Generically Transitive Actions on Multiple Flag Varieties

Rostislav Devyatov ${ }^{12}$

${ }^{1}$ Department of Mathematics of Higher School of Economics, 7 Vavilova street, Moscow, 117312, Russia, and ${ }^{2}$ Institut für Mathematik, Freie Universität Berlin, Arnimallee 3, Berlin, 14195, Germany

Correspondence to be sent to: deviatov@mccme.ru

Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and $P \subseteq G$ be a parabolic subgroup. Extending the results of Popov [8], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety $G / P \times G / P \times \ldots \times G / P(n$ factors), (b) the number of G-orbits on the multiple flag variety is finite.

1 Introduction

Let G be a semisimple connected algebraic group over an algebraically closed field of characteristic zero, and $P \subseteq G$ be a parabolic subgroup. One easily checks that G-orbits on $G / P \times G / P$ are in bijection with P-orbits on G / P. The Bruhat decomposition of G implies that the number of P-orbits on G / P is finite and that these orbits are enumerated by a subset in the Weyl group W corresponding to G. In particular, there is an open G-orbit on $G / P \times G / P$. So we come to the following questions: for which G, P and $n \geq 3$ is there an open G-orbit on the multiple flag variety $(G / P)^{n}:=G / P \times G / P \times \ldots \times G / P$? For which G, P and n is the number of orbits finite?

First, let $\pi: \widetilde{G} \rightarrow G$ be a simply connected cover. Then π induces a bijection between parabolic subgroups $P \subseteq G$ and $\widetilde{P} \subseteq \widetilde{G}$, namely $\widetilde{P}=\pi^{-1}(P)$, and an isomorphism $\widetilde{G} / \widetilde{P} \rightarrow G / P$. Also, $\widetilde{G} / \widetilde{P}$ may be considered as G variety since $\operatorname{Ker} \pi$ acts trivially on it. In this sense the isomorphism is G-equivariant. Therefore, we may replace G with its simply connected cover and vice versa. Moreover, any connected and simply connected semisimple group G is isomorphic to $G^{(1)} \times \ldots \times G^{(k)}$, where $G^{(i)}$ are simple, and for every parabolic subgroup $P \subseteq G$ there exist parabolic subgroups $P^{(i)} \subseteq G^{(i)}$ such that $G / P \cong G^{(1)} / P^{(1)} \times \ldots \times G^{(k)} / P^{(k)}$. The product of groups $G^{(1)} \times \ldots \times G^{(k)}$ acts on the product of varieties $(G / P)^{n} \cong\left(G^{(1)} / P^{(1)}\right)^{n} \times \ldots \times\left(G^{(k)} / P^{(k)}\right)^{n}$ componentwise. Therefore, the G-orbits on $(G / P)^{n}$ are products of $G^{(i)}$-orbits on $\left(G^{(i)} / P^{(i)}\right)^{n}$. A G-orbit on $(G / P)^{n}$ is open if and only if it is a product of k open orbits on $\left(G^{(i)} / P^{(i)}\right)^{n}$, and the number of G-orbits on $(G / P)^{n}$ is finite if for
every i the number of $G^{(i)}$-orbits on $\left(G^{(i)} / P^{(i)}\right)^{n}$ is finite. Hence in the sequel we may assume that G is simple. Recall that we may replace any simple group G with its simply connected cover and vice versa, hence we may replace it by any group locally isomorphic to G. So we may consider only one simple group of each type.

The classification of multiple flag varieties with an open G-orbit for maximal subgroups P was given by Popov in [8]. We need some notation to formulate his result. Fix a maximal torus in G and an associated simple root system $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the Lie algebra $\mathfrak{g}=\operatorname{Lie} G$. We enumerate simple roots as in [4]. Let $P_{i} \subset G$ be the maximal parabolic subgroup corresponding to the simple root α_{i}.

Theorem 1.1. [8, Theorem 3] Let G be a simple algebraic group. The diagonal G-action on the multiple flag variety $\left(G / P_{i}\right)^{n}$ is generically transitive if and only if $n \leq 2$ or (G, n, i) is an entry in Table 1 :

Table 1. Generically transitive actions for maximal parabolic subgroups

Type of G	(n, i)
A_{l}	$n<\frac{(l+1)^{2}}{i(l+1-i)}$
$B_{l}, l \geq 3$	$n=3, i=1, l$
$C_{l}, l \geq 2$	$n=3, i=1, l$
$D_{l}, l \geq 4$	$n=3, i=1, l-1, l$
E_{6}	$n=3,4, i=1,6$
E_{7}	$n=3, i=7$

In [8], the following question was posed: for which non-maximal parabolic subgroups $P \subset G$ is there an open G-orbit in $(G / P)^{n}$? We solve this problem for all simple groups except for those of type A_{l}.

Denote the intersection $P_{i_{1}} \cap \ldots \cap P_{i_{s}}$ by $P_{i_{1}, \ldots, i_{s}}$. It is easy to see that $P_{i_{1}, \ldots, i_{s}}$ is a parabolic subgroup and that every parabolic subgroup is conjugated to some $P_{i_{1}, \ldots, i_{s}}$.

Theorem 1.2. Let G be a simple algebraic group that is not locally isomorphic to $S L_{l+1}, P \subset G$ be a nonmaximal parabolic subgroup and $n \geq 3$. Then the diagonal G-action on the multiple flag variety $\left(G / P_{i}\right)^{n}$ is generically transitive if and only if $n=3$ and (G, P) is one of the pairs in Table 2 :

Table 2. Generically transitive actions for non-maximal parabolic subgroups

$$
\begin{array}{c|c}
\text { Type of } G & P \\
\hline \hline D_{l}, l \geq 5 \text { is odd } & P_{1, l-1}, P_{1, l} \\
\hline D_{l}, l \geq 4 \text { is even } & P_{1, l-1}, P_{1, l}, P_{l-1, l}
\end{array}
$$

The case A_{l} requires a separate investigation because even in the case of maximal parabolic subgroups, there are much more pairs (P, n) for which there is an open G-orbit in $(G / P)^{n}$, and the list of all non-maximal subgroups with this property may be much more complicated.

Now let us consider actions with a finite number of orbits. Recall that a G-variety X is called spherical if a Borel subgroup $B \subseteq G$ acts on X with an open orbit. It is well-known that the number of B-orbits on a spherical variety is finite, see [2, 10]. Equivalently, the number of G-orbits on $G / B \times X$ is finite if X is spherical. Therefore, if $P \subseteq G$ is a parabolic subgroup and X is a spherical G-variety, then the number of G-orbits on $G / P \times X$ is finite. The classification of all pairs of parabolic subgroups (P, Q) such that $G / P \times G / Q$ is spherical is given in $[5,9]$. According to this classification, if $\left(G, P_{i}\right)$ is an entry in Table 1, then $G / P_{i} \times G / P_{i}$ is spherical and hence the number of G-orbits on $G / P_{i} \times G / P_{i} \times G / P_{i}$ is finite. In the last section we prove that the number of G-obits on $(G / P)^{n}$ is infinite if $n \geq 4$. We also check directly that if (G, P) is an entry in Table 2 , then the number of G-orbits on $G / P \times G / P \times G / P$ is infinite. Finally, from [6, Theorem 2.2] we see that if the flag variety $G L_{l+1} / P^{(1)} \times G L_{l+1} / P^{(2)} \times G L_{l+1} / P^{(3)}$, where $P^{(i)}$ are parabolic, has a finite number of $G L_{l+1}$-orbits, then at least one of these parabolic subgroups is maximal. This result can be applied to $S L_{l+1}$ directly as well since the central torus of $G L_{l+1}$ is a subgroup of all parabolic subgroups and acts trivially on the flag variety. Thus we come to the following result.

Theorem 1.3. Let G be a simple algebraic group, $P \subset G$ be a parabolic subgroup and $n \geq 3$. The following properties are equivalent.

1. The number of G-orbits on $(G / P)^{n}$ is finite.
2. $n=3, P$ is maximal, and there is an open G-orbit on $G / P \times G / P \times G / P$.
3. $n=3$, and $G / P \times G / P$ is spherical.

