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Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain
simple groups of type A, and P C G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all
triples (G, P,n) such that (a) there exists an open G-orbit on the multiple flag variety G/P x G/P x ... x G/P (n

factors), (b) the number of G-orbits on the multiple flag variety is finite.

1 Introduction

Let G be a semisimple connected algebraic group over an algebraically closed field of characteristic zero, and
P C G be a parabolic subgroup. One easily checks that the G-orbits on G/P x G/P are in bijection with P-
orbits on G/P. The Bruhat decomposition of G implies that the number of P-orbits on G/P is finite and that
these orbits are enumerated by a subset in the Weyl group W corresponding to G. In particular, there is an
open G-orbit on G/P x G/P. So we come to the following questions: for which G, P and n > 3 is there an open
G-orbit on the multiple flag variety (G/P)" := G/P x G/P x ... x G/P? For which G, P and n is the number
of orbits finite?

Notice that if G is locally isomorphic to G x ... x G*)| where G are simple, then there exist parabolic
subgroups P € G® such that G/P = GM/PW) x ... x G™ /P, Hence in the sequel we may assume that
G is simple. Moreover, let 7: G — Gbea simply connected cover. Then 7 induces a bijection between parabolic
subgroups P C G and P C G, namely P = 7 1(P), and an isomorphism G/P — G/P. Also, G/P may be
considered as G-variety since Ker 7 acts trivially on it. In this sense the isomorphism is G-equivariant. Therefore
we may consider only one simple group of each type.

The classification of multiple flag varieties with an open G-orbit for maximal subgroups P was given by

Popov in [7]. We need some notation to formulate his result. Fix a maximal torus in G and an associated simple
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root system {aq,...,q;} of the Lie algebra g = Lie G. We enumerate simple roots as in [3]. Let P; C G be the

maximal parabolic subgroup corresponding to the simple root «;.

Theorem 1.1. [7, Theorem 3] Let G be a simple algebraic group. The diagonal G-action on the multiple flag

variety (G/P;)" is generically transitive if and only if n < 2 or (G, n, ) is an entry in Table 1:

Table 1. Generically transitive actions for maximal parabolic subgroups

Type of G ‘ (n, 1)

(1+1)?
A " < {Fi=9

B, l>3 n=3,i=1,1

Ci,1>2 n=3,i=1,1

D,l>4 |n=3,i=11-1,1
Es n=3,4,i=1,6
E7 7’L=3,i=7

O

In [7], the following question was posed: for which non-maximal parabolic subgroups P C G is there an
open G-orbit in (G/P)™? We solve this problem for all simple groups except for those of type A;.
Denote the intersection P, N...N F; by P;, . ;. . It is easy to see that F;, ;. is a parabolic subgroup and

that every parabolic subgroup is conjugated to some F;, . ;..

Theorem 1.2. Let G be a simple algebraic group which is not locally isomorphic to SL;y;, P C G be a non-
maximal parabolic subgroup and n > 3. Then the diagonal G-action on the multiple flag variety (G/P;)™ is

generically transitive if and only if n = 3 and (G, P) is one of the pairs in Table 2:

Table 2. Generically transitive actions for non-maximal parabolic subgroups

Type of G ‘ P
Dl,l > 5 is odd P17l_1,P17l
Dy, l>4iseven | P y_1, P, Py

O

Now let us consider actions with a finite number of orbits. Recall that a G-variety X is called spherical if a
Borel subgroup B C G acts on X with an open orbit. It is well-known that the number of B-orbits on a spherical
variety is finite, see [1, 9]. Equivalently, the number of G-orbits on G/B x X is finite if X is spherical. Therefore,
if P C G is a parabolic subgroup and X is a spherical G-variety, then the number of G-orbits on G/P x X is
finite. The classification of all pairs of parabolic subgroups (P, Q) such that G/P x G/Q is spherical is given
n [4, 8]. According to this classification, if (G, P;) is an entry in Table 1, then G/P; x G/P; is spherical and
hence the number of G-orbits on G/P; x G/P; x G/P; is finite. In the last section we prove that the number
of G-obits on (G/P)™ is infinite if n > 4. We also check directly that if (G, P) is an entry in Table 2, then the

number of G-orbits on G/P x G/P x G/P is infinite. Thus we come to the following result.
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Theorem 1.3. Let G be a simple algebraic group, P C G be a parabolic subgroup and n > 3. The following

properties are equivalent.

