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Abstract

We sketch the proof of a connection between the canonical (0-)dimension of semisimple split
simply connected groups and cohomology of their full flag varieties. Using this connection, we get a
new estimate of the canonical (0-)dimension of simply connected split exceptional groups of type E
understood as a group.

1 Introduction

To define the canonical (0-)dimension of an algebraic group understood as a group, we first need to
define the canonical (0-)dimension of a scheme understood as a scheme (which is a different definition).
Roughly speaking, the canonical (0-)dimension of a scheme is a number indicating how hard it is to get
a rational point in the scheme. The canonical (0-)dimension of an algebraic group shows how hard it is
to get rational points in torsors related to the group.

To be more precise, let us fix some conventions and give some definitions. We speak of algebraic
schemes and use stacks project as the source of basic definitions. All schemes in the present text are of
finite type over a field and separated. The base field is arbitrary.

Speaking of canonical dimension of schemes, there are two closely related notions in the literature:
the canonical 0-dimension of a scheme defined in [14] and the canonical dimension of a scheme defined
in [9]. These two definitions are not known to be always equivalent, but they are equivalent for two
particular classes of schemes: for smooth complete schemes and for torsors of split reductive groups (see
[13, Theorem 1.16, Remark 1.17, and Example 1.18]). The definition from [14] looks more motivated, so
we are going to use it.

Definition 1.1 ([14, Section 4a, first paragraph of Section 4b, and the last paragraph of Section 2a]).
Given a scheme X over a field K, the canonical 0-dimension of X understood as a scheme (notation:
cd0(X)) is:

cd0(X) = max
L=a field containing K
XL has a rational point

min
L0=a subfield of L, K⊆L0
XL0

still has a rational point

trdegK L0.

A bit less formally, canonical dimension can be explained as follows. Suppose we have expanded the
base field K to L, and got a rational point in XL. How large can L be, compared to K? In general, it
can be very large, this is unbounded. A related question with a finite answer is: how many algebraically
independent generators do we have to keep, at worst (for the worst L), to still have a rational point after
scalar extension (not necessarily the same rational point that we found after expanding scalars to L)?
This number of generators is the canonical dimension of X. For more properties of canonical dimension,
see [14] in the case of general X and [8] in the case of smooth projective X.

We have underlined above that we want to get a rational point over a field between K and L, but
not necessarily the same rational point. If we demanded to get the same rational point, we would get
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the definition of the essential 0-dimension of a scheme, which is known to coincide with the (standard
in algebraic geometry) dimension, see [13, Proposition 1.2]. This can be viewed as a motivation for the
word “dimension”. (But essential dimension is not only defined for schemes, and in broader generality
it becomes a much more nontrivial notion.)

Another motivation for canonical (0-)dimension comes from incompressible varieties, but this moti-
vation is only valid for the canonical (0-)dimension of smooth complete schemes. The definition that
we are going to give next, the canonical 0-dimension of an algebraic group, and that will be used in the
main theorem of this text, does not involve the canonical (0-)dimension of smooth complete schemes, so
this motivation will be useless for us. One can find details for this motivation in [8, Section 2].

The second object we need to define before we can define the canonical 0-dimension of a group is
a torsor of a group. All algebraic groups in this text are affine. All reductive, semisimple, and simple
groups in this text are smooth. Torsors of algebraic groups (over a point) are, informally speaking,
homogeneous spaces that are “as large as the group itself”. This notion is mostly interesting over non
algebraically closed fields.

Definition 1.2 ([14, Section 3a]). Given an algebraic group G, a G-torsor over a point (or simply a
G-torsor) is a scheme E with an action ϕ : G× E → E such that (ϕ,pr2) : G× E → E × E, where pr2

is the projection to the second factor, is an isomorphism.

It is known that all torsors of affine algebraic groups over a point are affine.
Finally, the canonical 0-dimension of an algebraic group understood as a group measures how hard

it is to get rational points in torsors, informally speaking, related to the group. Precisely:

Definition 1.3 ([14, Section 4g]). given an algebraic group G over a field F , the canonical 0-dimension
of G understood as a group (notation: cd0(G)) is

cd0(G) = max
K=a field containing F

max
E=a GK -torsor

cd0(E).

The definition of canonical dimension of an algebraic group understood as a group in [9, Introduction]
repeats this definition almost exactly, with the only difference being that instead of cd0(E) it uses the
definition of canonical dimension of E understood as a scheme from the paper [9] itself. But as we
already mentioned above, it is known that these two notions are known to be equivalent for torsors of
split reductive groups. So, Definition 1.3 is also equivalent to the definition of canonical dimension of
a group from [9, Introduction] for split reductive groups. All groups whose canonical dimension we are
going to estimate in this text are split reductive (and even simply connected semisimple), so these results
also estimate the canonical dimension in the sense of [9, Introduction].

To formulate the main goal of this text precisely, we need to introduce some more notation and
terminology. Given a split semisimple algebraic group G and a Borel subgroup B, the corresponding
Weyl group W , and the element w0 ∈ W of maximal length, for each w ∈ W we denote the Schubert
variety Bw0w−1B/B ⊆ G/B by Zw. This Zw is a Schubert divisor if and only if w is a simple reflection,
and we denote all Schubert divisors by D1, . . . , Dr.