Corollary 1.4. Let $n \geq 3$. The number of G-orbits on $(G / P)^{n}$ is finite if and only if $n=3$ and (G, P) is one of the pairs listed in Table 3:

Table 3. Actions with finite numbers of orbits

Type of G	P
A_{l}	any maximal
$B_{l}, l \geq 3$	P_{1}, P_{l}
$C_{l}, l \geq 2$	P_{1}, P_{l}
$D_{l}, l \geq 4$	P_{1}, P_{l-1}, P_{l}
E_{6}	P_{1}, P_{6}
E_{7}	P_{7}

Let us mention a more general result for classical groups. Let $P^{(1)}, \ldots, P^{(n)}$ be parabolic subgroups in G. We call the variety $G / P^{(1)} \times \ldots \times G / P^{(n)}$ a generalized multiple flag variety. The classification of all generalized multiple flag varieties with a finite number of G-orbits is given in [6] for $G=S L_{l+1}$ and in [7] for $G=S p_{2 l}$.

Proofs of Theorems 1.2 and 1.3 use methods developed in [8]. In several cases for $G=S O_{2 l}$ the existence of an open orbit is checked directly.

2 Preliminaries

Let G be a connected simple algebraic group over an algebraically closed field \mathbb{K} of characteristic zero and $\mathfrak{g}=$ Lie G. Fix a Borel subgroup $B \subset G$ and a maximal torus $T \subset B$. These data determine a root system Φ of \mathfrak{g}, a positive root subsystem Φ^{+}and a system of simple roots $\Delta \subseteq \Phi^{+}, \Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. Choose corresponding Chevalley generators $\left\{x_{i}, y_{i}, h_{i}\right\}$ of \mathfrak{g}. We have $\left[h, x_{i}\right]=\alpha(h) x_{i},\left[h, y_{i}\right]=-\alpha(h) y_{i}$ for all $h \in \mathfrak{t}=\operatorname{Lie} T$ and $h_{i}=\left[x_{i}, y_{i}\right]$.

Let $I=\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{s}}\right\} \subseteq \Delta$ be a subset. The Lie algebra of the parabolic subgroup $P_{I}:=P_{i_{1}, \ldots, i_{s}}$ is

$$
\mathfrak{p}=\mathfrak{b} \oplus \bigoplus_{\alpha \in \Phi_{I}} \mathfrak{g}_{\alpha}
$$

where $\mathfrak{b}=$ Lie B and $\Phi_{I} \subseteq \Phi^{-}$denotes the set of the negative roots such that their decomposition into the sum of simple roots does not contain the roots $\alpha_{i}, i \in I$. For example, $P_{\Delta}=B$ and $P_{\varnothing}=G$. It is known [3, Theorem 30.1] that if a parabolic group P contains B, then $P=P_{I}$ for some $I \subseteq \Delta$. Therefore any parabolic subgroup $P \subseteq G$ is conjugate to some P_{I}. If $P=P_{I}$ for some $I \subseteq \Delta$, we denote by P^{-}the parabolic subgroup whose Lie algebra is

$$
\mathfrak{p}^{-}=\mathfrak{t} \oplus \bigoplus_{\alpha \in-\Phi_{I} \cup \Phi^{-}} \mathfrak{g}_{\alpha}
$$

Denote the weight lattice of T by $\mathfrak{X}(T)$. Let $\mathfrak{X}^{+}(T)$ be the subsemigroup of dominant weights with respect to B. Assume first that G is simply connected. Then \mathfrak{X}^{+}is generated by the fundamental weights π_{1}, \ldots, π_{l}. Given a dominant weight λ, denote the simple G-module with the highest weight λ by $V(\lambda)$. If G is not simply connected, we may consider a simply connected cover $p: \widetilde{G} \rightarrow G$, the dominant weight semigroup $\mathfrak{X}^{+}\left(p^{-1}(T)\right)$ and the highest weight \widetilde{G}-module $V(\lambda)$.

Let G be a simple group and $P=P_{i_{1}, \ldots, i_{s}}$ be a parabolic subgroup. Notice that if there is an open G orbit on $(G / P)^{n}$, then there exists an open G-orbit on $\left(G / P_{i}\right)^{n}$ for all $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Indeed, since $P \subseteq P_{i}$, one has the surjective G-equivariant map $G / P \rightarrow G / P_{i}, g P \mapsto g P_{i}$. It induces the surjective G-equivariant map $\varphi:(G / P)^{n} \rightarrow\left(G / P_{i}\right)^{n}$, and the image of an open G-orbit on $(G / P)^{n}$ under φ is an open G-orbit on $\left(G / P_{i}\right)^{n}$. Similarly, if G acts on $(G / P)^{n}$ with an open orbit and $m<n$, then G acts on $(G / P)^{m}$ with an open orbit.

Theorem 1.1 leaves us very few cases of non-maximal parabolic groups to consider. Namely, if $n>3$ and G is of type B_{l}, C_{l} or D_{l}, then G never acts on $(G / P)^{n}$ with an open orbit. If $n=3$ and G is of type B_{l} or C_{l}, it suffices to consider $P=P_{1, l}$, and we show that there is no open orbit in this case. If $n=3$ and G is of type D_{l}, an open orbit may exist only if $P=P_{I}$ where $I \subseteq\left\{\alpha_{1}, \alpha_{l-1}, \alpha_{l}\right\}$. So there are four cases to consider. We reduce the case $P_{1, l-1}$ to the case $P_{1, l}$. If G is of type E_{6}, the only parabolic group we should consider is $P=P_{1,6}$. We show that there is no open orbit for $n=3$. For G of type E_{7}, if there existed an open G-orbit on $(G / P)^{n}$ for $n \geq 3$, then the only maximal parabolic subgroup containing P would be P_{7}, but in this case P would be maximal itself. If G is of type E_{8}, F_{4} or G_{2}, an open orbit never exists for maximal parabolic subgroups
whenever $n \geq 3$, so there are no cases to consider.
Given a group G acting on an irreducible variety X with an open orbit, according to [8] we denote the maximal n such that there is an open G-orbit on X^{n} by $\operatorname{gtd}(G: X)$. If G acts on X^{n} with an open orbit, we say that the action $G: X$ is generically n-transitive.

We make use of the following fact proved by Popov.
Proposition 2.1. [8, Corollary 1 (ii) of Proposition 2] Let G be a simple algebraic group, P be a parabolic subgroup, P^{-}be an opposite parabolic subgroup, $L=P \cap P^{-}$be the corresponding Levi subgroup and \mathfrak{u}^{-}be the Lie algebra of the unipotent radical of P^{-}. If P is conjugate to $P^{-}, \operatorname{then} \operatorname{gtd}(G: G / P)=2+\operatorname{gtd}\left(L: \mathfrak{u}^{-}\right)=$ $2+\operatorname{gtd}(L: \mathfrak{u})$.

In particular cases we will see that L is isomorphic to a well-known reductive group (for example, to $\left.\mathbb{K}^{*} \times G L_{l-1}\right)$, and that $\mathfrak{u}\left(\right.$ or $\left.\mathfrak{u}^{-}\right)$is isomorphic to a direct sum of well-known L-modules. The exact list of these modules depends on how the isomorphism between L and the reductive group was chosen. For the semisimple part of L, in terms of Dynkin diagrams, it depends on the way we identify the Dynkin diagram obtained from the Dynkin diagram of G (with the enumeration of the vertices as in [4]) by removing the vertices corresponding to P and the Dynkin diagram of the semisimple part of the well-known reductive group. We prefer to identify them so that the order of vertices is the same in both cases. We still have to choose the isomorphism between the centers of L and of the reductive group (despite it is already fixed on the intersection of the center and the semisimple part, which is a finite group, we still can have several possibilities) and to choose whether to use \mathfrak{u} and \mathfrak{u}^{-}. Among these possibilities, we prefer the one that leads to a simpler description of an L-module. For example, we prefer to have more tautological modules than the dual ones or more positive \mathbb{K}^{*}-weights.

We suppose that the group $S O_{2 l}$ acts in the $2 l$-dimensional space and preserves the bilinear form whose matrix with respect to a standard basis is

$$
Q=\left(\begin{array}{cccccc}
& & & & & 1 \\
& & 0 & & & . \\
& & & 1 & \\
& & 1 & & \\
& . & & & \\
& & & &
\end{array}\right)
$$

When we deal with a tautological $G L_{l}$-module V, we always assume that we have chosen a basis of V denoted by e_{1}, \ldots, e_{l}, unless stated otherwise. Similarly, we denote the corresponding basis of $V \wedge V$ by $\left\{e_{i} \wedge e_{j}\right\}$ $(1 \leq i<j \leq l)$, we denote the basis of V^{*} by $\left\{e_{i}^{*}\right\}$, etc. If this does not lead to an ambiguity, when we have several tautological $G L_{l}$-modules, we denote a basis of each of them by e_{1}, \ldots, e_{l}.

