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Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain

simple groups of type A, and P ⊆ G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all

triples (G,P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P ×G/P × . . .×G/P (n

factors), (b) the number of G-orbits on the multiple flag variety is finite.

1 Introduction

Let G be a semisimple connected algebraic group over an algebraically closed field of characteristic zero, and

P ⊆ G be a parabolic subgroup. One easily checks that the G-orbits on G/P ×G/P are in bijection with P -

orbits on G/P . The Bruhat decomposition of G implies that the number of P -orbits on G/P is finite and that

these orbits are enumerated by a subset in the Weyl group W corresponding to G. In particular, there is an

open G-orbit on G/P ×G/P . So we come to the following questions: for which G, P and n ≥ 3 is there an open

G-orbit on the multiple flag variety (G/P )n := G/P ×G/P × . . .×G/P? For which G, P and n is the number

of orbits finite?

Notice that if G is locally isomorphic to G(1) × . . .×G(k), where G(i) are simple, then there exist parabolic

subgroups P (i) ⊆ G(i) such that G/P ∼= G(1)/P (1) × . . .×G(n)/P (n). Hence in the sequel we may assume that

G is simple. Moreover, let π : G̃→ G be a simply connected cover. Then π induces a bijection between parabolic

subgroups P ⊆ G and P̃ ⊆ G̃, namely P̃ = π−1(P ), and an isomorphism G̃/P̃ → G/P . Also, G̃/P̃ may be

considered as G-variety since Kerπ acts trivially on it. In this sense the isomorphism is G-equivariant. Therefore

we may consider only one simple group of each type.

The classification of multiple flag varieties with an open G-orbit for maximal subgroups P was given by

Popov in [7]. We need some notation to formulate his result. Fix a maximal torus in G and an associated simple
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root system {α1, . . . , αl} of the Lie algebra g = LieG. We enumerate simple roots as in [3]. Let Pi ⊂ G be the

maximal parabolic subgroup corresponding to the simple root αi.

Theorem 1.1. [7, Theorem 3] Let G be a simple algebraic group. The diagonal G-action on the multiple flag

variety (G/Pi)
n is generically transitive if and only if n ≤ 2 or (G,n, i) is an entry in Table 1:

Table 1. Generically transitive actions for maximal parabolic subgroups

Type of G (n, i)

Al n < (l+1)2

i(l+1−i)
Bl, l ≥ 3 n = 3, i = 1, l
Cl, l ≥ 2 n = 3, i = 1, l
Dl, l ≥ 4 n = 3, i = 1, l − 1, l
E6 n = 3, 4, i = 1, 6
E7 n = 3, i = 7

In [7], the following question was posed: for which non-maximal parabolic subgroups P ⊂ G is there an

open G-orbit in (G/P )n? We solve this problem for all simple groups except for those of type Al.

Denote the intersection Pi1 ∩ . . . ∩ Pis by Pi1,...,is . It is easy to see that Pi1,...,is is a parabolic subgroup and

that every parabolic subgroup is conjugated to some Pi1,...,is .

Theorem 1.2. Let G be a simple algebraic group which is not locally isomorphic to SLl+1, P ⊂ G be a non-

maximal parabolic subgroup and n ≥ 3. Then the diagonal G-action on the multiple flag variety (G/Pi)
n is

generically transitive if and only if n = 3 and (G,P ) is one of the pairs in Table 2:

Table 2. Generically transitive actions for non-maximal parabolic subgroups

Type of G P

Dl, l ≥ 5 is odd P1,l−1, P1,l

Dl, l ≥ 4 is even P1,l−1, P1,l, Pl−1,l

Now let us consider actions with a finite number of orbits. Recall that a G-variety X is called spherical if a

Borel subgroup B ⊆ G acts on X with an open orbit. It is well-known that the number of B-orbits on a spherical

variety is finite, see [1, 9]. Equivalently, the number of G-orbits on G/B ×X is finite if X is spherical. Therefore,

if P ⊆ G is a parabolic subgroup and X is a spherical G-variety, then the number of G-orbits on G/P ×X is

finite. The classification of all pairs of parabolic subgroups (P,Q) such that G/P ×G/Q is spherical is given

in [4, 8]. According to this classification, if (G,Pi) is an entry in Table 1, then G/Pi ×G/Pi is spherical and

hence the number of G-orbits on G/Pi ×G/Pi ×G/Pi is finite. In the last section we prove that the number

of G-obits on (G/P )n is infinite if n ≥ 4. We also check directly that if (G,P ) is an entry in Table 2, then the

number of G-orbits on G/P ×G/P ×G/P is infinite. Thus we come to the following result.
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Theorem 1.3. Let G be a simple algebraic group, P ⊂ G be a parabolic subgroup and n ≥ 3. The following

properties are equivalent.