It is known that the classes [Zw] ∈ CH(G/B) for all w ∈ W form a free set of generators of
CH(G/B) as of an abelian group. We say that a product of classes of Schubert divisors [D1]n1 . . . [Dr]

nr

is multiplicity-free if there exists w ∈ W such that the coefficient at [Zw] in the decomposition of
[D1]n1 . . . [Dr]

nr into a linear combination of Schubert classes equals 1.
Now we can formulate the goal of this text precisely. Our goal is to sketch the proof of the following

theorem.

Theorem 1.4. Let G be a split semisimple simply connected algebraic group over an arbitrary field,
let B be a Borel subgroup, let r be the rank of G, and let D1, . . . , Dr ⊂ G/B be the Schubert divisors
corresponding to the r simple roots of G. If [D1]n1 . . . [Dr]

nr is a multiplicity-free product of Schubert
divisors, then cd0(G) ≤ dim(G/B)− n1 − . . .− nr.

As a corollary of this theorem and [5, Theorem 11.5], we will immediately get the following:

Corollary 1.5. Let G be a split semisimple simply connected algebraic group of type Er. Then cd0(G) ≤
17, 37, or 86 for r = 6, 7, or 8, respectively.
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The the most difficult part of estimating the canonical dimension of simply connected split groups of
type Er (and in obtaining Corollary 1.5) was actually to understand which products of Schubert divisors
are multiplicity-free (and this was understood in [5] by the author). The description of multiplicity-free
products of Schubert divisors in [5] is explicit enough to find the maximal degree of such a multiplicity-
free product precisely. However, for the canonical dimension we still get only an estimate from above,
because Theorem 1.4 can only produce upper estimates anyway.

The part of the argument establishing relation between Schubert calculus and canonical dimension
(in other words, the proof of Theorem 1.4 itself) was known to the experts (or at least they believed
that the argument is doable this way). However, we were unable to find an exposition suitable for more
general mathematical audience. The present paper contains such an exposition. In this text, we are going
to follow the ideas of several proofs from [10], where canonical dimension was related to cohomology of
flag varieties of orthogonal groups (more precisely, orthogonal Grassmannians, not full flag varieties).

Speaking of the canonical dimension of simply connected split groups of other types, in types Ar and
Cr the canonical dimension is known to be zero. For types Br and Dr, the canonical dimension was
estimated (and computed exactly if r is a power of 2) by N. Karpenko in [10]. In type Dr, even though
the maximal degree of a multiplicity-free product of Schubert divisors is also found precisely in [5], the
resulting estimate of the canonical dimension from Theorem 1.4 turns out to be the same as Karpenko’s
estimate ≤ (r − 1)(r − 2)/2. For type G2, the canonical dimension (of a split simply connected group)
is known and equals 3, see [1, Example 10.7]. For type F4, no nontrivial upper bounds on the canonical
dimension are known.
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2 Preparation 1: Recall of basic Galois descent theory

We always denote by idX : X → X, where X is a scheme, the identity map.
To start proving Theorem 1.4, we first need to define the quotient of a torsor modulo a Borel subgroup.

The definition we are going to use is not very intuitive, but it is used in papers on canonical dimension
(for example, in [9]).

Definition 2.1. Let G be a semisimple split simply connected algebraic group over a field K, let B
be a Borel subgroup, and let E be a G-torsor. The quotient of the torsor modulo the Borel subgroup
(notation: E/B) is the categorical quotient (see [16, Definition 0.5]; “categorical” is in the category of
all separated schemes of finite type over K) of E ×G/B modulo the diagonal action of G.

In fact, it can be proved that such a quotient is also a categorical quotient of E modulo B, but we
will not use this. The existence of such a categorical quotient (E × G/B)/G is known, is stated in [6,
Proposition 12.2], and can be proved using Galois descent theory. We will need an explicit construction
for E/B, and we will recall it below. It is known that such a quotient E/B is smooth, absolutely
irreducible, and projective.
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Given this definition, we can say that the first and the most technically difficult step in proving
Theorem 1.4 is to prove the following proposition.

Proposition 2.2. Let G be a semisimple split simply connected algebraic group over a field K, let B
be a Borel subgroup, and let E be a G-torsor. Let K1 be an extension of K. Then the map of Picard
groups induced by field extension Pic(E/B)→ Pic((E/B)K1

) is an isomorphism.

The proof of this proposition makes a lot of use of Galois descent theory. We will need two versions
of this theory: for vector spaces and for schemes.

The version for vector spaces is quite simple. Suppose we have a finite Galois extension of fields
K ⊆ L with Galois group Γ.

Definition 2.3. Let V and W be two L-vector spaces, and let σ ∈ Γ. A map (of sets) f : V → W is
called σ-semilinear if f(a1v1 + a2v2) = σ(a1)f(v1) + σ(a2)f(v2) for all a1, a2 ∈ L and v1, v2 ∈ V .

Definition 2.4. Let V be an L-vector space. A semirepresentation of Γ on V is an action ψ : Γ×V → V
on V understood as a set such that for each σ ∈ Γ, the map ψ|{σ}×V : V → V is σ-semilinear.

Example 2.5. Let U be a K-vector space. Then we can define a Γ-semirepresentation on V = L⊗K U
by the formula σ(a⊗ u) = σ(a)⊗ u for all a ∈ L and u ∈ U : the formula defines a K-bilinear map, so it
can be extended to the whole L⊗K U .

This semirepresentation will be called the standard representation of Γ on L⊗K U .