1. The number of G-orbits on (G/P)™ is finite.
2. n =3, P is maximal, and there is an open G-orbit on G/P x G/P x G/P.
3. n =3, and G/P x G/P is spherical.

O

Corollary 1.4. Let n > 3. The number of G-orbits on (G/P)" is finite if and only if n = 3 and (G, P) is one

of the pairs listed in Table 3:

Table 3. Actions with finite numbers of orbits

Type of G ‘ P
A any maximal
Bl >2 Py, P
C,l>3 Py, Py
Dy,l>4 | P,P_1, P
Es Py, P
E; Py
O
Let us mention a more general result for classical groups. Let Q(1),. .., Q) be parabolic subgroups in G.

We call the variety G/Q1) X ... X G/Qn) a generalized multiple flag variety. The classification of all generalized

multiple flag varieties with a finite number of G-orbits is given in [5] for G = SL;y; and in [6] for G = Spy;.
Proofs of Theorems 2 and 3 use methods developed in [7]. The results concerning existence of an open orbit

in a linear representation space in Section 3 may be of independent interest. In several cases for G = SOq; the

existence of an open orbit on a multiple flag variety is checked directly.

2 Preliminaries

Let G be a connected simple algebraic group over an algebraically closed field K of characteristic zero and
g = Lie G. Fix a Borel subgroup B C G and a maximal torus 7' C B. These data determine a root system ¢ of
g, a positive root subsystem ®* and a system of simple roots A C &+, A = {ay, ..., }. Choose a corresponding
Chevalley basis {z;, y;, hi} of g. We have [h, z;] = a(h)z;, [h,y;] = —a(h)y; for all h € t = Lie T and h; = [x;, yi]-

Let I = {e,,...,a;,} € A be a subset. The Lie algebra of the parabolic subgroup P; := P;, ;. is

.....

p=>be® (}9 Ja

acdr

where b = Lie B and ®; C &~ denotes the set of the negative roots such that their decomposition into the

sum of simple roots does not contain the roots «;, ¢ € I. For example, P = B and Py = G. It is known that
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[2, Theorem 30.1] if a parabolic group P contains B, then P = P; for some I C A. Therefore any parabolic
subgroup P C G is conjugate to some Pj. If P = Py for some I C A, we denote by P~ the parabolic subgroup

whose Lie algebra is

pT=to @ Ja-

a€E—P;UP—

Denote the weight lattice of T' by X(T'). Let X7 (T') be the subsemigroup of dominant weights with respect
to B. Assume first that G is simply connected. Then X% is generated by the fundamental weights mq,...,m.
Given a dominant weight A, denote the simple G-module with the highest weight A by V(A). If G is not simply
connected, we may consider a simply connected cover p: G- G, the dominant weight lattice X+ (p~1(7T")) and

the highest weight G-module V/()).

Let G be a simple group and P = P;, ;. be a parabolic subgroup. Notice that if there is an open G-
orbit on (G/P)", then there exists an open G-orbit on (G/P;)™ for all ¢ € {i1,...,is}. Indeed, since P C P,
one has the surjective G-equivariant map G/P — G/P;, gP — gP;. It induces the surjective G-equivariant map
p: (G/P)" — (G/P;)™, and the image of an open G-orbit on (G/P)™ under ¢ is an open G-orbit on (G/F;)™.

Similarly, if G acts on (G/P)™ with an open orbit and m < n, then G acts on (G/P)™ with an open orbit.

Theorem 1 leaves us very few cases of non-maximal parabolic groups to consider. Namely, if n > 3 and G
is of type By, Cj or Dy, then G never acts on (G/P)™ with an open orbit. If n = 3 and G is of type B; or Cj, it
suffices to consider P = P, ;, and we show that there is no open orbit in this case. If n = 3 and G is of type Dy,
an open orbit may exist only if P = Pr where I C {a1, a;—1, a;}. So there are four cases to consider. We reduce
the case P;;_1 to the case P; ;. If G is of type Eg, the only parabolic group we should consider is P = P; g.
We show that there is no open orbit for n = 3. If G is of type E7, if there existed an open G-orbit on (G/P)"
for n > 3, then the only maximal parabolic subgroup containing P would be Py, but in this case P should be
maximal itself. If G is of type Eg, Fy or G2, an open orbit exists for no maximal parabolic subgroups for n > 3,

so there are no cases to consider.