1. The number of G-orbits on (G/P )n is finite.

2. n = 3, P is maximal, and there is an open G-orbit on G/P ×G/P ×G/P .

3. n = 3, and G/P ×G/P is spherical.

Corollary 1.4. Let n ≥ 3. The number of G-orbits on (G/P )n is finite if and only if n = 3 and (G,P ) is one

of the pairs listed in Table 3:

Table 3. Actions with finite numbers of orbits

Type of G P

Al any maximal
Bl, l ≥ 2 P1, Pl
Cl, l ≥ 3 P1, Pl
Dl, l ≥ 4 P1, Pl−1, Pl
E6 P1, P6

E7 P7

Let us mention a more general result for classical groups. Let Q(1), . . . , Q(n) be parabolic subgroups in G.

We call the variety G/Q(1) × . . .×G/Q(n) a generalized multiple flag variety. The classification of all generalized

multiple flag varieties with a finite number of G-orbits is given in [5] for G = SLl+1 and in [6] for G = Sp2l.

Proofs of Theorems 2 and 3 use methods developed in [7]. The results concerning existence of an open orbit

in a linear representation space in Section 3 may be of independent interest. In several cases for G = SO2l the

existence of an open orbit on a multiple flag variety is checked directly.

2 Preliminaries

Let G be a connected simple algebraic group over an algebraically closed field K of characteristic zero and

g = LieG. Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. These data determine a root system Φ of

g, a positive root subsystem Φ+ and a system of simple roots ∆ ⊆ Φ+, ∆ = {α1, . . . , αl}. Choose a corresponding

Chevalley basis {xi, yi, hi} of g. We have [h, xi] = α(h)xi, [h, yi] = −α(h)yi for all h ∈ t = LieT and hi = [xi, yi].

Let I = {αi1 , . . . , αis} ⊆ ∆ be a subset. The Lie algebra of the parabolic subgroup PI := Pi1,...,is is

p = b⊕
⊕
α∈ΦI

gα,

where b = LieB and ΦI ⊆ Φ− denotes the set of the negative roots such that their decomposition into the

sum of simple roots does not contain the roots αi, i ∈ I. For example, P∆ = B and P∅ = G. It is known that
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[2, Theorem 30.1] if a parabolic group P contains B, then P = PI for some I ⊆ ∆. Therefore any parabolic

subgroup P ⊆ G is conjugate to some PI . If P = PI for some I ⊆ ∆, we denote by P− the parabolic subgroup

whose Lie algebra is

p− = t⊕
⊕

α∈−ΦI∪Φ−

gα.

Denote the weight lattice of T by X(T ). Let X+(T ) be the subsemigroup of dominant weights with respect

to B. Assume first that G is simply connected. Then X+ is generated by the fundamental weights π1, . . . , πl.

Given a dominant weight λ, denote the simple G-module with the highest weight λ by V (λ). If G is not simply

connected, we may consider a simply connected cover p : G̃→ G, the dominant weight lattice X+(p−1(T )) and

the highest weight G̃-module V (λ).

Let G be a simple group and P = Pi1,...,is be a parabolic subgroup. Notice that if there is an open G-

orbit on (G/P )n, then there exists an open G-orbit on (G/Pi)
n for all i ∈ {i1, . . . , is}. Indeed, since P ⊆ Pi,

one has the surjective G-equivariant map G/P → G/Pi, gP 7→ gPi. It induces the surjective G-equivariant map

ϕ : (G/P )n → (G/Pi)
n, and the image of an open G-orbit on (G/P )n under ϕ is an open G-orbit on (G/Pi)

n.

Similarly, if G acts on (G/P )n with an open orbit and m < n, then G acts on (G/P )m with an open orbit.

Theorem 1 leaves us very few cases of non-maximal parabolic groups to consider. Namely, if n > 3 and G

is of type Bl, Cl or Dl, then G never acts on (G/P )n with an open orbit. If n = 3 and G is of type Bl or Cl, it

suffices to consider P = P1,l, and we show that there is no open orbit in this case. If n = 3 and G is of type Dl,

an open orbit may exist only if P = PI where I ⊆ {α1, αl−1, αl}. So there are four cases to consider. We reduce

the case P1,l−1 to the case P1,l. If G is of type E6, the only parabolic group we should consider is P = P1,6.

We show that there is no open orbit for n = 3. If G is of type E7, if there existed an open G-orbit on (G/P )n

for n ≥ 3, then the only maximal parabolic subgroup containing P would be P7, but in this case P should be

maximal itself. If G is of type E8, F4 or G2, an open orbit exists for no maximal parabolic subgroups for n ≥ 3,

so there are no cases to consider.