Given a semirepresentation of Γ on an L-vector space V , we can define the dual semirepresentation of
Γ on V ∗ by the formula (σf)(v) = σ(f(σ−1(v))) for all σ ∈ Γ, f ∈ V ∗, and v ∈ V . A direct computation
shows that this action indeed produces elements of V ∗ out of elements of V ∗, and one more direct
computation shows that this is a semirepresentation. We can further induce a semirepresentation of Γ
on the symmetric algebra S•(V ∗) by saying that σ(fg) = (σf)(σg).

We will need the following well-known fact about semirepresentations, which is sometimes called
Hilbert’s Theorem 90.

Theorem 2.6. Suppose we have a representation of Γ on an L-vector space V . Then V Γ is a K-vector
space, and the (obvious) map L⊗K V Γ → V , a⊗ v 7→ av, is an isomorphism.

Now let us recall the basic notions and facts of Galois descent theory for schemes. We will need three
categories. The first category, SchK is the category of (separated and of finite type, as everywhere in
the text) schemes over a field K.

To define the second category, suppose we have two fields, K ⊆ L. First, we need to recall the
definition of the functor of restriction of scalars from SchL to SchK (notation: −|K). If X is an object
of SchL, we say that X with scalars restricted from L to K is the scheme that has the same topological
space as X, the same ring of regular functions on each open subset as an abstract ring, but for the algebra
structure, we view this ring as a K-algebra rather than an L-algebra (the multiplication by elements of
K is given by the embedding K ⊆ L). We denote this scheme by X|K . And if f ∈ MorSchL(X,Y ), then
one can check directly that the same map of topological spaces as in f , together with the same map of
abstract rings for each open subset of Y (= each open subset of Y |K) as in f , satisfies the definition of
a morphism of K-schemes from X|K to Y |K .

Now we can say that the second category, which we will call the category of K,L-schemes (notation:
SchK,L), has schemes over L as objects, and the set MorSchK,L(X,Y ), where X and Y are L-schemes,
is the set of morphisms of K-schemes from X|K to Y |K .

The third category will be introduced a bit later.

Example 2.7. Let K ⊆ L be a finite Galois extension of fields, and let σ ∈ Gal(L/K). Let X = SpecL.
Then K[X|K ] = L, and σ−1 : L → L is an automorphism of this K-algebra. It defines the dual
automorphism of the K-scheme X|K , which we denote by σ∗ ∈ MorSchK,L(SpecL,SpecL).

We keep the notation σ∗ until the end of the text.
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Definition 2.8. Let K ⊆ L be a finite Galois extension of fields with Galois group Γ, and let σ ∈
Γ. A morphism f : X → Y in SchK,L is called σ-semilinear if the following diagram (in SchK,L) is
commutative:

X
f //

��

Y

��
SpecL

σ∗ // SpecL

The vertical arrows are the restrictions of scalars of the structure morphisms.

Clearly, under the conditions of this definition, if f (resp. g) is a σ (resp. τ)-semilinear morphism,
then g ◦ f is a τσ-semilinear morphism. It is also clear that 1-semilinear morphisms are exactly the
restrictions of scalars of the morphisms in SchL.

Definition 2.9. Let K ⊆ L be a finite Galois extension of fields with Galois group Γ. We will say
that we have a Galois-semiaction of Γ on an L-scheme X (or that Γ Galois-semiacts on X) if we have
an action ψ : Γ ×X|K → X|K (here Γ is understood as an algebraic group over K) such that for each
σ ∈ Γ, the automorphism ψσ = ψ|{σ}×X|K of X|K , understood as an automorphism of X in SchK,L, is
σ-semilinear.

We say that a finite affine open covering of X is Γ-stable if Γ preserves (normalizes) each of these
open sets.

Example 2.10. Let V be a L-vector space equipped with a semirepresentation of Γ. Then, informally
speaking one can “extend this semirepresentation to a semiaction of Γ on V understood as a scheme”.

More formally, consider the dual semirepresentation of Γ on V ∗ and the induced semirepresentation
on S•(V ∗). Then for each σ ∈ Γ, the action of σ−1 on S•(V ∗) is a σ−1-semilinear map of vector spaces
S•(V ∗) → S•(V ∗), and a direct check shows that the dual morphism of schemes Spec(S•(V ∗))|K →
Spec(S•(V ∗))|K is a σ-semilinear morphism in SchK,L. Another direct check shows that these semilinear
morphisms together (for all σ ∈ Γ) form a Galois-semiaction on Spec(S•(V ∗)) (which is a formal way of
“viewing V as a scheme”) and that on rational points, this Galois-semiaction coincides with the original
semirepresentation of Γ on V understood as a vector space.

We will say that this Galois-semiaction is induced by the original semirepresentation of Γ on V .

Definition 2.11. Let V be a L-vector space equipped with a semirepresentation of Γ. Let X be a
subscheme of V preserved (normalized) by the induced Galois-semiaction on V understood as a scheme
(denote this Galois-semiaction by ψ : Γ × V |K → V |K). Then we also call the restriction of ψ onto X
(formally, ψ|Γ×X|K ) the induced Galois-semiaction on X.

Similarly, if X is defined by a homogeneous ideal in S•(V ∗), then this induced Galois-semiaction can
be extended in the obvious way to the projectivization P(X). The resulting Galois-semiaction will also
be called the Galois-semiaction on P(X) induced by the semirepresentation of Γ on V .