We denote the l-dimensional projective space by \mathbf{P}^{l} and the Grassmannian of k-dimensional subspaces in \mathbb{K}^{l} by $\operatorname{Gr}(k, l)$.

6 R. Devyatov

We denote the $l \times l$ identity matrix by id_{l}. If A_{1}, \ldots, A_{k} are square matrices, we denote the block diagonal matrix with blocks A_{1}, \ldots, A_{k} by $\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$. If V is a vector space with a symmetric bilinear form, $V_{1} \subseteq V$ and $V_{2} \subseteq V$ are subspaces with prefixed bases and such that the bilinear form establishes a non-degenerate pairing between V_{1} and V_{2}, and A is the matrix of a linear operator on V_{1}, then we denote the matrix of the adjoint operator on V_{2} by A^{*}.

3 Existence of an Open Orbit

3.1 Groups of type $B_{l}, l \geq 3$

By Theorem 1.1, it is sufficient to consider the case $P=P_{1, l}$. The Dynkin diagram B_{l} has no automorphisms, hence P is conjugate to P^{-}. So we may apply Proposition 2.1 , and it suffices to check that $\operatorname{gtd}(L: \mathfrak{u})=0$, i. e. L acts on \mathfrak{u} with no open orbit.

Let $G=S O_{2 l+1}$. Then $L=\mathbb{K}^{*} \times G L_{l-1}$ and the L-module \mathfrak{u} can be decomposed into the direct sum $V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4} \oplus V_{5}$. Here V_{1} is a $G L_{l-1}$-module $\left(\mathbb{K}^{l-1}\right)^{*}$ dual to the tautological one and its \mathbb{K}^{*}-weight is $1, V_{2}$ is a trivial one-dimensional $G L_{l-1}$-module of weight $1, V_{3}$ is a tautological $G L_{l-1}$-module \mathbb{K}^{l-1} of weight $0, V_{4}$ is a $G L_{l-1}$-module \mathbb{K}^{l-1} of weight $1, V_{5}$ is a $G L_{l-1}$-module $\Lambda^{2} \mathbb{K}^{l-1}$ of weight 0 . According to this decomposition, we denote the components of a vector $u \in \mathfrak{u}$ by $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$.

Notice that there exists a $G L_{l-1}$-invariant pairing between V_{1} and V_{4}, whose \mathbb{K}^{*}-weight is 2 . Therefore the rational function

$$
\frac{\left(u_{1}, u_{4}\right)}{u_{2}^{2}}
$$

is a non-constant invariant for $L: \mathfrak{u}$, and the action of G on G / P is not generically 3 -transitive.

3.2 Groups of type $C_{l}, l \geq 2$

This case is completely similar to the previous one, and again the only thing we should do is to prove that there is no open L-orbit on \mathfrak{u}, where $L=P \cap P^{-}$is a Levi subgroup of $P=P_{1, l}$ and \mathfrak{u} is the Lie algebra of the unipotent radical of P.

Let $G=S p_{2 l}$. Then $L=\mathbb{K}^{*} \times G L_{l-1}$ and the L-module \mathfrak{u} can be written as $V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4}$. Here V_{1} is a $G L_{l-1}$-module $\left(\mathbb{K}^{l-1}\right)^{*}$ and its \mathbb{K}^{*}-weight is $1, V_{2}$ is a $G L_{l-1}$-module \mathbb{K}^{l-1} of weight $1, V_{3}$ is a $G L_{l-1}$-module $S^{2} \mathbb{K}^{l-1}$ of weight $0, V_{4}$ is a trivial $G L_{l-1}$-module of weight 2 . According to this decomposition, we denote the components of a vector $u \in \mathfrak{u}$ by $u_{1}, u_{2}, u_{3}, u_{4}$.

We see that there exists a $G L_{l-1}$-invariant pairing between V_{1} and V_{2} with \mathbb{K}^{*}-weight is 2 . Therefore we have a rational invariant

$$
\frac{\left(u_{1}, u_{2}\right)}{u_{4}}
$$

for $L: \mathfrak{u}$, and the action of G on G / P is not generically 3 -transitive.

3.3 Groups of type $D_{l}, l \geq 4$

This time we should consider the following four cases of parabolic subgroups: $P=P_{1, l-1}, P_{1, l}, P_{l-1, l}, P_{1, l-1, l}$. One easily checks that P and P^{-}are conjugate except for the cases $P=P_{1, l}, l$ odd, and $P=P_{1, l-1}, l$ odd.

Let $G=S O_{2 l}$. There exists a diagram automorphism of G that interchanges α_{l-1} and α_{l}. It preserves the maximal torus and the Borel subgroup and interchanges $P_{1, l-1}$ and $P_{1, l}$. Therefore, the actions $G: G / P_{1, l-1}$ and $G: G / P_{1, l}$ are either generically 3 -transitive or not generically 3 -transitive simultaneously.

In what follows we always suppose that B is the group of all upper-triangular matrices in G (according to the action of G in the tautological representation), and P_{l} is the group of all $g \in G$ that preserve the subspace $\left\langle e_{1}, \ldots, e_{l}\right\rangle$. This eliminates the ambiguity in choosing the numbering of the two last simple roots swapped by the automorphism of the diagram D_{l}.

3.3.1 $\quad P=P_{l-1, l}$

In this case, P and P^{-}are conjugate, and we have to find $\operatorname{gtd}(L: \mathfrak{u})$.
The Levi subgroup L is isomorphic to $\mathbb{K}^{*} \times G L_{l-1}$ and the L-module \mathfrak{u} is isomorphic to $V_{1} \oplus V_{2} \oplus V_{3}$, where V_{1} is a $G L_{l-1}$-module $\Lambda^{2} \mathbb{K}^{l-1}$ and its \mathbb{K}^{*}-weight is $0, V_{2}$ is a $G L_{l-1}$-module \mathbb{K}^{l-1} of weight $1, V_{3}$ is a $G L_{l-1}$-module \mathbb{K}^{l-1} of weight -1 . We denote the components of a vector $u \in \mathfrak{u}$ by u_{1}, u_{2}, u_{3}.

Let l be even. We prove that there is an open L-orbit on \mathfrak{u} as follows. We start with a point $\left(u_{1}, u_{2}, u_{3}\right) \in \mathfrak{u}$. During the proof at each step we impose an open L-invariant condition on $\left(u_{1}, u_{2}, u_{3}\right)$ and prove that if the conditions are satisfied, the point $\left(u_{1}, u_{2}, u_{3}\right)$ can be brought to a smaller subset of \mathfrak{u}. (The elements of this subset also satisfy the conditions since the conditions are L-invariant.) Finally this subset becomes one point p (that does not depend on $\left(u_{1}, u_{2}, u_{3}\right)$) and we notice that p satisfies all the open conditions we will have imposed. This guarantees that the conditions define a non-empty open L-invariant subset in \mathfrak{u}, i. e. an open L-orbit.

Since $l-1$ is odd, the rank of a generic element $w \in V_{1}$ is $l-2$. Consider the set of all $w \in V_{1}$ such that $\operatorname{rk} w=l-2$. This is an L-invariant subset, so in the sequel we assume that $\mathrm{rk} u_{1}=l-2$. Then one can apply to $\left(u_{1}, u_{2}, u_{3}\right) \in \mathfrak{u}$ an element of $G L_{l-1}$ that brings u_{1} to the following form: $u_{1}^{\prime}=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\ldots+e_{l-3} \wedge$ e_{l-2}. Denote the images of u_{2} and u_{3} under this action by u_{2}^{\prime} and u_{3}^{\prime}.