Given a group G acting on an irreducible variety X with an open orbit, according to [7] we denote the

maximal n such that there is an open G-orbit on Xn by gtd(G : X). If G acts on Xn with an open orbit, we

say that the action G : X is generically n-transitive.

We make use of the following fact proved by Popov.

Proposition 2.1. [7, Corollary 1 (ii) of Proposition 2] Let G be a simple algebraic group, P be a parabolic

subgroup, P− be an opposite parabolic subgroup, L = P ∩ P− be the corresponding Levi subgroup and u− be

the Lie algebra of the unipotent radical of P−. If P is conjugate to P−, then gtd(G : G/P ) = 2 + gtd(L : u−).
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We suppose that the group SOl acts in the l-dimensional space and preserves the bilinear form whose

matrix with respect to a standard basis is

Q =



1

0 . .
.

1

1

. .
. 0

1


.

We denote the l-dimensional projective space by Pl and the Grassmannian of k-dimensional subspaces in

Kl by Gr(k, l).

3 Existence of an Open Orbit

3.1 Groups of type Bl

By Theorem 1.1, it is sufficient to consider the case P = P1,l. The Dynkin diagram Bl has no automorphisms,

hence P is conjugate to P−. So we may apply Proposition 2.1, and it suffices to check that gtd(L : u−) = 0, i.

e. L acts on u− with no open orbit.

Let G = SO2l+1. Then L = K∗ ×GLl−1 and the L-module u− can be decomposed into the direct sum

V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5. Here V1 is a GLl−1-module (Kl−1)∗ dual to the tautological one and its K∗-weight is 1,

V2 is a trivial one-dimensional GLl−1-module of weight 1, V3 is a tautological GLl−1-module Kl−1 of weight 0, V4

is a GLl−1-module Kl−1 of weight 1, V5 is a GLl−1-module Λ2Kl−1 of weight 0. According to this decomposition,

we denote components of a vector u ∈ u− by u1, u2, u3, u4, u5.

Notice that there exists a GLl−1-invariant pairing between V1 and V3. Its K∗-weight is 1. Also there exists

a GLl−1-invariant pairing between V1 and V4, whose K∗-weight is 2. Therefore the rational function

(u1, u3)2

(u1, u4)

is a non-constant invariant for L : u−, and the action of G on G/P is not generically 3-transitive.

3.2 Groups of type Cl

This case is completely similar to the previous one, and again the only thing we should do is to prove that there

is no open L-orbit on u−, where L = P ∩ P− is a Levi subgroup of P = P1,l and u− is the Lie algebra of the

unipotent radical of P−.

Let G = Sp2l. Then L = K∗ ×GLl−1 and the L-module u− can be written as V1 ⊕ V2 ⊕ V3 ⊕ V4. Here V1 is

a GLl−1-module (Kl−1)∗ and its K∗-weight is 1, V2 is a GLl−1-module Kl−1 of weight 1, V3 is a GLl−1-module
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S2Kl−1 of weight 0, V4 is a trivial GLl−1-module of weight 2. According to this decomposition, we denote

components of a vector u ∈ u− by u1, u2, u3, u4.

We see that there exists a GLl−1-invariant pairing between V1 and V2 with K∗-weight is 2. Therefore we

have the rational invariant

(u1, u2)

u4

for L : u−, and the action of G on G/P is not generically 3-transitive.

3.3 Groups of type Dl

This time we should consider the following four cases of parabolic subgroups: P = P1,l−1, P1,l, Pl−1,l, P1,l−1,l.

One easily checks that P and P− are conjugate except for the cases P = P1,l, l odd, and P = P1,l−1, l odd.

Let G = SO2l. There exists a diagram automorphism of G that interchanges αl−1 and αl. It preserves the

maximal torus and the Borel subgroup and interchanges P1,l−1 and P1,l. Therefore, the actions G : G/P1,l−1

and G : G/P1,l are either generically 3-transitive or not generically 3-transitive simultaneously.

3.3.1 P = Pl−1,l

In this case, P and P− are conjugate, and we have to find gtd(L : u−).

The Levi subgroup L is isomorphic to K∗ ×GLl−1 and the L-module u− is isomorphic to V1 ⊕ V2 ⊕ V3,

where V1 is a GLl−1-module Λ2Kl−1 and its K∗-weight is 0, V2 is a GLl−1-module Kl−1 of weight 1, V3 is a

GLl−1-module Kl−1 of weight −1. We denote components of a vector u ∈ u− by u1, u2, u3.

