Dynkin diagram of type G2 has no nontrivial automorphisms,
so λ∗ = λ. From [12, Table 5] we see that V ∗ ⊗ R(l) ∼= V ($1 + $2) ⊕ V (2$1) ⊕
V ($1). There are three cases to consider.

1. γ + λ∗ = $1 + $2, γ = $2 = −3ε3. Take ν = ε3 − ε2, then ν + γ =
−2ε3 − ε2 = ε1 − ε3 ∈ X(V ) and ν + γ + λ∗ = 2λ∗ /∈ Φ.

2. γ + λ∗ = 2$1, γ = $1 = ε1 − ε3. Take ν = 0, then ν + γ = ε1 − ε3 ∈ X(V )
and ν + γ + λ∗ = 2λ∗ /∈ Φ.

3. If γ + λ∗ = $1, then γ = 0 /∈ Φ+.
We have considered all types of simple Lie algebras, so the proof of Theorem 6

is now finished.

6. Classification of generically transitive (Ga)m-actions on generalized
flag varieties

To prove Theorem 7, we apply Theorem 3 to each case of a simple group G
and its parabolic subgroup P such that G = Aut(G/P )◦ there exists at least one
generically transitive (Ga)m-action on G/P (see Introduction for the list of the
cases we have to consider). We use notation from Introduction and from Section
1. To understand the action of L on u−, we argue as follows.
L is always locally isomorphic to the product of the commutator subgroup of

L, which is a semisimple group, and the center of L, which is a torus. In the cases
we have to consider, P is a maximal parabolic subgroup, P = Pi. To get the
Dynkin diagram of the commutator subgroup of L, we remove the ith vertex from
the Dynkin diagram of G. This also gives us an embedding of the root system of
L into the root system of G, and the subsystem of positive (resp. simple) roots of
L is embedded into the system of positive (resp. simple) roots of G.

The L-action on u− is always faithful, the central torus of L acts nontrivially on
u−. The irreducible L-subrepresentations of u− are in bijection with negative roots
β such that the decomposition of β into a sum of simple roots contains αi, and
for every j 6= i, β − αj is not a root from the root system of G. (More precisely,
gβ is a lowest L-weight subspace of such an L-representation.) In particular, if
α =

∑
njαj is the highest root, and ni = 1, then β must be the lowest root, and

u− is an irreducible L-representation. In this case, it is also easy to find the highest
L-weight subspace, namely, it equals g−αi . The numerical label of the highest L-
weight of this representation at a simple root αj (understood as a simple root of
L) equals −2(αi, αj)/(αj , αj).

6.1. Group G of type Al, P = P1 or P = Pl

The subgroups P1 and Pl can be interchanged by a diagram automorphism, so
without loss of generality we may suppose that P = P1. Using the generic ar-
gument stated above, we conclude that [L,L] is a group of type Al, u− is an
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irreducible L-representation and its lowest weight is minus the last fundamental
weight of L, so u− is a tautological [L,L]-module. This case was considered in
Section 5.1.1. Since the central torus of L is one-dimensional and acts nontrivially
on u−, the commutative unipotent subalgebras a ⊂ p− such that a ∩ l = 0 and
a ⊕ l = p−, considered up to L-conjugation, are parametrized by isomorphism
classes of l-dimensional associative commutative algebras with nilpotent multipli-
cation operators.

To prove Theorem 7 in this case, we have to check that if two commutative
unipotent subalgebras a1 ⊆ u−0 and a2 ⊆ u−0 such that ai∩ l = 0 and ai⊕ l = p− are
P -conjugate, then they are L-conjugate. Without loss of generality, G = SLl+1.
Take p ∈ P such that (Ad p)a1 = a2. Since P = LnU , we can write p = gu, where
g ∈ L, u ∈ U . Then (Adu)a1 = (Ad g−1)a2. We write elements of G = SLl+1 as
block matrices with the following block sizes:(

1× 1 1× l
l × 1 l × l

)
.

Then L is the group of all matrices of the form(
a 0
0 b

)
,

where a ∈ C \ {0}, b ∈ GLl and a det b = 1. All elements of a1 are matrices of the
form (

0 0
a b

)
,

and a can be an arbitrary column vector of length l since a1 + l = p−. All elements
of a2 are also of this form. u U is the group of all matrices of the form(

1 a
0 idl

)
,

where a is an arbitrary row vector of length l. Suppose that

g =

(
x 0
0 y

)
, u =

(
1 v
0 1

)
.

Assume that u 6= idl+1, then v 6= 0. If

a1 =

(
0 0
a′1 a′′1

)
∈ a1,

then

ua1u
−1 =

(
1 v
0 1

)(
0 0
a′1 a′′1

)(
1 −v
0 1

)
=

(
va′1 −va′1v + va′′1
a′1 −a′1v + a′′1

)
.
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Since v 6= 0, there exists a1 ∈ a1 such that the topmost leftmost entry of this
matrix is nonzero. On the other hand, if

a2 =

(
0 0
a′2 a′′2

)
∈ a2,

then

g−1a2g =

(
x 0
0 y

)(
0 0
a′2 a′′2

)(
x−1 0

0 y−1

)
=

(
0 0

ya′2x
−1 ya′′2y

−1

)
,

and the topmost leftmost entry of this matrix is always 0. Therefore, if u 6= idl+1,
then (Adu)a1 and (Ad g−1)a2 cannot coincide. So, u = idl+1, p = g ∈ L, and a1

and a2 are L-conjugate.

6.2. Group G of type Al, P = Pi, 1 < i < l

The commutator subgroup ofG is locally isomorphic to SLi×SLl+1−i, and u− is an
irreducible L-representation isomorphic to VSLi($i−1)⊗ VSLl+i−1

($1). It follows
from Proposition 4 that there are no nontrivial l-compatible multiplications in this
case.

6.3. Group G is not of type Al

The proof for the remaining cases (G of type Bl, Cl, Dl, E6, or E7) follows the
same pattern. We compute the commutator subgroup of L, and it turns out
to be a simple group. We also note that u− is an irreducible L-representation,
and compute its highest [L,L]-weight. Then we see from Theorem 6 that in this
case there are no nontrivial l-compatible multiplications. These calculations are
summarized in the following table:

Type of G P Type of [L,L] Highest [L,L]-weight of u−

Bl (l ≥ 3) P1 Bl−1 $1

Cl (l ≥ 2) Pl Al−1 2$l−1

D4 P1 A3 $2

Dl (l ≥ 5) P1 Dl−1 $1

Dl (l ≥ 5) Pl−1, Pl Al−1 $l−2

E6 P1, P6 D5 $5

E7 P7 E6 $6

This finishes the proof of Theorem 7.
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