Any element $w \in V_{1}$ of rank $l-2$ gives rise to (degenerate) skew-symmetric forms on V_{2}^{*} and on V_{3}^{*}, and their kernels are of dimension 1 . Consider the subspace $X_{w}=(\operatorname{Ker} w)^{\perp} \subset V_{2}$ where all the functions from the kernel of this form vanish. Similarly denote $Y_{w}=(\operatorname{Ker} w)^{\perp} \subset V_{2}$. The conditions $u_{2} \notin X_{u_{1}}$ and $u_{3} \notin Y_{u_{1}}$ are open and L-invariant, and we assume in the sequel that they are satisfied. Then $u_{2}^{\prime} \notin X_{u_{1}^{\prime}}$, its last coordinate is non-zero, and there is a matrix of the form

$$
\left(\begin{array}{cccc}
& & & * \tag{*}\\
& & & \\
& \operatorname{id}_{l-2} & & \vdots \\
& & & * \\
0 & \ldots & 0 & \lambda
\end{array}\right), \quad \lambda \neq 0
$$

that moves u_{2}^{\prime} to $u_{2}^{\prime \prime}=e_{l-1}$. Notice that all such elements of $G L_{l-1}$ preserve u_{1}^{\prime}. Denote the image of u_{3}^{\prime} under the action of this element by $u_{3}^{\prime \prime}$.

Now, the subgroup of L of the elements of the form

$$
\left(\operatorname{diag}(A, \lambda), \lambda^{-1}\right), \quad A \in S p_{l-2}, \lambda \neq 0
$$

keeps u_{1}^{\prime} and $u_{2}^{\prime \prime}$ unchanged. We have assumed that $u_{3} \notin Y_{u_{1}}$, so now we have $u_{3}^{\prime \prime} \notin Y_{u_{1}^{\prime}}$, and the last coordinate of $u_{3}^{\prime \prime}$ cannot be zero. Then, by an appropriate choice of $\lambda, u_{3}^{\prime \prime}$ can be brought to an element $u_{3}^{\prime \prime \prime} \in V_{3}$ whose last coordinate is 1 .

Now we impose the last L-invariant open condition on $\left(u_{1}, u_{2}, u_{3}\right)$. Namely, we require that u_{2} is not a multiple of u_{3}. Then $u_{3}^{\prime \prime \prime}$ is not a multiple of $u_{2}^{\prime \prime}$, and at least one of the first $l-2$ coordinates of $u_{3}^{\prime \prime \prime}$ is non-zero. Since $S p_{l-2}$ acts transitively on $\mathbb{K}^{l-2} \backslash 0$, it is possible to bring the vector formed by the first $l-2$ coordinates of $u_{3}^{\prime \prime \prime}$ to e_{1}. Finally, we have brought u_{1} to $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\ldots+e_{l-3} \wedge e_{l-2}, u_{2}$ to e_{l-1}, u_{3} to $e_{1}+e_{l-1}$. These elements satisfy the open conditions we have introduced, hence they define an open L-orbit in \mathfrak{u}.

Let l be odd. Then a generic element $u_{1} \in V_{1}$ gives rise to a non-degenerate skew-symmetric bilinear form on the $G L_{l-1}$-module $\left(\mathbb{K}^{l-1}\right)^{*}$. Furthermore, one can consider the corresponding skew-symmetric form on the tautological $G L_{l-1}$-module. This form is obtained by matrix inversion and we denote it by u_{1}^{-1}. The following function is a rational L-invariant:

$$
u_{1}^{-1}\left(u_{2}, u_{3}\right)
$$

Thus the action of G on G / P is not generically 3-transitive.

3.3.2 $\quad P=P_{1, l}$

In this case, Proposition 2.1 applies if and only if l is even.
Let l be even. It is sufficient to prove that there is an open L-orbit on \mathfrak{u}. The proof is organized as in the previous case for even l.

Again $L=\mathbb{K}^{*} \times G L_{l-1}$, and the L-module \mathfrak{u} can be decomposed into three summands, $\mathfrak{u}=V_{1} \oplus V_{2} \oplus V_{3}$, but this time V_{1} is a $G L_{l-1}$-module $\Lambda^{2} \mathbb{K}^{l-1}$ and its \mathbb{K}^{*}-weight is $0, V_{2}$ is a $G L_{l-1}$-module \mathbb{K}^{l-1} of weight $1, V_{3}$ is a $G L_{l-1}$-module $\left(\mathbb{K}^{l-1}\right)^{*}$ of weight 1 . We denote the components of an element $u \in \mathfrak{u}$ by u_{1}, u_{2}, u_{3}.

The group L in this case is isomorphic to the one in the previous case, and the modules V_{1} and V_{2} are also the same as in the previous case. This enables us to keep the notation X_{w} that we have introduced for even l.

Again we may suppose that $\operatorname{rk} u_{1}=l-2$, so it can be brought to $u_{1}^{\prime}=e_{1} \wedge e_{2}+\ldots+e_{l-3} \wedge e_{l-2}$. We also suppose that $u_{2} \notin X_{u_{1}}$, so it can be eventually moved to $u_{2}^{\prime \prime}=e_{l-1}$ as in the previous case. We denote the image of u_{3} under this action by $u_{3}^{\prime \prime}$. And again the subgroup of L of the elements of the form $\left(\operatorname{diag}(A, \lambda), \lambda^{-1}\right)$ (where $\left.A \in S p_{l-2}, \lambda \neq 0\right)$ preserves u_{1}^{\prime} and $u_{2}^{\prime \prime}$.

This time there exists a $G L_{l-1}$-invariant pairing between V_{2} and V_{3} (denote it by $\langle\cdot, \cdot\rangle$), and we impose the condition $\left\langle u_{2}, u_{3}\right\rangle \neq 0$. It guarantees that the last coordinate of $u_{3}^{\prime \prime}$ is non-zero. We also impose the L-invariant condition $u_{3} \notin \operatorname{Ker} u_{1}$, which guarantees that the first $l-2$ coordinates of $u_{3}^{\prime \prime}$ cannot vanish simultaneously. By the appropriate choice of λ the last coordinate of $u_{3}^{\prime \prime}$ can be brought to 1 , and by the appropriate choice of A we can finally move it to $e_{1}^{*}+e_{l-1}^{*}$. So we have moved u_{1} to $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\ldots+e_{l-3} \wedge e_{l-2}, u_{2}$ to e_{l-1}, and u_{3} to $e_{1}^{*}+e_{l-1}^{*}$. These elements satisfy the open conditions we have introduced, hence they define an open L-orbit in \mathfrak{u}.

Let l be odd. Proposition 2.1 does not apply, and we have to find $\operatorname{gtd}(G: G / P)$ directly. We use the following well-known fact about generically transitive actions:

Lemma 3.1. Let an algebraic group G act on irreducible algebraic varieties W and Y, and let $f: W \rightarrow Y$ be a G-equivariant map.

1. The following properties are equivalent:
(a) The action of G on W is generically transitive and $f(W)$ is dense in Y.
(b) The action of G on Y is generically transitive and if H is the G-stabilizer of a general point $y \in Y$, then there exists a dense H-orbit on $f^{-1}(y)$.
2. Assume that 1a and 1 b hold. If $y \in Y$ and $w \in f^{-1}(y)$ are points such that the orbits $G \cdot y$ and $G_{y} \cdot w$ are dense in Y and $f^{-1}(y)$ respectively, then the orbit $G \cdot w$ is open in W.

By Theorem 1.1, it is sufficient to check that G acts on $G / P \times G / P \times G / P$ with an open orbit. First, G acts on G / P transitively, and it follows from Bruhat decomposition that P acts on G / P with finitely many orbits. The open orbit is the orbit of the point $w P$ where w is a representative of the longest element of the Weyl group of G in $N_{G}(T)$. By Lemma 3.1 (2), the orbit $G \cdot(P, w P) \subseteq G / P \times G / P$ is open in $G / P \times G / P$. The stabilizer of the point $(P, w P)$ equals $P \cap w P w^{-1}$. It is known that (in the case under consideration, i. e. $G=S O_{2 l}, l$ odd) $w P_{1} w^{-1}=P_{1}^{-}$and $w P_{l} w^{-1}=P_{l-1}^{-}$, so $G_{(P, w P)}=P_{1, l} \cap P_{1, l-1}^{-}$. So, by Lemma 3.1 (1) it is sufficient to check that there is a dense $\left(P_{1, l} \cap P_{1, l-1}^{-}\right)$-orbit on G / P. Denote $H=P_{1, l} \cap P_{1, l-1}^{-}$.