Now we are ready to define the third category we need to formulate basic facts of Galois descent
theory. Given a finite Galois extension of fields K ⊆ L with Galois group Γ, we define the category of
stable L-schemes with semiaction of Γ (notation: StSchL,Γ). Its objects are pairs (X,ψ), where X is
an L-scheme, and ψ : Γ×X|K → X|K is a Galois-semiaction such that X admits a Γ-stable finite affine
open covering. The morphisms are morphisms in SchL that become Γ-equivariant after the restriction
of scalars to K.

Now recall that if a finite group acts on a scheme (now this is going to be a scheme over the smaller
field, K), and there is a stable finite affine open covering for this action, then the categorical quotient
always exists, and can be constructed, for example, as the orbit space of the action.

So, for a finite Galois extension K ⊆ L with group Γ, we can define the Galois descent functor
DecK : StSchL,Γ → SchK as follows: an object (X,ψ) is mapped to the categorical quotient X/Γ, and
the morphisms are mapped using the universal property of the categorical quotient.

We can also define the Galois upgrade functor ·L,Γ : SchK → StSchL,Γ. On the objects, it maps a
K-scheme Y to (YL, ϕ), where the semiaction ϕ is defined on the affine charts as follows: if U is an open
affine chart of Y , σ ∈ Γ, then ϕ(Γ, (UL)|K) = (UL)|K (recall that the restriction of scalars does not change
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the topological space). And if f ⊗ λ ∈ L[UL] = K[U ] ⊗ L, then (ϕ|{σ}×(UL)|K )∗(f ⊗ λ) = f ⊗ σ−1(λ).
On the morphisms, the Galois upgrade functor is just extension of scalars.

Remark 2.12. Let U be a K-vector space. Then UL,Γ is canonically isomorphic to (L⊗K U,ψ), where
ψ is the Galois-semiaction on L⊗K U understood as a scheme induced (Example 2.10) by the standard
semirepresentation (Example 2.5) of Γ on L⊗K U .

Similarly, if X ⊆ U (resp. X ⊆ P(U)) is a subscheme, then XL can be canonically embedded into
L⊗KU (resp. P(L⊗KU)), and the semiaction on XL,Γ is also induced by the standard semirepresentation
on L⊗K U .

Using the Galois descent and upgrade functors, let us state the main theorem of Galois descent theory

Theorem 2.13. Let K ⊆ L be a Galois extension with Galois group Γ. The Galois descent and upgrade
functors are mutually quasiinverse equivalences of categories SchK ↔ StSchL,Γ.

Proof. Well-known. For a proof one can see, for example, [18, §V.4.20, Proposition 12 and its proof],
although the terminology there is a bit different. Instead of actions of Γ by semilinear automorphisms,
the terminology there is based on families of varieties (where each variety is obtained by “twisting” by
the corresponding element of Γ) and families of morphisms (over L, in the standard sense) between these
varieties. The functoriality is not proved there, but it easily follows from the explicit construction of
DecK using orbit spaces.

So, using this theorem, instead of studying schemes over K (they may not have rational points or be
otherwise not so nice), we can now study varieties over a larger field L (which must be a finite Galois
extension of K, but otherwise we can choose it freely, for example so that our schemes over K become
nicer when we extend scalars to L). But, to work with torsors and to prove Proposition 2.2, we will need
a few more facts from general Galois descent theory.

First, let us immediately prove a corollary of Theorem 2.13 about semiactions induced by semirep-
resentations.

Corollary 2.14. Let V be an L-vector space with a semirepresentation of Γ, and let X ⊆ P(V ) be an
irreducible and reduced subscheme with the induced Galois-semiaction ψ. Let D ∈ CH1(X) be the class
of (any) hyperplane section of X.

Then, after the identification (X,ψ) ∼= (DecK(X,ψ))L,Γ, D belongs to the image of the scalar exten-
sion map CH1(DecK(X,ψ))→ CH1(X).

Proof. Consider the dual semirepresentation of Γ on V ∗. By Theorem 2.6, there exists a nonzero function
f ∈ (V ∗)Γ. Then the vanishing locus of f in X is a Γ-invariant hyperplane section. Denote this
hyperplane section by Y .

It follows from the explicit construction of DecK using orbit spaces that the Galois descent of the
embedding of Y into X is still an embedding of a closed subscheme. By Theorem 2.13, this subscheme
becomes Y after the extension of scalars back to L.

Second, to work with actions of algebraic groups over K using Theorem 2.13, we need to understand
how direct products work in SchK,L and in StSchL,Γ. The direct products in SchL and in SchK,L are
different. However, the following lemma shows that direct products from SchL are useful in SchK,L if
we work with semilinear morphisms.

Lemma 2.15. Let K ⊆ L be a Galois extension of fields with Galois group Γ. Let X and Y be L-
schemes, let Z be their product in SchL, and let p1 ∈ MorSchL(Z,X) and p2 ∈ MorSchL(Z, Y ) be the
standard projections. Then for every L-scheme T , for every σ ∈ Γ, and for every two σ-semilinear
morphisms f : T → X and g : T → Y there exists a unique σ-semilinear morphism h : T → Z such that
p1|K ◦ h = f and p2|K ◦ h = g.