Given a group G acting on an irreducible variety X with an open orbit, according to [7] we denote the
maximal n such that there is an open G-orbit on X™ by gtd(G : X). If G acts on X™ with an open orbit, we

say that the action G : X is generically n-transitive.

We make use of the following fact proved by Popov.

Proposition 2.1. [7, Corollary 1 (ii) of Proposition 2] Let G be a simple algebraic group, P be a parabolic
subgroup, P~ be an opposite parabolic subgroup, L = P N P~ be the corresponding Levi subgroup and u~ be
the Lie algebra of the unipotent radical of P~. If P is conjugate to P~, then gtd(G : G/P) =2+ gtd(L:u~). O
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We suppose that the group SO; acts in the [-dimensional space and preserves the bilinear form whose

matrix with respect to a standard basis is

We denote the I-dimensional projective space by P! and the Grassmannian of k-dimensional subspaces in

K! by Gr(k,1).

3 Existence of an Open Orbit

3.1 Groups of type B;

By Theorem 1.1, it is sufficient to consider the case P = P; ;. The Dynkin diagram B; has no automorphisms,
hence P is conjugate to P~. So we may apply Proposition 2.1, and it suffices to check that gtd(L : u~) =0, i.
e. L acts on u~ with no open orbit.

Let G = SO9;41. Then L =K* x GL;_; and the L-module u~™ can be decomposed into the direct sum
VioVod Va®dVyd Vs. Here V] is a GL;_1-module (Kl_l)* dual to the tautological one and its K*-weight is 1,
Vs is a trivial one-dimensional G'L;_,-module of weight 1, Vj is a tautological GL;_;-module K!~! of weight 0, V,
is a GL;_;-module K1 of weight 1, V5 is a GL;_1-module A2K!~! of weight 0. According to this decomposition,
we denote components of a vector u € u~ by wuqy, us, us3, Ug, Us.

Notice that there exists a GL;_1-invariant pairing between V7 and V3. Its K*-weight is 1. Also there exists

a GL;_i-invariant pairing between V7 and Vj, whose K*-weight is 2. Therefore the rational function

(U1,U3)2
(ur,uq)

is a non-constant invariant for L : u~, and the action of G on G/P is not generically 3-transitive.

3.2 Groups of type (;

This case is completely similar to the previous one, and again the only thing we should do is to prove that there
is no open L-orbit on u~, where L = PN P~ is a Levi subgroup of P = P;; and u~ is the Lie algebra of the
unipotent radical of P~.

Let G = Spg;. Then L = K* x GL;_; and the L-module u~ can be written as V; & Vo & V3 @ V. Here V] is
a GL;_1-module (Kl_l)* and its K*-weight is 1, V5 is a GL;_;-module K/~ of weight 1, V3 is a GL;_;-module
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S2K!I=1 of weight 0, V, is a trivial GL;_;-module of weight 2. According to this decomposition, we denote
components of a vector u € u~ by wuy,us, uz, ug.

We see that there exists a GL;_i-invariant pairing between V; and V5 with K*-weight is 2. Therefore we

have the rational invariant

(ul ) UQ)
Uy

for L : u~, and the action of G on G/P is not generically 3-transitive.

3.3 Groups of type D,

This time we should consider the following four cases of parabolic subgroups: P = Py ;—1, P11, Pi—1,, P1,1-1,-

One easily checks that P and P~ are conjugate except for the cases P = P;;, l odd, and P = P; ;_;, [ odd.
Let G = SOy;. There exists a diagram automorphism of G that interchanges «;_; and ;. It preserves the

maximal torus and the Borel subgroup and interchanges P; ;1 and P; ;. Therefore, the actions G : G/P; ;_1

and G : G/ Py are either generically 3-transitive or not generically 3-transitive simultaneously.

331 P=P_y,

In this case, P and P~ are conjugate, and we have to find gtd(L : u™).

The Levi subgroup L is isomorphic to K* x GL;_; and the L-module u™ is isomorphic to V; & Vo @ V3,
where Vi is a GL;_;-module A2K!~! and its K*-weight is 0, V5 is a GL;_;-module K'~! of weight 1, V5 is a
GL;_1-module K/~ 1 of weight —1. We denote components of a vector u € u™ by w1, us, us.

Let [ be odd. Then a generic element u; € V; gives rise to a non-degenerate skew-symmetric bilinear form
on the GL;_;-module (K'~!)*. Furthermore, one can consider the corresponding skew-symmetric form on the
tautological GL;_1-module. This form is obtained by matrix inversion and we denote it by ufl. The following

function is a rational L-invariant:

ul_l(uQ, us).