Consider the tautological $S O_{2 l}$-module $\mathbb{K}^{2 l}$, and let $e_{1}, \ldots, e_{2 l}$ be its standard basis. Then H is the group of all elements of G that preserve the following subspaces: $\left\langle e_{1}\right\rangle,\left\langle e_{1}, \ldots, e_{2 l-1}\right\rangle$ (for P_{1}), $\left\langle e_{1}, \ldots, e_{l}\right\rangle$ (for P_{l}), $\left\langle e_{2 l}\right\rangle,\left\langle e_{2}, \ldots, e_{2 l}\right\rangle\left(\right.$ for $\left.P_{1}^{-}\right),\left\langle e_{l}, e_{l+2}, e_{l+3}, \ldots, e_{2 l}\right\rangle$ (for P_{l-1}^{-}).

Let $X^{\prime} \subset \operatorname{Gr}(l, 2 l)$ be the set of all isotropic subspaces of dimension l in $\mathbb{K}^{2 l}$. One easily checks that X^{\prime} is a disjoint union of two $S O_{2 l}$-orbits, and the group $O_{2 l}$ interchanges them. If two subspaces belong to the same $S O_{2 l}$-orbit, then their intersection is non-zero. Denote the orbit $S O_{2 l}\left\langle e_{1}, \ldots, e_{l}\right\rangle \subset X^{\prime}$ by X. Then X is an irreducible subvariety in $\operatorname{Gr}(l, 2 l)$. Denote the set of all isotropic lines in $\mathbf{P}^{2 l-1}$ by Y. For each $s \in X^{\prime}$ let $Y_{s} \subset \mathbf{P}^{2 l-1}$ be the set of all lines contained in s. Clearly, $W=\cup_{s \in X}\left(s \times Y_{s}\right)$ is a closed G-invariant subset in $\operatorname{Gr}(l, 2 l) \times \mathbf{P}^{2 l-1}$. One easily checks that $G / P=W$.

We are going to use Lemma 3.1 (1) again for the map $\psi: W \rightarrow Y$ (the projection to the first coordinate).
First, let us find an open H-orbit $Z \subseteq Y$ and an element $b \in Z$. We define Z by introducing open conditions step by step as in previous cases. Let $a \in Y$. Choose a vector $f=\sum_{i=1}^{2 l} f_{i} e_{i}\left(f_{i} \in \mathbb{K}\right)$ such that $\langle f\rangle=a$. Suppose that $a \nsubseteq\left\langle e_{2}, \ldots, e_{2 l-1}\right\rangle$. This subspace is H-invariant since it is the intersection of two H-invariant subspaces $\left\langle e_{1}, \ldots, e_{2 l-1}\right\rangle$ and $\left\langle e_{2}, \ldots, e_{2 l}\right\rangle$. Then $f_{1} \neq 0, f_{2 l} \neq 0$. There exists a diagonal matrix of the form $\operatorname{diag}\left(\lambda, \operatorname{id}_{2 l-2}, \lambda^{-1}\right) \in H$ that maps f to a vector $f^{\prime}=\sum f_{i}^{\prime} e_{i}$ where $f_{1}^{\prime}=f_{2 l}^{\prime} \neq 0$. Without loss of generality, $f_{1}^{\prime}=$ $f_{2 l}^{\prime}=1$ (we may multiply f by a constant). Now suppose that $a \nsubseteq\left\langle e_{1}, \ldots, e_{l}, e_{l+2}, e_{l+3}, \ldots, e_{2 l}\right\rangle=\left\langle e_{1}, \ldots, e_{l}\right\rangle+$ $\left\langle e_{l}, e_{l+2}, e_{l+3}, \ldots, e_{2 l}\right\rangle$. Then $f_{l+1}^{\prime} \neq 0$. There exists a matrix A acting on $\left\langle e_{2}, \ldots, e_{2 l-1}\right\rangle$ (see Appendix A for an exact formula for A) such that $\operatorname{diag}(1, A, 1)$ is an element of H and maps f^{\prime} to $f^{\prime \prime}=e_{1}+e_{l}-e_{l+1}+e_{2 l}$. So we have moved every line $a \in Z$ to $b=\left\langle e_{1}+e_{l}-e_{l+1}+e_{2 l}\right\rangle \in Z$.

Now consider the action of H_{b} on $\psi^{-1}(b)$. In fact, the action of H_{b}° will be enough for our purposes. First, we need a simpler description for this action, so we use the following lemma. The proof of the lemma is technical and will be given in Appendix A. To formulate the lemma, notice first that the bilinear form on $\mathbb{K}^{2 l}$ induces a non-degenerate bilinear form on $b^{\perp} / b . H_{b}$ preserves $b^{\perp}($ and $b)$, so it acts on b^{\perp} / b.

Lemma 3.2. H_{b} is isomorphic to $G L_{l-2} \times\{1,-1\}$. There exists a basis $v_{1}, \ldots v_{2 l-2}$ of b^{\perp} / b such that $\psi^{-1}(b)$ is (H_{b}-equivariantly) isomorphic to $S O\left(b^{\perp} / b\right)\left\langle v_{1}, \ldots, v_{l-1}\right\rangle$ and that the matrix of the bilinear form in this basis is Q. In terms of the isomorphism between H_{b}° and $G L_{l-2}$ and the basis of b^{\perp} / b mentioned above, H_{b}° acts on b^{\perp} / b by matrices of the form $\operatorname{diag}\left(1,\left(D^{*}\right)^{-1}, D, 1\right), D \in G L\left(\left\langle v_{l}, \ldots, v_{2 l-3}\right\rangle\right)$.

The group H_{b}° being written as the group of all matrices of the form $\operatorname{diag}\left(1,\left(D^{*}\right)^{-1}, D, 1\right)$ (where $D \in G L_{l-2}$) is a subgroup of $L^{\prime}=P_{l-1}^{\prime} \cap\left(P_{l-1}^{\prime}\right)^{-}$, where we denote by P_{l-1}^{\prime} the parabolic subgroup of $S O\left(b^{\perp} / b\right)$ corresponding to the $(l-1)$-th simple root to distinguish it from parabolic subgroups of G. Notice that $S O\left(b^{\perp} / b\right) / P_{l-1}^{\prime}$ is $S O\left(b^{\perp} / b\right)$-isomorphic to $S O\left(b^{\perp} / b\right)\left\langle v_{1}, \ldots, v_{l-1}\right\rangle$. Denote the unipotent radical of $\left(P_{l-1}^{\prime}\right)^{-}$ by $U^{\prime-}$. Now we are going to use one more fact from [8] (see also [1]):

Proposition 3.3. [8, Proposition 2 (i)], see also [1, 14.21] Let P be a parabolic subgroup of a connected reductive group G. Let P^{-}be an opposite parabolic subgroup (i. e. $P \cap P^{-}$is a Levi subgroup in P). Let U^{-} be the unipotent radical of $P^{-}, \mathfrak{u}^{-}=\operatorname{Lie} U^{-}$. Denote by $p \in G / P$ the image of P under the canonical map $G \rightarrow G / P$.

Then the orbit $U^{-} \cdot p$ is open in G / P, is L-stable and is L-isomorphic to \mathfrak{u}^{-}.

In the case under consideration this means that $U^{\prime-}\left\langle v_{1}, \ldots, v_{l-1}\right\rangle$ is open in $S O\left(b^{\perp} / b\right) / P_{l-1}^{\prime}$ and is $L^{\prime}-$ isomorphic (and therefore H_{b}°-isomorphic) to $\mathfrak{u}^{\prime-}=\operatorname{Lie} U^{\prime-}$. It suffices to prove that H_{b}° acts on $\mathfrak{u}^{\prime-}$ with an open orbit. A direct calculation shows that $\mathfrak{u}^{\prime-}$ as $H_{b}^{\circ}=G L_{l-2}$ module (in terms of the isomorphism above) is isomorphic to $\Lambda^{2} \mathbb{K}^{l-2} \oplus \mathbb{K}^{l-2}$. Denote the components of an element $u \in \mathfrak{u}^{\prime-}$ by u_{1} and u_{2}.