Proof. Easy to see. Details omitted.
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Suppose, for K, L, Γ, X, Y , Z, p1, and p2 as in the lemma, we have two σ-semilinear morphisms:
f ∈ MorSchK,L(A,X) and g ∈ MorSchK,L(B, Y ). Let C be the product of A and B in SchL, and let
q1 ∈ MorSchL(C,A) and q2 ∈ MorSchL(C,B) be the standard projections. In this case we will denote
by f × g ∈ MorSchK,L(C,Z) the unique σ-semilinear morphism such that p1|K ◦ (f × g) = f ◦ q1|K
and p2|K ◦ (f × g) = f ◦ q2|K . Informally speaking, this is a straightforward way to build a morphism
A×B → X × Y out of morphisms A→ X and B → Y .

After we have this lemma, it is easy to construct a Galois-semiaction on a product of two L-schemes X
and Y out of two semiactions on X and on Y . Precisely, if ψ1 : Γ×X|K → X|K and ψ2 : Γ×Y |K → Y |K
are two Galois-semiactions, then the new semiaction on Z = X × Y (the product in SchL), which we
will call the product of semiactions and denote ψ1 × ψ2, is defined as follows: (ψ1 × ψ2)|{σ}×Z|K =
(ψ1)|{σ}×X|K × (ψ2)|{σ}×Y |K . (In fact, (Z,ψ1 × ψ2) will then be the product of (X,ψ1) and (Y, ψ2) in
StSchL,Γ, but we will not need this.) Then a direct check shows that (Z,ψ1 × ψ2) is the product of
(X,ψ1) and (Y, ψ2) in StSchL,Γ.

Using this description of products, we can say, for example, the following.

Example 2.16. Let K, L, and Γ are as above, let G be an algebraic group over K, let X be a scheme
over K, and let ϕ : G×X → X be an action. Then, if we denote by ψ1 and ψ2 the Galois-semiactions
such that GL,Γ = (GL, ψ1) and XL,Γ = (XL, ψ2), then ϕL is Γ-equivariant for the actions ψ1 × ψ2 and
ψ2.

This finishes the part of theory of Galois descent that we need.

3 Preparation 2: Isomorphism of Picard groups under scalar
extension

Now let us apply Galois descent theory to torsors and prove Proposition 2.2. We will need a few more
preliminary steps.

First, if (E,ϕ) is a torsor of an algebraic group G, and if e is a rational point of E, then we denote
the map ϕ|G×{e} : G→ E by trive. Clearly, this is an isomorphism. We keep this notation until the end
of the text. Recall also that a torsor is called trivial if it has a rational point.

Then, we need a lemma.

Lemma 3.1. Let (E,ϕ) be a torsor of a smooth algebraic group G over a field K. Then there exists a
finite Galois extension L of K such that (EL, ϕL) is a trivial GL-torsor.

Idea of the proof. Clearly, E is smooth. Smooth schemes obtain a rational point after scalar extension
to a separable closure ([17, Prop. 3.2.20]).

So, instead of studying a torsor without rational points, we can make a finite Galois extension of
scalars and study a torsor with a rational point and with a compatible Galois-semiaction.

From now on, we fix until the end of this section: a split semisimple simply connected algebraic group
G over a field K, a Borel subgroup B of G, a maximal torus T of G contained in B, a G-torsor (E,ϕ),
a finite Galois extension L of K such that EL has a rational point, and a rational point e ∈ EL. Denote
Γ = Gal(L/K). It is known that GL is also split semisimple, and that BL is a Borel subgroup.

Denote by inv : GL → GL the inversion map. Denote the action map GL × (G/B)L → (G/B)L by
ξ, and for each individual element (rational point) g of GL, denote by ξg the action of this element
g on (G/B)L (in other words, ξg = ξ|{g}×(G/B)L). Denote by ψ1, ψ1, ψ2, the semiactions such that

GL,Γ = (GL, ψ1), (G/B)L,Γ = ((G/B)L, ψ1), and EL,Γ = (EL, ψ2).
Recall that E/B is defined as a categorical quotient (E×G/B)/G. Now we need to recall an explicit

construction for G/B and for E/B.
For a strongly dominant weight λ of G, denote the corresponding representation of G by Vλ. If

vλ ∈ Vλ is a highest weight vector, then it is known that the stabilizer of ` = Span(vλ) is B, and that
G/B can be constructed as G` ⊆ P(Vλ) (this orbit is known to be closed).

As well as with G/B, we will also have a separate construction for E/B for each strongly dominant
weight λ of G. First, note that the above construction for G/B obviously commutes with the field
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extension, so (G/B)L can be constructed as GL Span(1 ⊗ vλ) ⊆ P(L ⊗K Vλ). So, the action ψ1 is
induced by the standard semirepresentation of Γ on L⊗K Vλ.

We are going to construct E/B as the Galois descent of (G/B)L equipped with a specific Galois-
semiaction (most likely different from ψ1). First, let us denote by p the following map from EL ×
(G/B)L → (G/B)L:

p = ξ ◦ ((inv ◦ triv−1
e )× id(G/B)L) (3.2)

In other words, we first isomorphically map EL to GL, then invert GL (during these maps, (G/B)L stays
untouched), and then we act by GL on (G/B)L.

Lemma 3.3. The variety (G/B)L together with the map p is a categorical quotient of EL × (G/B)L
modulo the diagonal action of GL.

Proof. The GL-equivariance of p is a direct computation. The universal property is an easy diagram
chase.