Thus the action of G on G/P is not generically 3-transitive.

Let I be even. We prove that there is an open L-orbit on u~.

Consider the GL;_1-module V' = Vi @ Vs, where Vs is a GL;_;-module K/~ and V; = A2K! 1.

Since | — 1 is odd, the rank of a generic element w € V; is [ — 2. Denote the set of all w € V; such
that tkw =1—2 by Z. Any element w € Z gives rise to a (degenerate) skew-symmetric form on V5, and

dim Kerw = 1. Consider the subspace (Kerw)- C V, where all the functions from the kernel vanish. Denote

Vo \ (Kerw)* by X,,. Clearly, Wi = Uyez(w x X,,) is an open GL;_;-invariant subset of V.
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Let us prove that GL;_; acts transitively on Wj. First, given an element u = (uy,us) € Wy, one can apply

an element of GL;_; such that the matrix of the bilinear form w; in the corresponding basis is

0 0 1

-1 0

The first coordinate of us in the new basis is non-zero since us € X,,,. Denote the i-th coordinate of ug by

(u2);. The following element of GL;_; preserves the bilinear form with matrix R:

1 0O ... O
—(u2)3/(u2)1
Ii—o
—(u2)i-1/(u2)1

When we apply it to us, all its coordinates will be zero except for the first one.

So any element of W; can be transformed by GL;_i-action to an element of the form w; = R, us =
((u2)1,0,...,0)T, where (uz); # 0. Clearly, all these elements belong to the same GL;_j-orbit. Call such an
element of V' canonical, i. e. call an element (u1,us) € V' canonical if uy = R, uz = ((u2)1,0,...,0)T, where
(uz)1 # 0. The stabilizer of (u1, (ug)) consists of direct sums of a non-zero 1 x 1 matrix and a symplectic
(I —2) x (I — 2) matrix. Such an element fixes uy as well if and only if the first 1 x 1 matrix is 1.

Now we are ready to consider the L-action on u~. Maintain the above notation. Since V5 and V5 are
isomorphic as GL;_;-modules, for each w € Z C V; we can similarly consider the open subset V3 \ (Kerw)>.
Denote it by Y,,. Define the subsets Wy = Uyez(w X Xy, X Yy,) and W = {u € W5 : uy is not a multiple of us}.
Let us prove that L acts on W transitively.

We may suppose that u; and us are canonical in the sense stated above. Applying a diagonal matrix from
(GLi-1)u,,(us), We may assume that (ug)i(uz); =1 since Vo and V3 are both tautological GL;_i-modules.
Since wuz is not a multiple of ug, the vector v = ((us)2, (u3)s,...,(us);—1) is not zero. Since Sp;_2 acts
transitively on K!=2 \ 0, there exists an element g € (GLj—1)uyuss § =91 D g2, 1 = 1, g2 € Sp;_2 such that
g2v = ((u3)1,0,...,0)T. In other words, we may suppose that u; and uy are canonical, the only non-zero
coordinates of uz are the first one and the second one, they are equal, and (u2)1(ug); = 1.

Now recall that L = GL;_; x K*, the K*-weights of V7, V5 and V3 are 0, 1 and —1, respectively. Therefore,
after applying a suitable element of K*, we have u; = S, uz = (1,0,...,0)” and uz = (1,1,0,...,0)”, and the

G-action on G/P is generically 3-transitive.
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332 P=P,

In this case, Proposition 2.1 applies if and only if [ is even.

Let I be even. It is sufficient to prove that there is an open L-orbit on u~.

Again L = K* x GL;_1, and the L-module V' can be decomposed into three summands, V =V; @& Vo & V3,
but this time V; is a GL;_;-module A’K!~! and its K*-weight is 0, V5 is a GL;_;-module K/~ of weight 1, V3
is a GL;_;-module (K'~1)* of weight 1. We denote components of an element u € u~™ by w1, us, us.

Recall the notation we have introduced for the GL;_;-module V’. Also this time denote Y, = V3 \ Ker w.
Define Wy = Uyez(w X Xy, X Y,,) and W = {u € Wy : (ua,u3) # 0}. Here (-,-) denotes the GL;_-invariant
pairing between V2 and V3. Its K*-weight is 2, but the condition (us,us) # 0 is not affected by K*-action,
so W is L-invariant. We are going to prove that L acts transitively on W.