Now the situation is similar to the previous cases since $l-2$ is odd. Namely, every element of $\Lambda^{2} \mathbb{K}^{l-2}$ defines a skew-symmetric bilinear form on $\left(\mathbb{K}^{l-2}\right)^{*}$, and the forms of rank $l-3$ form an open subset. If $\mathrm{rk} u_{1}=l-3$,
$\left(u_{1}, u_{2}\right)$ can be brought by the action of $G L_{l-2}$ to $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$, where $u_{1}^{\prime}=e_{1} \wedge e_{2}+\ldots+e_{l-4} \wedge e_{l-3}$. The pairs $\left(u_{1}, u_{2}\right)$ where $\mathrm{rk} u_{1}=l-3$ and the natural pairing between (any non-zero) element of $\operatorname{ker} u_{1} \subset\left(\mathbb{K}^{l-2}\right)^{*}$ and u_{2} is non-zero form an open $G L_{l-2}$-invariant subset. If $\left(u_{1}, u_{2}\right)$ is in this subset and u_{1} is already moved to u_{1}^{\prime}, then u_{2}^{\prime} can be moved to e_{l-2} by a matrix of the form $(*)$, which preserves u_{1}^{\prime}.

Therefore, H_{b}° acts on $\mathfrak{u}^{\prime-}$ with an open orbit. By Proposition 3.3, H_{b}° also acts on (an irreducible variety) $S O\left(b^{\perp} / b\right)\left\langle v_{1}, \ldots, v_{l-1}\right\rangle$ with a dense orbit. By Lemma 3.1 (1), H acts on G / P with an open orbit, hence the action of G on $G / P \times G / P \times G / P$ is generically transitive.

3.3.3 $\quad P=P_{1, l-1, l}$

The subgroups P and P^{-}are conjugate for all l. It is sufficient to find $\operatorname{gtd}(L: \mathfrak{u})$, where $L=\left(\mathbb{K}^{*}\right)^{2} \times G L_{l-2}$ and the L-module \mathfrak{u} is isomorphic to the direct sum of 7 simple modules, which we denote by V_{1}, \ldots, V_{7}. Namely, V_{1} is a $G L_{l-2}$-module $\left(\mathbb{K}^{l-2}\right)^{*}$ and its $\left(\mathbb{K}^{*}\right)^{2}$-weight is $(1,0), V_{2}$ is a trivial $G L_{l-2}$-module of weight $(1,1), V_{3}$ is a $G L_{l-2}$-module \mathbb{K}^{l-2} of weight $(0,1), V_{4}$ is a trivial $G L_{l-2}$-module of weight $(1,-1), V_{5}$ is a $G L_{l-2}$-module \mathbb{K}^{l-2} of weight $(0,-1), V_{6}$ is a $G L_{l-2}$-module \mathbb{K}^{l-2} of weight $(1,0), V_{7}$ is a $G L_{l-2}$-module $\Lambda^{2} \mathbb{K}^{l-2}$ of weight $(0,0)$. Denote the components of $u \in \mathfrak{u}^{-}$by u_{1}, \ldots, u_{7}.

There exists a $G L_{l-2}$-invariant pairing between V_{1} and V_{3} whose $\left(\mathbb{K}^{*}\right)^{2}$-weight is $(1,1)$. The following function is a rational L-invariant:

$$
\frac{\left(u_{1}, u_{3}\right)}{u_{2}}
$$

Thus, the G-action on G / P is not generically 3 -transitive.

3.4 Groups of type E_{6}

The only parabolic subgroup to consider is $P=P_{1,6}$. The set $\{1,6\}$ of Dynkin diagram vertices is invariant under all automorphisms of the Dynkin diagram. Hence the Weyl group element of the maximal length interchanges P and P^{-}. We have to find $\operatorname{gtd}\left(L: \mathfrak{u}^{-}\right)$.

The Levi subgroup L is locally isomorphic to $\left(\mathbb{K}^{*}\right)^{2} \times \operatorname{Spin}_{8}$, and the L-module \mathfrak{u}^{-}is isomorphic to $V_{1} \oplus V_{2} \oplus V_{3}$. Here, as subspaces in \mathfrak{g}, V_{1} (resp. V_{2}, V_{3}) is the direct sum of all \mathfrak{g}_{α} for which the decomposition of $\alpha \in \Phi^{-}$into the sum of simple roots contains both α_{1} and α_{6} with coefficients -1 (resp. α_{1} with coefficient $-1, \alpha_{6}$ with coefficient 0 for V_{2}, α_{1} with coefficient $0, \alpha_{6}$ with coefficient -1 for $\left.V_{3}\right)$. Consider the following embedding of Dynkin diagrams $D_{4} \rightarrow E_{6}$: the vertex 1 (resp. 3, 4) is mapped to the vertex 2 (resp. 3,5). Then, as L-modules, V_{1} is a Spin_{8}-module with the lowest weight $-\pi_{1}$, i. e. it is a tautological S_{8}-module (Spin_{8} acts on V_{1} with a two-element kernel, and the quotient group is $S O_{8}$), V_{2} is a $S p i n_{8}$-module with the lowest weight $-\pi_{3}, V_{3}$ is a $S p i n_{8}$-module with the lowest weight $-\pi_{4}$. Denote the components of $u \in \mathfrak{u}^{-}$by u_{1}, u_{2}, u_{3}.

Since V_{1} is a tautological S_{8}-module, there exists an S_{8}-invariant (and hence $S_{p i n}{ }_{8}$-invariant) quadratic form on it, which we denote by $\left(u_{1}, u_{1}\right)$. There exist diagram automorphisms of Spin_{8} that transform the tautological S_{8}-module to $S_{\text {Sin }}^{8}$-modules isomorphic to V_{2} and V_{3}. So there exist a quadratic Spin $_{8}$-invariant
on V_{2}, which we denote by $\left(u_{2}, u_{2}\right)$, and a quadratic Spin_{8}-invariant on V_{3}, which we denote by $\left(u_{3}, u_{3}\right)$. From the description of V_{1}, V_{2} and V_{3} in terms of root subspaces one can deduce that the $\left(\mathbb{K}^{*}\right)^{2}$-weight of V_{1} is the sum of the $\left(\mathbb{K}^{*}\right)^{2}$-weights of V_{2} and V_{3}. Hence, the following function is a non-trivial rational L-invariant:

$$
\frac{\left(u_{2}, u_{2}\right)\left(u_{3}, u_{3}\right)}{\left(u_{1}, u_{1}\right)}
$$

and the G-action on $G / P \times G / P \times G / P$ is not generically transitive.

4 Finite Number of Orbits

Proposition 4.1. Let G be a simple algebraic group and P be a proper parabolic subgroup. If $n \geq 4$, the number of G-orbits on $(G / P)^{n}$ is infinite.

Proof. Let $P=P_{i_{1}, \ldots, i_{s}}$. Consider the dominant weight $\lambda=\pi_{i_{1}}+\ldots+\pi_{i_{s}}$. Then G / P is isomorphic to the projectivization of the orbit of the highest weight vector $v_{\lambda} \in V(\lambda)$. In the sequel we shortly write $i=i_{1}$. It is easy to check that $y_{i}^{2} v_{\lambda}=0$. Denote the unipotent subgroup $\exp \left(t y_{i}\right)$ by U_{i}. We see that $U_{i} v_{\lambda}$ is an affine line not containing zero. The closure of its image in the projectivization $\mathbf{P}(V(\lambda))$ is a projective line $\mathbf{P}^{1} \subseteq G / P \subseteq \mathbf{P}(V(\lambda))$. Choose $n \geq 4$ points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1} \subseteq G / P \times \ldots \times G / P$. The double ratio of the first four of these points does not change under G-action. Hence, two n-tuples with different double ratios cannot belong to the same orbit, and the number of orbits is infinite.

Now we prove that in the cases $G=S O_{2 l}, P=P_{l-1, l}$ and $G=S O_{2 l}, P=P_{1, l-1}$ the number of orbits on $G / P \times G / P \times G / P$ is infinite (again, the case $G=S O_{2 l}, P=P_{1, l}$ can be reduced to the latter one).

Let $\mathbb{K}^{2 l}$ be the tautological $S O_{2 l}$-module and let $e_{1}, \ldots, e_{2 l}$ be the standard basis. Let $X^{\prime} \subset \operatorname{Gr}(l, 2 l)$ be the set of all isotropic subspaces of dimension l in $\mathbb{K}^{2 l}$. It is known that G / P_{l-1} and G / P_{l} are isomorphic to the two connected components of X^{\prime} (respectively). In the sequel we suppose that $G / P_{l-1}=X \subseteq X^{\prime}$. For each $s \in X$ let $Y_{s} \subset \mathbf{P}^{2 l-1}$ be the set of all lines contained in s. One easily checks that the closed subset $Y=\cup_{s \in X}\left(s \times Y_{s}\right) \subset \operatorname{Gr}(l, 2 l) \times \mathbf{P}^{2 l-1}$ is isomorphic to $S O_{2 l} / P_{1, l-1}$.