However, the map p is not equivariant for the semiactions ψ2 × ψ1 and ψ1. Let us introduce a new
semiaction ψ2 on (G/B)L. Namely, for each σ ∈ Γ, set

ψ2|{σ}×(G/B)L = ξ(triv−1
e (ψ2(σ,e)))−1 ◦ ψ1|{σ}×(G/B)L (3.4)

(The fact that this is a semiaction needs to be checked, but this is a computation using the Γ-equivariance
of the maps ϕL and and ξ and the discussion after Definition 2.8. In terms of Galois cohomology, which
we didn’t recall here, the formula for ψ2 can be formulated as “ψ2 is obtained from ψ1 by twisting by
the cocycle σ 7→ ξ(triv−1

e (ψ2(σ,e)))−1 from H1(Γ,Aut((G/B)L))”.)

Lemma 3.5. The map p is equivariant for the semiactions ψ2 × ψ1 and ψ2.
Moreover, let q : (EL × (G/B)L, ψ2 × ψ1) → (X,ψ3) be another GL-invariant and Γ-equivariant

morphism (where X is an arbitrary L-scheme with a Galois-semiaction ψ3). Then the unique map
r : (G/B)L → X from the universal property of the categorical quotient is actually Γ-equivariant for the
semiactions ψ2 and ψ3.

Proof. Direct computation. The first statement again uses the Γ-equivariance of the maps ϕL (for the
semiactions ψ1 × ψ2 and ψ2) and ξ (for the semiactions ψ1 × ψ1 and ψ1). The second statement uses
the uniqueness of the map in the universal property of a categorical quotient. Details omitted.

Proposition 3.6. The scheme DecK((G/B)L, ψ2) with the map DecK(p) is a categorical quotient of
E×(G/B) modulo the diagonal action of G. Therefore, it can be used as E/B, and (E/B)L then becomes
isomorphic to (G/B)L.

Proof. Follows from Lemmas 3.3 and 3.5. Also uses Theorem 2.13.

Remark 3.7. It follows from this construction that if E itself is trivial, then we can take L = K and
see that E/B is isomorphic to G/B.

Now, after we have recalled an explicit construction of E/B, let us prove the surjectivity in Propo-
sition 2.2 for K1 = L (the field we have fixed). We start with the following easy lemma.

Lemma 3.8. For each strongly dominant weight λ and for the corresponding embedding (G/B)L ↪→
P(L⊗K Vλ), the semiaction ψ2 is induced by a semirepresentation of Γ on L⊗K Vλ.

Proof. Denote the standard semirepresentation of Γ on L⊗K Vλ by ψ̃1. Denote the action of an element
(a rational point) g of G on L⊗K Vλ by Ξg.

For each σ ∈ Γ, denote

ψ̃2,σ = Ξ(triv−1
e (ψ2(σ,e)))−1 ◦ ψ̃1|{σ}×(L⊗KVλ) (3.9)

One more direct computation, this time using the Γ-equivariance of the representation map GL× (L⊗K
Vλ) → L ⊗K Vλ and of the action map ϕL, shows that ψ̃2,σ is a σ-semilinear map from L ⊗K Vλ to
itself for each σ ∈ Γ, and that all these maps together, for all σ ∈ Γ, form a semirepresentation of Γ
on L ⊗K Vλ. Then it is clear from the formulas 3.4 and 3.9 that this semirepresentation induces the
semiaction ψ2.
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Now, the last piece of theory we need to prove the surjectivity in Proposition 2.2 for K1 = L is the
following explicit description of the Picard group of a flag variety.

Theorem 3.10. For G, B, and T as above, denote the weight lattice of GL by Λ. For each strongly
dominant weight λ ∈ Λ, denote by Lλ the pullback of the anticanonical bundle under the embedding
GL/BL ↪→ P(L⊗K Vλ) described above. Then:

1. The notation Lλ and the map λ 7→ Lλ (which we have so far defined for strongly dominant weights
λ only) can be extended to a group homomorphism Λ→ Pic(GL/BL). Moreover, this group homo-
morphism is actually an isomorphism.

2. In terms of this notation, if λi is the ith fundamental weight, then the vanishing locus of (any)
global section of Lλ is (Di)L, where Di is the divisor described in the Introduction.

Proof. Well-known.

Proposition 3.11. Let E, B, and L be as above. Then the map of Picard groups induced by field
extension Pic(E/B)→ Pic((E/B)L) is surjective.

Proof. Follows from Corollary 2.14, Lemma 3.8, and Theorem 3.10.
More accurately, we also need the fact that for any smooth and absolutely connected scheme X, the

isomorphism Pic(X) → CH1(X) commutes with extension of scalars (this is well-known), and the fact
that the construction of G/B also commutes with extension of scalars (this follows directly from the
construction, as we have already mentioned).

Now we will need to recall a well-known result about Picard and Brauer groups. First, note that
for any Galois-semiaction on an irreducible scheme Y there is a straightforward way to extend this
semiaction to an action on the set of open subsets of Y , on the field of rational functions on Y , and
therefore on the Picard group of Y .

Now let us state the result about Picard and Brauer groups. For any two fields K ′ ⊆ L′, denote
BrL′(K

′) = ker(· ⊗K′ L′ : Br(K ′)→ Br(L′)).