Again we may suppose that u; = R and the only non-zero coordinate of uy is the first one. Notice that
(uz)1 # 0 since (ua, uz) # 0. This time V5 and V3 are dual GL;_1-modules, so by applying a suitable element of
(GLi-1)u, (us) the coordinates (uz); and (u3): can be made equal.

Consider the vector v = ((us)a2, (u3)3,. .., (u3);—1). It cannot be zero since uz ¢ Kerwu;. Since Sp;_o acts
transitively on (K!=2)* \ 0, there exists an element g € (GLi1—1)uyuss § = 91 D g2, o1 = 1, g2 € Sp;_o such that
g2v = ((u3)1,0,...,0)T. In other words, we may suppose that u; and us are canonical, the only non-zero
coordinates of ug are the first one and the second one, and (u2); = (u3)1 = (u3)2.

This time the K*-weights of V5 and V3 are both 1, so with the help of the K*-action we can satisfy the
equality (ug2); = (us)1 = (uz)2 = 1. Thus, L acts transitively on W, and the G-action on G/P is generically
3-transitive.

Let I be odd. Proposition 2.1 does not apply, and we have to find gtd(G : G/P) directly.

Consider the tautological SOy-module K2, and let e, ..., ey be its standard basis. Let X’ C Gr(l,2l) be
the set of all isotropic subspaces of dimension ! in K2'. One easily checks that X' is a disjoint union of two
SOq-orbits, and the group Oy interchanges them. If two subspaces belong to the same SOq;-orbit, then their
intersection is non-zero.

Denote the orbit SO (e1,...,¢;) C X’ by X. Then X is an irreducible subvariety in Gr(l, 21).

For each s € X let Y, C P2/~ be the set of all lines contained in s. Clearly, W = Usex (s x Y) is a closed
G-invariant subset in Gr(l,2l) x P2~!. One easily checks that G/P = W.

Let us prove that there exists an open G-orbit on W x W x W. We impose some conditions on the point
(s1,a1,82,a2,83,a3) € W x W x W and so define an open subset Y C W x W x W. Then we define a point
p € Gr(l,21) x P2=1 x Gr(l,21) x P2~1 x Gr(1,2l) x P?~1 and prove that (a) each point y € Y belongs to the
same G-orbit that p does, and (b) p belongs to Y. Condition (b) guarantees that Y is not empty.

Let Y CW x W x W be the set of all tuples (s1, a1, s2, ag, $3,as) such that:

1. s1NsyNsg=0.

2. 81+ 89 + s3 = K2,
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3. dims; Nsy =dimsy Ns3 =dims; Nsg = 1.

4. dim(a; + as + asz) = 3.

5. The intersection of the subspaces s = (s1 N s2) + (82 Ns3) + (s1 N s3) and a = a3 + a2 + a3 is zero.
6. a; +s; + s = K2 where i =1,2,3,j #14,k #1i,j < k.

7. The lines a; and a; are not orthogonal for all i # j.

Notice that if conditions (1)—(3) hold, the sum of subspaces s; N sa, s2 N s3 and s1 N s3 is direct.
Let us prove that G acts transitively on Y. Choose vectors fi, fa, f3 such that (f;) = a;, and vectors
fa, f5, f6 such that (fs) = s2Nss3, (f5) =81 NSz, (fs) =51 N s2. The restriction of the bilinear form to the

subspace S = (f1,..., fe) is defined by the following matrix:

0 by by by
b1 0 b3 b5
by b3 0 be
ba
bs
be

Conditions (6) and (7) imply that b; # 0 for all 4. Clearly, this matrix is non-degenerate.

The above choice of the vectors f; allows to multiply them by scalars. Up to scalar multiplication we may
assume that all b; = 1.

Notice that a cyclic permutation of f1, f2, f3 and the same permutation of fy4, f5, fs performed simultane-
ously define a linear operator on S that preserves the restriction of the bilinear form and whose determinant is
1.

Consider the following basis of S: g1 = f1, 92 = f5, 93 = f6, 94 = f3 — fa — [5, 95 = fo — fa, g6 = f1. One
checks directly that the matrix of the bilinear form with respect to this basis is Q. Obviously, there exists a
matrix M such that (f1,..., fs) = (91,.-.,96)M and whose elements do not depend on a; and s;.

The restriction of the bilinear form to S is non-degenerate, hence its restriction to S+ is also non-degenerate.
Since s; = s;-, dim(s; N S1) =1 — 3 for all i.