Similarly, if $s \in X$, denote by $Z_{s} \subset \operatorname{Gr}(l-1,2 l)$ the set of all subspaces of dimension $l-1$ in s. Let Z be the closed subset $\cup_{s \in X}\left(s \times Z_{s}\right) \subset \operatorname{Gr}(l, 2 l) \times \operatorname{Gr}(l-1,2 l)$. One easily checks that it is isomorphic to $S O_{2 l} / P_{l-1, l}$.

First, let $l=3$. Consider the following isotropic subspaces: $S_{1}=\left\langle e_{1}, e_{2}, e_{4}\right\rangle, S_{2}=\left\langle e_{2}, e_{3}, e_{6}\right\rangle, S_{3}=$ $\left\langle e_{1}, e_{3}, e_{5}\right\rangle$. They belong to the same $S O_{6}$-orbit, and it follows from the choice of the group P_{l} in the beginning of Section 3.3 that $S_{1}, S_{2}, S_{3} \in X$. Choose a line $T_{1} \subset S_{1}$ such that $T_{1} \subset\left\langle e_{1}, e_{2}\right\rangle$. Also choose lines $T_{2} \subset S_{2}$ and $T_{3} \subset S_{3}$ such that $T_{2} \subset\left\langle e_{2}, e_{3}\right\rangle$ and $T_{3} \subset\left\langle e_{1}, e_{3}\right\rangle$. Impose one more restriction, namely, the sum $T_{2}+T_{3}$ should be direct and should not be equal to $\left\langle e_{1}, e_{2}\right\rangle$. Consider the point $\left(\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right),\left(S_{3}, T_{3}\right)\right) \in Y \times Y \times Y$. There are four subspaces of $\left\langle e_{1}, e_{2}\right\rangle:\left\langle e_{1}\right\rangle=S_{1} \cap S_{3},\left\langle e_{2}\right\rangle=S_{2} \cap S_{3}, T_{1}$ and $T_{4}=\left(T_{2} \oplus T_{3}\right) \cap\left\langle e_{1}, e_{2}\right\rangle$. Thus, we have defined four lines in \mathbb{K}^{6} in terms of intersections and sums of S_{i} and T_{i}. If we apply an element $g \in G$ to these
four lines, we will obtain four lines defined in the same way using $g S_{i}$ and $g T_{i}$ instead of S_{i} and T_{i}. The double ratio of these four lines in their sum of dimension two is not changed under G-action. Since T_{1} is chosen arbitrarily, this double ratio can be any number and the number of orbits is infinite.

Consider the same subspaces S_{i} and T_{i} and set $U_{1}=T_{1} \oplus\left\langle e_{4}\right\rangle, U_{2}=T_{2} \oplus\left\langle e_{6}\right\rangle$ and $U_{3}=T_{3} \oplus\left\langle e_{5}\right\rangle$. The point $\left(\left(S_{1}, U_{1}\right),\left(S_{2}, U_{2}\right),\left(S_{3}, U_{3}\right)\right)$ belongs to $Z \times Z \times Z$. Note that $\left\langle e_{1}, e_{2}, e_{3}\right\rangle=\left(S_{1} \cap S_{2}\right) \oplus\left(S_{2} \cap S_{3}\right) \oplus\left(S_{1} \cap S_{3}\right)$ and $T_{i}=U_{i} \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Again we have a subspace of dimension two and four lines in it defined in terms of intersections and sums of S_{i} and U_{i}. The existence of $S O_{6}$-invariant double ratio in this case yields that the number of orbits is infinite.

Let $l>3$. Construct the subspaces S_{i}, T_{i} and U_{i} as above, using the last three basis vectors instead of e_{4}, e_{5}, e_{6}. Let $S_{i}^{\prime}=S_{i} \oplus\left\langle e_{4}, \ldots, e_{l}\right\rangle$ and $U_{i}^{\prime}=U_{i} \oplus\left\langle e_{4}, \ldots, e_{l}\right\rangle$. The points $\left(\left(S_{1}^{\prime}, T_{1}\right),\left(S_{2}^{\prime}, T_{2}\right),\left(S_{3}^{\prime}, T_{3}\right)\right)$ and $\left(\left(S_{1}^{\prime}, U_{1}^{\prime}\right),\left(S_{2}^{\prime}, U_{2}^{\prime}\right),\left(S_{3}^{\prime}, U_{3}^{\prime}\right)\right)$ belong to $Y \times Y \times Y$ and $Z \times Z \times Z$, respectively. Consider also the subspace $V=$ $\left(S_{1}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime}\right)^{\perp}$. The restriction of the bilinear form to this subspace is degenerate, its kernel is $S_{1}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime}=$ $\left\langle e_{4}, \ldots, e_{l}\right\rangle$. The quotient is a space of dimension 6 with a bilinear form. The quotient morphism restricted to $\left\langle e_{1}, e_{2}, e_{3}, e_{2 l-2}, e_{2 l-1}, e_{2 l}\right\rangle$ is an isomorphism, so we have subspaces S_{i}, T_{i}, U_{i} in the 6 -dimensional space. This is exactly the same situation as we had above for the group SO_{6}, and it enables us to define double ratios for the points of $G / P_{1, l-1} \times G / P_{1, l-1} \times G / P_{1, l-1}$ and $G / P_{l-1, l} \times G / P_{l-1, l} \times G / P_{l-1, l}$ under consideration, which are preserved under the G-action. Therefore the number of $\mathrm{SO}_{2 l}$-orbits on these multiple flag varieties is infinite. This finishes the proof of Theorem 1.3.

Funding

This work was supported in part by the Simons Foundation.
This work was supported in part by RFBR grant 12-01-31429-mol-a.
This work was supported in part by The National Research University Higher School of Economics Academic Fund Program.

Acknowledgements

I thank my former scientific advisor Ivan V. Arzhantsev for posing the problem and for paying attention to my work. Also I thank professor Vladimir L. Popov for useful comments and Dmitri A. Timashev for bringing my attention to the articles $[5,9]$.

A Appendix: Technical details for the proof in Section 3.3.2 (odd case)

We use the notation introduced in Section 3.3.2.

A. 1 Matrix A

A matrix with the desired properties can be written as follows:

$$
A=\left(\begin{array}{ccccccc}
& & 0 & -f_{2}^{\prime} / f_{l+1}^{\prime} & & \\
& \operatorname{id}_{l-2} & & \vdots & \vdots & 0 & \\
& & & 0 & -f_{l-1}^{\prime} / f_{l+1}^{\prime} & & \\
-f_{l-1}^{\prime} & \cdots & -f_{l+2}^{\prime} & -f_{l+1}^{\prime} & -f_{l}^{\prime}-1 / f_{l+1}^{\prime} & -f_{l-1}^{\prime} & \cdots \\
\hline 0 & \cdots & 0 & 0 & -1 / f_{l+1}^{\prime} & 0 & \cdots \\
& & & 0 & -f_{l+2}^{\prime} / f_{l+1}^{\prime} & & \\
& 0 & & \vdots & \vdots & & \operatorname{id}_{l-2} \\
& & & 0 & -f_{l l-1}^{\prime} / f_{l+1}^{\prime} & &
\end{array}\right) .
$$

After a suitable permutation of basis vectors this matrix becomes upper-triangular, so $\operatorname{det} A=$ $\left(-f_{l+1}^{\prime}\right)\left(-1 / f_{l+1}^{\prime}\right)=1$. One can check directly that $\operatorname{diag}(1, A, 1) \in S O_{2 l}$, the only non-trivial part of the computation is that $\operatorname{diag}(1, A, 1) e_{l+1}$ is an isotropic vector. Its square equals

$$
\begin{gathered}
2\left(\left(-f_{2}^{\prime} / f_{l+1}^{\prime}\right)\left(-f_{2 l-1}^{\prime} / f_{l+1}^{\prime}\right)+\ldots+\left(-f_{l-1}^{\prime} / f_{l+1}^{\prime}\right)\left(-f_{l+2}^{\prime} / f_{l+1}^{\prime}\right)\right)+2\left(-f_{l}^{\prime}-1 / f_{l+1}^{\prime}\right)\left(-1 / f_{l+1}^{\prime}\right)= \\
2\left(f_{2}^{\prime} f_{2 l-1}^{\prime}+\ldots+f_{l}^{\prime} f_{l+1}^{\prime}+1\right) /\left(f_{l+1}^{\prime 2}\right)= \\
2\left(f_{2}^{\prime} f_{2 l-1}^{\prime}+\ldots+f_{l}^{\prime} f_{l+1}^{\prime}+f_{1}^{\prime} f_{2 l}^{\prime}\right) /\left(f_{l+1}^{\prime 2}\right)=0
\end{gathered}
$$

since f^{\prime} is isotropic.
Now we have to check that $\operatorname{diag}(1, A, 1) f^{\prime}=e_{1}+e_{l}-e_{l+1}+e_{2 l}$. Denote $\operatorname{diag}(1, A, 1) f^{\prime}=f^{\prime \prime}=\sum f_{i}^{\prime \prime} e_{i}$. It is clear directly from the description of A that all $f_{i}^{\prime \prime}$'s except $f_{l}^{\prime \prime}$ have the desired values. But then $f_{l}^{\prime \prime}$ must equal 1 since this is the only possibility to make $f^{\prime \prime}$ isotropic.