Lemma 3.12. Let X be a complete smooth absolutely connected scheme over a field K ′, and let L′ be
a finite Galois extension of K ′. Let Γ′ = Gal(L′/K ′). Then:

1. The image of the map ·L′ : Pic(X)→ Pic(XL′) is contained in Pic(XL′)
Γ′ .

2. There is an exact sequence

0→ Pic(X)
·L′−−→ Pic(XL′)

Γ′ → BrL′(K
′)
·⊗K′(X)−−−−−−→ Br(K ′(X))

Proof. Well-known. Follows from exact sequences

1→ L′
∗ → L′(XL′)

∗ → L′(XL′)
∗/L′

∗ → 1

and
1→ L′(XL′)

∗/L′
∗ → Div(XL′)→ Pic(XL′)→ 1.

Now we are ready to prove Proposition 2.2 in the whole generality.

Lemma 3.13. Proposition 2.2 is true if E is a trivial torsor.

Proof. Follows from Remark 3.7 and the explicit description of Pic(G/B) (like Theorem 3.10, but over
an arbitrary field instead of L).

Lemma 3.14. Proposition 2.2 is true when K1 equals L (the field we fixed earlier in this section).
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Proof. The injectivity follows1 from Lemma 3.12 (2) for K ′ = K, L′ = L. The surjectivity is Proposition
3.11.

Idea of proof of Proposition 2.2 in the general case. We omit the details regarding commutativity of the
diagrams of Picard groups for consecutive field extensions. First, prove the proposition for K1 containing
L using Lemma 3.13 for the torsor EL and for the extension K1/L.

Then, for a completely arbitrary K1 containing K, we first find a finite Galois extension L1 of K1

for the GK1 -torsor EK1 in the same way as we found and fixed L for K, G, and E. Since L is a finite
Galois extension of K, we can construct a field L2 admitting embeddings of L and L1. By the previous
step for EK1

instead of E, Pic((E/B)K1
) ∼= Pic((E/B)L2

). By the previous step for the original E,
Pic(E/B) ∼= Pic((E/B)L2

). Therefore, Pic(E/B)→ Pic((E/B)K1
) is an isomorphism.

4 Estimate of canonical dimension

The next steps of the proof of Theorem 1.4 follows the idea of proof of [10, Proposition 5.1].
First, we will need a result from [9]. To formulate it, let us start with recalling a definition from

[9]. Let X be a scheme over an arbitrary field F . The determination function associated with X (see [9,
Section 2]) is the following functor from the category of all fields containing F to the category consisting
of ∅ and a fixed one-element set {0}: A field F1 is mapped to {0} if and only if XF1 has a rational point,
otherwise F1 7→ ∅.

Also, recall that an algebraic group H over K is called special if all torsors of all groups HK1
, where

K1 is a field extension of K, are trivial. It is known (see, for example, [11, Section 3 and Theorem 2.1])
that B is special.

Now, with these two definitions, we can say that the following lemma becomes a particular case of
[9, Lemma 6.5], namely, for the special group P there being equal to B:

Lemma 4.1. For any field extension K ′/K, EK′ has a rational point if and only if (E/B)K′ has a
rational point.

Then, we will need a well-known fact about the Chow ring of a smooth scheme.

Proposition 4.2. Let X be a smooth scheme over a field K, and let L be an extension of K. The map
of Chow rings CHL : CH(X) → CH(XL), [Y ] 7→ [YL] for each irreducible2 and reduced subscheme Y of
X is well-defined and is a morphism of rings.

The isomorphism Pic(X)→ CH1(X) commutes with extension of scalars.

Proof. Well-known.

We will also need the following theorem. It is stated in [10, Theorem 2.3] and follows from [7,
Corollary 12.2], the preceding commutative diagram, and the definition of distinguished varieties in
[7]. More precisely, this definition implies that in the particular case of the commutative diagram, the
distinguished varieties are subvarieties of the intersection of supports of the cycles. Recall that a cycle
(a formal linear combination of irreducible subvarieties) is called nonnegative if the coefficients in this
linear combination are nonnegative, and an element of the Chow ring is called nonnegative if it can be
represented by a nonnegative cycle.

Theorem 4.3. Let X be a smooth scheme over an arbitrary field K such that the tangent bundle
is generated by global sections. Let α and β be nonnegative elements of CH(X). If α (resp. β) is
represented by a nonnegative cycle with support on A ⊆ X (resp. B ⊆ X), then αβ can be represented
by a nonnegative cycle with support on A ∩B.

We need two more facts from [10]:

1The idea of using the exact sequence of Brauer and Picard groups to prove the isomorphism between Picard groups is
present in [10, Proof of Theorem 1.4].

2We will not need this, but the map defined this way actually maps the class of any subscheme Y of X to [YL] ∈ CH(XL).
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Lemma 4.4 ([10, Remark 2.4]). Let G be a split simple simply connected algebraic group over an
arbitrary field K, let B be a Borel subgroup of G, let E be a G-torsor. Then the tangent bundle of E/B
is generated by global sections.

Lemma 4.5 ([10, Corollary 2.2]). Let X be a smooth absolutely irreducible scheme over an arbitrary
field K, and let L be an extension of K. Let α ∈ CH1(X). If CHL(α) ∈ CH1(XL) is nonnegative, then
α ∈ CH1(X) is nonnegative.