Thus, S+ is a subspace of even dimension equipped with a non-degenerate symmetric bilinear form. We
have three isotropic subspaces of maximal dimension in S+, and the intersection of any two of them is zero. Let

us prove the following lemma.

Lemma 3.1. Let (-,-) be a non-degenerate symmetric bilinear form in K?* and Uy, Uy, Us be isotropic subspaces
of dimension k with U; N U; = 0 for 4 # j. Then there exist matrices My, My, M3 € Matayxy, that do not depend
on U; and a basis e1, ..., ey, of K2* such that: (a) the matrix of the bilinear form is Q and (b) (ey, ..., ea)M;

is a basis of Uj;. O]
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Proof. Consider the non-degenerate linear map A: U; — Us whose graph is the subspace Us. This is possible
since U; NU; # 0 for ¢ # j. In terms of the map, Uz = {v+ Av | v € U1 }.

Consider the bilinear form (vy,v2)a = (v1, Ave) on U;. Since Us is isotropic, we have 0 = (v; + Avy,v9 +
Avy) = (v1,v2) + (Avy + Avg) + (v1, Avs) + (Avy, v2) = (v1, Avs) + (v, Avy) = (v1,v2)a + (ve,v1)a for all
v1,v2 € Uy, hence the form (-,-)4 is skew-symmetric. Assume that it is degenerate and v € U; belongs to its
kernel. Then (v1,v) = (v1, Av) =0 for all v; € Uy. Since the pairing between trivially intersecting isotropic
subspaces U; and Us of maximal dimension is non-degenerate, Av = 0. Since Ker A =0, v =0 and the form
(+,-)4 is non-degenerate.

Thus, we have a symplectic space U; with the skew-symmetric form (-, -) 4. Hence k is even. Choose a basis

(g1,--.,qi) of Uy such that the matrix of the skew-symmetric form is
1
0
1
~1
0
-1
The vectors qi, ..., qx are linearly independent, so let them be the first k elements of a basis of K?. Define

the rest of the basis as follows: qp4; = —Agq; if j =1,...,k/2 and qy1; = Ag; if j = k/2+1,..., k. The matrix

of the bilinear form (-,-) is Q. The subspaces U; have the following bases:

U ={(q1,-- - qn)
Uz = (qrt1,-- - G2k)

Us = (q1 — Qr+1,- - - 1y Qk/2 = Qlet+ke/2> e /2+1 + Qe ke /2+415 - - > Gk + q2k)-
This completes the proof of the lemma. u

Consider the following basis of K*: g1, g2, 93,41, - ., q2i—6, 94, g5, g6, Where ¢; are defined above in the proof
of the lemma. Notice that the matrix of the bilinear form in this basis is Q. Define the operator B: K% — K%
that maps this basis to the standard one. We know that the matrix of the bilinear form is @ in both bases, so
B € Oy.

Let us check that det B=1. Assume that det B= —1. Since s1 = (g91,92,93,q1,---,q—3), Bsi =
(e1,...,e;) € X. Since s1 € X, there exists an operator C € SOq; such that CBs; = s1. Thus, CB € (Oq)s,,
det CB = —1, and the Oq-orbit X’ cannot be a union of two distinct SOq;-orbits, a contradiction.

Bases of the subspaces Ba; and Bs; can be written in terms of e; using matrices that do not depend on a; and

s;- Namely, they are the same matrices that we need to write bases of a; and s; using ¢g; and ¢;, and the latter do
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not depend on a; and s;. Denote the 6-tuple (Bsy, Bay, Bsa, Bas, Bss, Bag) by p. It suffices to prove that p € Y.
Conditions (1)—(7) hold by the construction of g; and ¢;, but we should check that (Bsy, Bsa, Bsg) € X x X x X.
It is sufficient to find elements of SOq; that map s; to sy and s; to s3. Since s; = (5, N S) @ (s; N S+), we find
them as direct sums of elements of SO(S) and SO(S*). The elements of SO(S) are already found, they are cyclic
permutations of fi, fa, f3 and f4, f5, fe. To interchange s; N S+ and sy N S+, consider the map that permutes
all the pairs of vectors ¢g; <+ go;41—4, 2 = 1,...01 — 3. It is orthogonal and its determinant is 1 since [ — 3 is even.

Finally, the operator with the following matrix in the basis g; maps s; N S+ to s3 N S*.

s 0
D I3,

where

Therefore, SOq; acts transitively on Y, and gtd(G : G/P) = 3.