Let l be odd. Then a generic element u1 ∈ V1 gives rise to a non-degenerate skew-symmetric bilinear form

on the GLl−1-module (Kl−1)∗. Furthermore, one can consider the corresponding skew-symmetric form on the

tautological GLl−1-module. This form is obtained by matrix inversion and we denote it by u−1
1 . The following

function is a rational L-invariant:

u−1
1 (u2, u3).

Thus the action of G on G/P is not generically 3-transitive.

Let l be even. We prove that there is an open L-orbit on u−.

Consider the GLl−1-module V ′ = V1 ⊕ V2, where V2 is a GLl−1-module Kl−1 and V1 = Λ2Kl−1.

Since l − 1 is odd, the rank of a generic element w ∈ V1 is l − 2. Denote the set of all w ∈ V1 such

that rkw = l − 2 by Z. Any element w ∈ Z gives rise to a (degenerate) skew-symmetric form on V ∗2 , and

dim Kerw = 1. Consider the subspace (Kerw)⊥ ⊂ V2 where all the functions from the kernel vanish. Denote

V2 \ (Kerw)⊥ by Xw. Clearly, W1 = ∪w∈Z(w ×Xw) is an open GLl−1-invariant subset of V ′.
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Let us prove that GLl−1 acts transitively on W1. First, given an element u = (u1, u2) ∈W1, one can apply

an element of GLl−1 such that the matrix of the bilinear form u1 in the corresponding basis is

R =



0

0 1 0
−1 0

. . .

0 0 1

−1 0


.

The first coordinate of u2 in the new basis is non-zero since u2 ∈ Xu1
. Denote the i-th coordinate of u2 by

(u2)i. The following element of GLl−1 preserves the bilinear form with matrix R:



1 0 . . . 0

−(u2)3/(u2)1

... Il−2

−(u2)l−1/(u2)1


.

When we apply it to u2, all its coordinates will be zero except for the first one.

So any element of W1 can be transformed by GLl−1-action to an element of the form u1 = R, u2 =

((u2)1, 0, . . . , 0)T , where (u2)1 6= 0. Clearly, all these elements belong to the same GLl−1-orbit. Call such an

element of V ′ canonical, i. e. call an element (u1, u2) ∈ V ′ canonical if u1 = R, u2 = ((u2)1, 0, . . . , 0)T , where

(u2)1 6= 0. The stabilizer of (u1, 〈u2〉) consists of direct sums of a non-zero 1× 1 matrix and a symplectic

(l − 2)× (l − 2) matrix. Such an element fixes u2 as well if and only if the first 1× 1 matrix is 1.

Now we are ready to consider the L-action on u−. Maintain the above notation. Since V2 and V3 are

isomorphic as GLl−1-modules, for each w ∈ Z ⊂ V1 we can similarly consider the open subset V3 \ (Kerw)⊥.

Denote it by Yw. Define the subsets W2 = ∪w∈Z(w ×Xw × Yw) and W = {u ∈W2 : u2 is not a multiple of u3}.

Let us prove that L acts on W transitively.

We may suppose that u1 and u2 are canonical in the sense stated above. Applying a diagonal matrix from

(GLl−1)u1,〈u2〉, we may assume that (u2)1(u3)1 = 1 since V2 and V3 are both tautological GLl−1-modules.

Since u3 is not a multiple of u2, the vector v = ((u3)2, (u3)3, . . . , (u3)l−1) is not zero. Since Spl−2 acts

transitively on Kl−2 \ 0, there exists an element g ∈ (GLl−1)u1,u2 , g = g1 ⊕ g2, g1 = 1, g2 ∈ Spl−2 such that

g2v = ((u3)1, 0, . . . , 0)T . In other words, we may suppose that u1 and u2 are canonical, the only non-zero

coordinates of u3 are the first one and the second one, they are equal, and (u2)1(u3)1 = 1.

Now recall that L = GLl−1 ×K∗, the K∗-weights of V1, V2 and V3 are 0, 1 and −1, respectively. Therefore,

after applying a suitable element of K∗, we have u1 = S, u2 = (1, 0, . . . , 0)T and u3 = (1, 1, 0, . . . , 0)T , and the

G-action on G/P is generically 3-transitive.
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3.3.2 P = P1,l

In this case, Proposition 2.1 applies if and only if l is even.

Let l be even. It is sufficient to prove that there is an open L-orbit on u−.

Again L = K∗ ×GLl−1, and the L-module V can be decomposed into three summands, V = V1 ⊕ V2 ⊕ V3,

but this time V1 is a GLl−1-module Λ2Kl−1 and its K∗-weight is 0, V2 is a GLl−1-module Kl−1 of weight 1, V3

is a GLl−1-module (Kl−1)∗ of weight 1. We denote components of an element u ∈ u− by u1, u2, u3.