The following proposition is like Proposition 5.1 in [10], but in a different situation. It is known
that if an algebraic group G over a field F is semisimple, split, and simply connected, and B is a Borel
subgroup, then for every extension K of F , GK is also semisimple, split, and simply connected, and BK
is a Borel subgroup.

Proposition 4.6. Let G be a semisimple split simply connected algebraic group over an arbitrary field
F . Let B be a Borel subgroup, and let D1, . . . , Dr ⊂ G/B be the Schubert divisors. Suppose that the
product [D1]n1 . . . [Dr]

nr is multiplicity-free.
Let K be a field extension of F , and let E be a GK-torsor. Then there exists a closed, irreducible,

and reduced subscheme Y of E/BK of codimension n1 + . . .+nr such that YK(E/BK) has a rational point.

Proof. Denote X = E/BK and L = K(X). Write

[D1]n1 [D2]n2 . . . [Dr]
nr =

∑
Cw,n1,...,nr [Zw].

Fix an element v ∈W such that Cv,n1,...,nr = 1. Set v′ = vw0. Then it follows from [4, §3.3, Proposition
1a] that [D1]n1 . . . [Dr]

nr [Zv′ ] = [pt]. By Proposition 4.2, we have [(D1)L]n1 . . . [(Dr)L]nr [(Zv′)L] =
[pt] ∈ CH((G/B)L).

It is easy to see that XL has a rational point. By Lemma 4.1, EL also has a rational point. Then
by Remark 4.4, XL is isomorphic to (G/B)L. Fix one such isomorphism (it depends on the choice of a
rational point of EL) and denote it by f : XL → (G/B)L.

Denote the composition f∗ ◦CHL : CH(X)→ CH(XL)→ CH((G/B)L) by g. Denote g1 = g|CH1(X).

By Proposition 2.2 (and by Proposition 4.2), g1 is an isomorphism between CH1(X) and CH1((G/B)L)
For each i (1 ≤ i ≤ r), denote αi = g−1

1 ((D1)L) ∈ CH1(X). By Lemma 4.5, these are nonnegative classes
(although we don’t claim that each αi is representable by a single irreducible and reduced divisor).

By Theorem 4.3, the class αn1
1 . . . αnrr is nonnegative. Choose irreducible subvarieties Yi ⊆ X of

codimension n1+. . .+nr such that αn1
1 . . . αnrr can be written as their linear combination with nonnegative

coefficients. Denote these coefficients by ci ≥ 0:

αn1
1 . . . αnrr =

∑
ci[Yi].

It is clear from the definitions that for each i, g([Yi]) is a linear combination of the irreducible
components of f((Yi)L) with nonnegative coefficients. Since g is a morphism of rings (Proposition 4.2),
we have

g
(∑

ci[Yi]
)

[(Zv′)L] = [(D1)L]n1 . . . [(Dr)L]nr [(Zv′)L] = [pt].

On the other hand, g(
∑
ci[Yi])[(Zv′)L] =

∑
(cig([Yi])[(Zv′)L]), and by Theorem 4.3, each g([Yi])[(Zv′)L]

is (can be written as) a linear combination of (reduced) 0-dimensional subvarieties (i. e. closed points)
of f((Yi)L) ∩ (Zv′)L with nonnegative coefficients.

So, a rational point of (G/B)L is equivalent in the Chow ring to a linear combination of some
closed points with nonnegative coefficients. Then it follows from the well-definedness of the degree map
CHdim(G/B)((G/B)L) → Z (see [7, Definition 1.4]) that the linear combination actually consists of just
one point with coefficient 1, and this point is rational. Recall that this was a point in some intersection
f((Yi)L) ∩ (Zv′)L. In particular, we see that for one of the schemes Yi, (Yi)L has a rational point, and
we can set Y = Yi.

(We don’t need this, but for this index i we also get ci = 1, and for all other indices i we get
g([Yi])[(Zv′)L] = 0 or ci = 0.)
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(Last steps of the) Proof of Theorem 1.4. Let F be the base field of G. It is known that for any extension
K of F , GK is also semisimple, split, and simply connected, and BK is a Borel subgroup of GK .

We are going to use some results from [9]. As we already mentioned in the Introduction, the definitions
of canonical dimension in [9] are not literally the same as here, so for simplicity of notation, we write
cd without subscript for the canonical dimension of a scheme in the sense of [9, Section 2] and cd (also
without subscript) for the canonical dimension of a group in the sense of [9, Introduction].

As we also mentioned in Introduction, if E is a torsor of a split reductive group, then cd0(E) = cd(E)
by [13, Theorem 1.16 and Example 1.18]. Therefore it follows from the statements of Definition 1.3 and
the definition of cd in [9, Introduction], that cd(G) = cd0(G) since GK is (in particular) a split reductive
group for any extension K of F .

Until the end of this paragraph, let K be an extension of F , let E be a GK-torsor. Denote L =
K(E/BK). By Proposition 4.6, there exists a subscheme Y ⊆ E/BK of codimension n1 + . . .+ nr such
that YL has a rational point. By [9, Corollary 4.7], we have3 cd(E/BK) ≤ dim(G/B)− n1 − . . .− nr.

Now, [9, discussion after Lemma 6.7] says that cd(G) can be computed as the supremum of cd(E/BK)
for all extensions K of F and all GK-torsors E. Therefore, cd(G) ≤ dim(G/B)− n1 − . . .− nr and also
cd0(G) ≤ dim(G/B)− n1 − . . .− nr.
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