333 P=P_y,

The subgroups P and P~ are conjugate for all [. It is sufficient to find gtd(L : u™), where L = (K*)? x GL;_»
and the L-module u™ is isomorphic to the direct sum of 7 simple modules that we denote by Vi, ..., V7. Namely,
Vi is a GL;_1-module (K'~2)* and its (K*)2-weight is (1,0), V4 is a trivial GL;_s-module of weight (1,1), V3
is a GL;_o-module K!=2 of weight (0, 1), V, is a trivial GL;_s-module of weight (1,—1), V5 is a GL;_s-module
K!=2 of weight (0,—1), Vi is a GL;_-module K'=2 of weight (1,0), V7 is a GL;_s-module A2K!~2 of weight
(0,0). Denote the components of u € u™ by wuy,...,ur.

There exists a GL;_s-invariant pairing between Vi and V3 whose (K*)%-weight is (1,1). The following
function is a rational L-invariant:

(ulﬂ ué’»)

Uy

Thus, the G-action on G/P is not generically 3-transitive.

3.4 Groups of type Fj

The only parabolic subgroup to consider is P = P 5. The set {1,6} of Dynkin diagram vertices is invariant under
all automorphisms of the Dynkin diagram. Hence the Weyl group element of the maximal length interchanges

P and P~. We have to find gtd(L : u™).
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The Levi subgroup L is locally isomorphic to (K*)2 x SOg, and the L-module u~ is isomorphic to
Vi@ Vo @ V3. Here Vi is an SOg-module with the lowest weight —m, i. e. a tautological SOg-module, V5 is
an SOg-module with the lowest weight —m3, V3 is an SOg-module with the lowest weight —my. Denote the
components of u € u™ by uy, ug, us.

Since V; is a tautological SOg-module, there exists an SOg-invariant symmetric bilinear form on it that we
denote by (u,u;). There exist diagram automorphisms of SOg that transform the tautological SOg-module to
SOs-modules isomorphic to Vo and V3. So there exist an SOg-invariant on V, that we denote by (usg,us) and
an SOg-invariant on V3 that we denote by (us3,u3). These bilinear forms are not necessarily (K*)2-invariant, in
general their (K*)%-weights are three pairs of integers. There is a linear combination of these pairs that is equal

to zero. Hence, there exists a non-trivial rational L-invariant of the form

(w1, ur)® (ug, ua) (uz, uz)®,

where a, b, ¢ € Z, and the G-action on G/P x G/P x G/P is not generically transitive.

4 Finite Number of Orbits
Proposition 4.1. Let G be a simple algebraic group and P be a proper parabolic subgroup. If n > 4, the
number of G-orbits on (G/P)™ is infinite. O

Proof. Let P =P;, ;. Consider the dominant weight A = m;, + ...+ m;,. Then G/P is isomorphic to the

projectivization of the orbit of the highest weight vector vy € V(A). In the sequel we shortly write i = ;.
It is easy to check that y?vy = 0. Denote the unipotent subgroup exp(ty;) by U;. We see that Usvy is an
affine line not containing zero. The closure of its image in the projectivization P(V'(\)) is a projective line
P! C G/P CP(V()\)). Choose n > 4 points (z1,...,2,) € PL x ... x P C G/P x ... x G/P. The double ratio

of the first four of these points does not change under G-action. Hence, two n-tuples with different double ratios

cannot belong to the same orbit, and the number of orbits is infinite. [ ]

Now we prove that in the cases P = P;; and P = P;_;; the number of orbits on G/P x G/P x G/P is
infinite.

We suppose that G = SOq;. Let K2 be the tautological SOs-module and let ey, ..., ey be the standard
basis. Let X’ C Gr(l,2l) be the set of all isotropic subspaces of dimension ! in K. It is known that
G/ P, is isomorphic to a connected component of X’. In the sequel we suppose that G/P, =X C X'. For
each s € X let Y, C P?~1 be the set of all lines contained in s. One easily checks that the closed subset
Y = Usex (s x Ys) € Gr(l,21) x P?~1 is isomorphic to SO /P ;.