Recall the notation we have introduced for the GLl−1-module V ′. Also this time denote Yw = V3 \Kerw.

Define W2 = ∪w∈Z(w ×Xw × Yw) and W = {u ∈W2 : 〈u2, u3〉 6= 0}. Here 〈·, ·〉 denotes the GLl−1-invariant

pairing between V2 and V3. Its K∗-weight is 2, but the condition 〈u2, u3〉 6= 0 is not affected by K∗-action,

so W is L-invariant. We are going to prove that L acts transitively on W .

Again we may suppose that u1 = R and the only non-zero coordinate of u2 is the first one. Notice that

(u3)1 6= 0 since 〈u2, u3〉 6= 0. This time V2 and V3 are dual GLl−1-modules, so by applying a suitable element of

(GLl−1)u1,〈u2〉 the coordinates (u2)1 and (u3)1 can be made equal.

Consider the vector v = ((u3)2, (u3)3, . . . , (u3)l−1). It cannot be zero since u3 /∈ Keru1. Since Spl−2 acts

transitively on (Kl−2)∗ \ 0, there exists an element g ∈ (GLl−1)u1,u2
, g = g1 ⊕ g2, g1 = 1, g2 ∈ Spl−2 such that

g2v = ((u3)1, 0, . . . , 0)T . In other words, we may suppose that u1 and u2 are canonical, the only non-zero

coordinates of u3 are the first one and the second one, and (u2)1 = (u3)1 = (u3)2.

This time the K∗-weights of V2 and V3 are both 1, so with the help of the K∗-action we can satisfy the

equality (u2)1 = (u3)1 = (u3)2 = 1. Thus, L acts transitively on W , and the G-action on G/P is generically

3-transitive.

Let l be odd. Proposition 2.1 does not apply, and we have to find gtd(G : G/P ) directly.

Consider the tautological SO2l-module K2l, and let e1, . . . , e2l be its standard basis. Let X ′ ⊂ Gr(l, 2l) be

the set of all isotropic subspaces of dimension l in K2l. One easily checks that X ′ is a disjoint union of two

SO2l-orbits, and the group O2l interchanges them. If two subspaces belong to the same SO2l-orbit, then their

intersection is non-zero.

Denote the orbit SO2l 〈e1, . . . , el〉 ⊂ X ′ by X. Then X is an irreducible subvariety in Gr(l, 2l).

For each s ∈ X let Ys ⊂ P2l−1 be the set of all lines contained in s. Clearly, W = ∪s∈X(s× Ys) is a closed

G-invariant subset in Gr(l, 2l)×P2l−1. One easily checks that G/P = W .

Let us prove that there exists an open G-orbit on W ×W ×W . We impose some conditions on the point

(s1, a1, s2, a2, s3, a3) ∈W ×W ×W and so define an open subset Y ⊆W ×W ×W . Then we define a point

p ∈ Gr(l, 2l)×P2l−1 ×Gr(l, 2l)×P2l−1 ×Gr(l, 2l)×P2l−1 and prove that (a) each point y ∈ Y belongs to the

same G-orbit that p does, and (b) p belongs to Y . Condition (b) guarantees that Y is not empty.

Let Y ⊆W ×W ×W be the set of all tuples (s1, a1, s2, a2, s3, a3) such that:

1. s1 ∩ s2 ∩ s3 = 0.

2. s1 + s2 + s3 = K2l.
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3. dim s1 ∩ s2 = dim s2 ∩ s3 = dim s1 ∩ s3 = 1.

4. dim(a1 + a2 + a3) = 3.

5. The intersection of the subspaces s = (s1 ∩ s2) + (s2 ∩ s3) + (s1 ∩ s3) and a = a1 + a2 + a3 is zero.

6. ai + sj + sk = K2l, where i = 1, 2, 3, j 6= i, k 6= i, j < k.

7. The lines ai and aj are not orthogonal for all i 6= j.

Notice that if conditions (1)–(3) hold, the sum of subspaces s1 ∩ s2, s2 ∩ s3 and s1 ∩ s3 is direct.

Let us prove that G acts transitively on Y . Choose vectors f1, f2, f3 such that 〈fi〉 = ai, and vectors

f4, f5, f6 such that 〈f4〉 = s2 ∩ s3, 〈f5〉 = s1 ∩ s3, 〈f6〉 = s1 ∩ s2. The restriction of the bilinear form to the

subspace S = 〈f1, . . . , f6〉 is defined by the following matrix:



0 b1 b2 b4

b1 0 b3 b5

b2 b3 0 b6

b4

b5

b6


.

Conditions (6) and (7) imply that bi 6= 0 for all i. Clearly, this matrix is non-degenerate.

The above choice of the vectors fi allows to multiply them by scalars. Up to scalar multiplication we may

assume that all bi = 1.

Notice that a cyclic permutation of f1, f2, f3 and the same permutation of f4, f5, f6 performed simultane-

ously define a linear operator on S that preserves the restriction of the bilinear form and whose determinant is

1.

Consider the following basis of S: g1 = f1, g2 = f5, g3 = f6, g4 = f3 − f4 − f5, g5 = f2 − f4, g6 = f4. One

checks directly that the matrix of the bilinear form with respect to this basis is Q. Obviously, there exists a

matrix M such that (f1, . . . , f6) = (g1, . . . , g6)M and whose elements do not depend on ai and si.

The restriction of the bilinear form to S is non-degenerate, hence its restriction to S⊥ is also non-degenerate.

Since si = s⊥i , dim(si ∩ S⊥) = l − 3 for all i.

Thus, S⊥ is a subspace of even dimension equipped with a non-degenerate symmetric bilinear form. We

have three isotropic subspaces of maximal dimension in S⊥, and the intersection of any two of them is zero. Let

us prove the following lemma.

Lemma 3.1. Let (·, ·) be a non-degenerate symmetric bilinear form in K2k, and U1, U2, U3 be isotropic subspaces

of dimension k with Ui ∩ Uj = 0 for i 6= j. Then there exist matrices M1,M2,M3 ∈Mat2k×k that do not depend

on Ui and a basis e1, . . . , e2k of K2k such that: (a) the matrix of the bilinear form is Q and (b) (e1, . . . , e2k)Mi

is a basis of Ui.
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Proof . Consider the non-degenerate linear map A : U1 → U2 whose graph is the subspace U3. This is possible

since Ui ∩ Uj 6= 0 for i 6= j. In terms of the map, U3 = {v +Av | v ∈ U1}.

Consider the bilinear form (v1, v2)A = (v1, Av2) on U1. Since U3 is isotropic, we have 0 = (v1 +Av1, v2 +

Av2) = (v1, v2) + (Av1 +Av2) + (v1, Av2) + (Av1, v2) = (v1, Av2) + (v2, Av1) = (v1, v2)A + (v2, v1)A for all

v1, v2 ∈ U1, hence the form (·, ·)A is skew-symmetric. Assume that it is degenerate and v ∈ U1 belongs to its

kernel. Then (v1, v) = (v1, Av) = 0 for all v1 ∈ U1. Since the pairing between trivially intersecting isotropic

subspaces U1 and U2 of maximal dimension is non-degenerate, Av = 0. Since KerA = 0, v = 0 and the form

(·, ·)A is non-degenerate.

Thus, we have a symplectic space U1 with the skew-symmetric form (·, ·)A. Hence k is even. Choose a basis

〈q1, . . . , qk〉 of U1 such that the matrix of the skew-symmetric form is



1

0 . .
.

1

−1

. .
. 0

−1


.

The vectors q1, . . . , qk are linearly independent, so let them be the first k elements of a basis of K2l. Define

the rest of the basis as follows: qk+j = −Aqj if j = 1, . . . , k/2 and qk+j = Aqj if j = k/2 + 1, . . . , k. The matrix

of the bilinear form (·, ·) is Q. The subspaces Ui have the following bases:

U1 = 〈q1, . . . , qk〉

U2 = 〈qk+1, . . . , q2k〉

U3 = 〈q1 − qk+1, . . . , qk/2 − qk+k/2, qk/2+1 + qk+k/2+1, . . . , qk + q2k〉.

This completes the proof of the lemma.

Consider the following basis of K2l: g1, g2, g3, q1, . . . , q2l−6, g4, g5, g6, where qi are defined above in the proof

of the lemma. Notice that the matrix of the bilinear form in this basis is Q. Define the operator B : K2l → K2l

that maps this basis to the standard one. We know that the matrix of the bilinear form is Q in both bases, so

B ∈ O2l.

Let us check that detB = 1. Assume that detB = −1. Since s1 = 〈g1, g2, g3, q1, . . . , ql−3〉, Bs1 =

〈e1, . . . , el〉 ∈ X. Since s1 ∈ X, there exists an operator C ∈ SO2l such that CBs1 = s1. Thus, CB ∈ (O2l)s1 ,

detCB = −1, and the O2l-orbit X ′ cannot be a union of two distinct SO2l-orbits, a contradiction.

Bases of the subspaces Bai and Bsi can be written in terms of ei using matrices that do not depend on ai and

si. Namely, they are the same matrices that we need to write bases of ai and si using gi and qi, and the latter do
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not depend on ai and si. Denote the 6-tuple (Bs1, Ba1, Bs2, Ba2, Bs3, Ba3) by p. It suffices to prove that p ∈ Y .