Similarly, if s € X, denote by Zs C Gr(l — 1, 2l) the set of all subspaces of dimension I — 1 in s. Let Z be the

closed subset Usex (s x Zs) C Gr(l,2l) x Gr(l — 1,2l). One easily checks that it is isomorphic to SOq/P_1 .
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First, let [ =3. Consider the following isotropic subspaces: S; = (e1,ea,e4), So = (ea,e3,¢e5), S3 =
(e1,e3,e5). They belong to the same SOg-orbit, so we may suppose that S7,.52,53 € X. Choose a line T} C Sy
such that T C (ey, ea). Also choose lines Ty C Sy and T3 C S5 such that Ty C (eq, e3) and T3 C (ey, e3). Impose
one more restriction, namely, the sum 75 + 75 should be direct and should not be equal to (e, es). Con-
sider the point ((S1,T1), (S2,T%),(S3,13)) € G/P1y x G/P1; x G/Py;. There are four subspaces of (e1,es):
{e1) = 81N S3, (ea) = S2 N S3, Ty and Ty = (T» & T3) N (e, e2). Thus, we have defined four lines in K° in terms
of intersections and sums of S; and T;. If we apply an element g € G to these four lines, we will obtain four lines
defined in the same way using ¢S; and ¢T; instead of S; and T;. The double ratio of these four lines in their
sum of dimension two is not changed under G-action. Since 77 is chosen arbitrarily, this double ratio can be any
number and the number of orbits is infinite.

Consider the same subspaces S; and T; and set U1 = T @ {e4), Uy = T ® {eg) and Us = T35 @ (e5). The point
((S1,U1), (S2,Us), (S3,U3)) belongs to Z x Z x Z. Note that (e, ea,e3) = (51N S2) @ (S2 N S3) @ (S1 N S3) and
T, =U; N (e1,ez,e3). Again we have a subspace of dimension two and four lines in it defined in terms of
intersections and sums of S; and U;. The existence of SOg-invariant double ratio in this case yields that the
number of orbits is infinite.

Let [ > 3. Construct the subspaces S;, T; and U; as above, using the last three basis vectors instead
of eq,e5,e6. Let Si =S5, @ (eq,...,e;) and U/ =U; & (e, ...,e). The points ((S1,T1), (55, T»),(S%,T5)) and
((S1,07), (85,UL), (S5,U%)) belong to Y x Y x Y and Z x Z x Z, respectively. Consider also the subspace V' =
(S; NS4, N S4)L. The restriction of the bilinear form to this subspace is degenerate, its kernel is S; N S5 NS4 =
(e4,...,e1). The quotient is a space of dimension 6 with a bilinear form. The quotient morphism restricted to
(e1,€e2,e3,€9_2,€9,_1, €z) is an isomorphism, so we have subspaces S;, T;, U; in the 6-dimensional space. This
is exactly the same situation as we had above for the group SOg, and it enables us to define double ratios for
the points of G/Py; x G/Py; x G/Py; and G/P_1; x G/P,_1; X G/P;_1,; under consideration. Therefore the

number of SOq-orbits on these multiple flag varieties is infinite. This finishes the proof of Theorem 1.3.

Funding

This work was supproted in part by the Simons Foundation.

Acknowledgements

I thank my former scientific advisor Ivan V. Arzhantsev for posing the problem and for paying attention to my
work. Also I thank professor Vladimir L. Popov for useful comments and Dmitri A. Timashev for bringing my

attention to the articles [4, 8].



14 R. Devyatov
References

[1] M. Brion, Quelques propriétés des espaces homogénes sphériques, Manuscripta Math. 55 (1986), no. 2,
191-198.

[2] J. Humphreys, Linear algebraic groups. GTM 21 Springer-Verlag, New York-Heidelberg, 1975.

[3] J. Humphreys, Introduction to Lie Algebras and Representation Theory. GTM 9, Springer-Verlag, New
York-Berlin, 1978.

[4] P. Littleman, On spherical double cones, J. Algebra 166 (1994), no. 1, 142-157.

[5] P. Magyar, J. Weynman, A. Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1,
97-118.

[6] P. Magyar, J. Weynman, A. Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230
(2000), no. 1, 245-265.

[7] V.L. Popov, Generically multiple transitive algebraic group actions, Algebraic groups and homogeneous

spaces, 481-523, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.

[8] J. Stembridge, Multiplicity-free products and restrictions of Weyl characters., Representation Theory 7
(2003), 404-439.

[9] E.B. Vinberg, Complezity of actions of reductive groups, Funkt. Anal. i Pril. 20 (1986), no. 1, 1-13; English
transl.: Funct. Anal. Appl. 20 (1986), no 1, 1-11.