Conditions (1)–(7) hold by the construction of gi and qi, but we should check that (Bs1, Bs2, Bs3) ∈ X ×X ×X.

It is sufficient to find elements of SO2l that map s1 to s2 and s1 to s3. Since si = (si ∩ S)⊕ (si ∩ S⊥), we find

them as direct sums of elements of SO(S) and SO(S⊥). The elements of SO(S) are already found, they are cyclic

permutations of f1, f2, f3 and f4, f5, f6. To interchange s1 ∩ S⊥ and s2 ∩ S⊥, consider the map that permutes

all the pairs of vectors gi ↔ g2l+1−i, i = 1, . . . l − 3. It is orthogonal and its determinant is 1 since l − 3 is even.

Finally, the operator with the following matrix in the basis gi maps s1 ∩ S⊥ to s3 ∩ S⊥.

 Il−3 0

D Il−3,


where

D =



−1

. . . 0
−1

1

0 . . .

1


.

Therefore, SO2l acts transitively on Y , and gtd(G : G/P ) = 3.

3.3.3 P = P1,l−1,l

The subgroups P and P− are conjugate for all l. It is sufficient to find gtd(L : u−), where L = (K∗)2 ×GLl−2

and the L-module u− is isomorphic to the direct sum of 7 simple modules that we denote by V1, . . . , V7. Namely,

V1 is a GLl−1-module (Kl−2)∗ and its (K∗)2-weight is (1, 0), V2 is a trivial GLl−2-module of weight (1, 1), V3

is a GLl−2-module Kl−2 of weight (0, 1), V4 is a trivial GLl−2-module of weight (1,−1), V5 is a GLl−2-module

Kl−2 of weight (0,−1), V6 is a GLl−2-module Kl−2 of weight (1, 0), V7 is a GLl−2-module Λ2Kl−2 of weight

(0, 0). Denote the components of u ∈ u− by u1, . . . , u7.

There exists a GLl−2-invariant pairing between V1 and V3 whose (K∗)2-weight is (1, 1). The following

function is a rational L-invariant:

(u1, u3)

u4
.

Thus, the G-action on G/P is not generically 3-transitive.

3.4 Groups of type E6

The only parabolic subgroup to consider is P = P1,6. The set {1, 6} of Dynkin diagram vertices is invariant under

all automorphisms of the Dynkin diagram. Hence the Weyl group element of the maximal length interchanges

P and P−. We have to find gtd(L : u−).
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The Levi subgroup L is locally isomorphic to (K∗)2 × SO8, and the L-module u− is isomorphic to

V1 ⊕ V2 ⊕ V3. Here V1 is an SO8-module with the lowest weight −π1, i. e. a tautological SO8-module, V2 is

an SO8-module with the lowest weight −π3, V3 is an SO8-module with the lowest weight −π4. Denote the

components of u ∈ u− by u1, u2, u3.

Since V1 is a tautological SO8-module, there exists an SO8-invariant symmetric bilinear form on it that we

denote by (u1, u1). There exist diagram automorphisms of SO8 that transform the tautological SO8-module to

SO8-modules isomorphic to V2 and V3. So there exist an SO8-invariant on V2 that we denote by (u2, u2) and

an SO8-invariant on V3 that we denote by (u3, u3). These bilinear forms are not necessarily (K∗)2-invariant, in

general their (K∗)2-weights are three pairs of integers. There is a linear combination of these pairs that is equal

to zero. Hence, there exists a non-trivial rational L-invariant of the form

(u1, u1)a(u2, u2)b(u3, u3)c,

where a, b, c ∈ Z, and the G-action on G/P ×G/P ×G/P is not generically transitive.

4 Finite Number of Orbits

Proposition 4.1. Let G be a simple algebraic group and P be a proper parabolic subgroup. If n ≥ 4, the

number of G-orbits on (G/P )n is infinite.

Proof . Let P = Pi1,...,is . Consider the dominant weight λ = πi1 + . . .+ πis . Then G/P is isomorphic to the

projectivization of the orbit of the highest weight vector vλ ∈ V (λ). In the sequel we shortly write i = i1.

It is easy to check that y2
i vλ = 0. Denote the unipotent subgroup exp(tyi) by Ui. We see that Uivλ is an

affine line not containing zero. The closure of its image in the projectivization P(V (λ)) is a projective line

P1 ⊆ G/P ⊆ P(V (λ)). Choose n ≥ 4 points (x1, . . . , xn) ∈ P1 × . . .×P1 ⊆ G/P × . . .×G/P . The double ratio

of the first four of these points does not change under G-action. Hence, two n-tuples with different double ratios

cannot belong to the same orbit, and the number of orbits is infinite.

Now we prove that in the cases P = P1,l and P = Pl−1,l the number of orbits on G/P ×G/P ×G/P is

infinite.

We suppose that G = SO2l. Let K2l be the tautological SO2l-module and let e1, . . . , e2l be the standard

basis. Let X ′ ⊂ Gr(l, 2l) be the set of all isotropic subspaces of dimension l in K2l. It is known that

G/Pl is isomorphic to a connected component of X ′. In the sequel we suppose that G/Pl = X ⊆ X ′. For

each s ∈ X let Ys ⊂ P2l−1 be the set of all lines contained in s. One easily checks that the closed subset

Y = ∪s∈X(s× Ys) ⊂ Gr(l, 2l)×P2l−1 is isomorphic to SO2l/P1,l.

Similarly, if s ∈ X, denote by Zs ⊂ Gr(l − 1, 2l) the set of all subspaces of dimension l − 1 in s. Let Z be the

closed subset ∪s∈X(s× Zs) ⊂ Gr(l, 2l)×Gr(l − 1, 2l). One easily checks that it is isomorphic to SO2l/Pl−1,l.
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First, let l = 3. Consider the following isotropic subspaces: S1 = 〈e1, e2, e4〉, S2 = 〈e2, e3, e6〉, S3 =

〈e1, e3, e5〉. They belong to the same SO6-orbit, so we may suppose that S1, S2, S3 ∈ X. Choose a line T1 ⊂ S1

such that T1 ⊂ 〈e1, e2〉. Also choose lines T2 ⊂ S2 and T3 ⊂ S3 such that T2 ⊂ 〈e2, e3〉 and T3 ⊂ 〈e1, e3〉. Impose

one more restriction, namely, the sum T2 + T3 should be direct and should not be equal to 〈e1, e2〉. Con-

sider the point ((S1, T1), (S2, T2), (S3, T3)) ∈ G/P1,l ×G/P1,l ×G/P1,l. There are four subspaces of 〈e1, e2〉:

〈e1〉 = S1 ∩ S3, 〈e2〉 = S2 ∩ S3, T1 and T4 = (T2 ⊕ T3) ∩ 〈e1, e2〉. Thus, we have defined four lines in K6 in terms

of intersections and sums of Si and Ti. If we apply an element g ∈ G to these four lines, we will obtain four lines

defined in the same way using gSi and gTi instead of Si and Ti. The double ratio of these four lines in their

sum of dimension two is not changed under G-action. Since T1 is chosen arbitrarily, this double ratio can be any

number and the number of orbits is infinite.

Consider the same subspaces Si and Ti and set U1 = T1 ⊕ 〈e4〉, U2 = T2 ⊕ 〈e6〉 and U3 = T3 ⊕ 〈e5〉. The point

((S1, U1), (S2, U2), (S3, U3)) belongs to Z × Z × Z. Note that 〈e1, e2, e3〉 = (S1 ∩ S2)⊕ (S2 ∩ S3)⊕ (S1 ∩ S3) and

Ti = Ui ∩ 〈e1, e2, e3〉. Again we have a subspace of dimension two and four lines in it defined in terms of

intersections and sums of Si and Ui. The existence of SO6-invariant double ratio in this case yields that the

number of orbits is infinite.

Let l > 3. Construct the subspaces Si, Ti and Ui as above, using the last three basis vectors instead

of e4, e5, e6. Let S′i = Si ⊕ 〈e4, . . . , el〉 and U ′i = Ui ⊕ 〈e4, . . . , el〉. The points ((S′1, T1), (S′2, T2), (S′3, T3)) and

((S′1, U
′
1), (S′2, U

′
2), (S′3, U

′
3)) belong to Y × Y × Y and Z × Z × Z, respectively. Consider also the subspace V =

(S′1 ∩ S′2 ∩ S′3)⊥. The restriction of the bilinear form to this subspace is degenerate, its kernel is S′1 ∩ S′2 ∩ S′3 =

〈e4, . . . , el〉. The quotient is a space of dimension 6 with a bilinear form. The quotient morphism restricted to

〈e1, e2, e3, e2l−2, e2l−1, e2l〉 is an isomorphism, so we have subspaces Si, Ti, Ui in the 6-dimensional space. This

is exactly the same situation as we had above for the group SO6, and it enables us to define double ratios for

the points of G/P1,l ×G/P1,l ×G/P1,l and G/Pl−1,l ×G/Pl−1,l ×G/Pl−1,l under consideration. Therefore the

number of SO2l-orbits on these multiple flag varieties is infinite. This finishes the proof of Theorem 1.3.
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