A. 2 Proof of Lemma 3.2

If $D \in G L\left(\left\langle e_{l+1}, \ldots, e_{2 l-1}\right\rangle\right)$ and $\lambda= \pm 1$, then $\operatorname{diag}\left(\lambda,\left(D^{*}\right)^{-1}, \lambda, \lambda, D, \lambda\right) \in H_{b}$. Suppose that $g \in H_{b}$. Then g preserves the subspaces $\left\langle e_{1}\right\rangle,\left\langle e_{2 l}\right\rangle,\left\langle e_{l}\right\rangle$ and b, so it preserves their sum $\left\langle e_{1}, e_{l}, e_{l+1}, e_{2 l}\right\rangle$. Since $H\left\langle e_{2}, \ldots, e_{2 l-1}\right\rangle=$ $\left\langle e_{2}, \ldots, e_{2 l-1}\right\rangle, g$ preserves $\left\langle e_{1}, e_{l}, e_{l+1}, e_{2 l}\right\rangle \cap\left\langle e_{2}, \ldots, e_{2 l-1}\right\rangle=\left\langle e_{l}, e_{l+1}\right\rangle$. In particular, $g e_{l+1}=\lambda e_{l+1}+\mu e_{l}$ for some λ and μ, moreover, $\lambda \neq 0$, otherwise $g b \subset\left\langle e_{1}, e_{l}, e_{2 l}\right\rangle$. But then $\mu=0$, otherwise $g e_{l+1}$ is not isotropic. So g preserves $\left\langle e_{l+1}\right\rangle$ and, since $g b=b, g$ multiplies e_{1}, e_{l}, e_{l+1} and $e_{2 l}$ by the same constant that can equal ± 1 if $g \in S O_{2 l}$. Finally, $g\left\langle e_{1}, e_{l}, e_{l+1}, e_{2 l}\right\rangle=\left\langle e_{1}, e_{l}, e_{l+1}, e_{2 l}\right\rangle$, so g preserves $\left\langle e_{1}, e_{l}, e_{l+1}, e_{2 l}\right\rangle^{\perp}=\left\langle e_{2}, \ldots, e_{l-1}, e_{l+2}, \ldots, e_{2 l-1}\right\rangle$ and the intersection of the latter subspace with H-invariant subspaces $\left\langle e_{1}, \ldots, e_{l}\right\rangle$ and $\left\langle e_{l}, e_{l+2}, \ldots, e_{2 l}\right\rangle$, i. e. $\left\langle e_{2}, \ldots, e_{l-1}\right\rangle$ and $\left\langle e_{l+2}, \ldots, e_{2 l-1}\right\rangle$, respectively. Therefore, $g=\operatorname{diag}\left(\lambda,\left(D^{*}\right)^{-1}, \lambda, \lambda, D, \lambda\right)$ for some $D \in G L\left(\left\langle e_{l+1}, \ldots, e_{2 l-1}\right\rangle\right), \lambda= \pm 1$, and $H_{b}=G L_{l-2} \times\{1,-1\}$.

The set $\psi^{-1}(b) \subseteq W$ is (H_{b}-equivariantly) isomorphic to the set $S \subseteq X$ consisting of all $s \in X$ that contain b. Consider the operator that maps e_{1} to $e_{1}-e_{l+1}, e_{l}$ to $e_{l}+e_{2 l}$ and does not move all other basis vectors. One checks directly that it is an element of $S O_{2 l}$. It brings the subspace $\left\langle e_{1}, \ldots, e_{l}\right\rangle$ to the subspace $M=\left\langle e_{1}-e_{l+1}, e_{2}, \ldots, e_{l-1}, e_{l}+e_{2 l}\right\rangle$ containing b, so $M \in S$.

Now, consider the variety $S^{\prime}\left(S \subseteq S^{\prime} \subseteq X^{\prime}\right)$ consisting of all isotropic subspaces r^{\prime} of dimension l containing b. Then $S=S^{\prime} \cap X$. Consider the operator B that interchanges e_{2} and $e_{2 l-1}$ and does not move all other basis vectors. $B \in O_{2 l} \backslash S O_{2 l}$, so B interchanges X and $X^{\prime} \backslash X$. Notice that $B b=b$, so $B S^{\prime}=S^{\prime}$, and B interchanges S and $S^{\prime} \backslash S$. Since X is a connected component of X^{\prime} and S^{\prime} is a closed subset of $X^{\prime}, S\left(\right.$ resp. $S^{\prime} \backslash S$) contains at least the connected component of M (resp. $B M$) in S^{\prime}. Clearly, if $r^{\prime} \in S^{\prime}$, then $r^{\prime} \subset b^{\perp}$. The canonical projection $\pi: b^{\perp} \rightarrow b^{\perp} / b$ establishes an isomorphism φ between S^{\prime} and the set of $(l-1)$-dimensional isotropic subspaces of b^{\perp} / b. The latter variety consists of two connected components, which are $S O\left(b^{\perp} / b\right)$-orbits, and $\varphi(S)\left(\operatorname{resp} . \varphi\left(S^{\prime} \backslash S\right)\right)$ contains at least the connected component of the point $\pi(M)$ (resp. $\left.\pi(B M)\right)$. Therefore, S is connected and is exactly isomorphic to $S O\left(b^{\perp} / b\right) \pi(M)$.

Consider the following basis of $b^{\perp} / b: v_{1}=\pi\left(e_{1}-e_{l}-e_{l+1}-e_{2 l}\right) / 2, v_{2}=\pi\left(e_{2}\right), \ldots, v_{l-1}=\pi\left(e_{l-1}\right), v_{l}=$ $\pi\left(e_{l+2}\right), \ldots, v_{2 l-3}=\pi\left(e_{2 l-1}\right), v_{2 l-2}=\pi\left(e_{1}+e_{l}+e_{l+1}-e_{2 l}\right) / 2$. One checks directly that the matrix of the bilinear form in this basis is Q, that $\pi(M)=\left\langle v_{1}, \ldots, v_{l-1}\right\rangle$. Finally, it is clear from the description of H_{b} above and the definition of $\left\{v_{i}\right\}$ that H_{b}° acts by the matrices of the desired form.

References

[1] A. Borel, Linear algebraic groups: Second enlarged edition, GTM 126, Springer-Verlag, New York-Berlin, 1991.
[2] M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55 (1986), no. 2, 191-198.
[3] J. Humphreys, Linear algebraic groups. GTM 21 Springer-Verlag, New York-Heidelberg, 1975.
[4] J. Humphreys, Introduction to Lie Algebras and Representation Theory. GTM 9, Springer-Verlag, New York-Berlin, 1978.
[5] P. Littelmann, On spherical double cones, J. Algebra 166 (1994), no. 1, 142-157.
[6] P. Magyar, J. Weyman, A. Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1, 97-118.
[7] P. Magyar, J. Weyman, A. Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230 (2000), no. 1, 245-265.
[8] V.L. Popov, Generically multiple transitive algebraic group actions, Algebraic groups and homogeneous spaces, 481-523, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.

16 R. Devyatov
[9] J. Stembridge, Multiplicity-free products and restrictions of Weyl characters., Representation Theory 7 (2003), 404-439.
[10] E.B. Vinberg, Complexity of actions of reductive groups, Funkt. Anal. i Pril. 20 (1986), no. 1, 1-13; English transl.: Funct. Anal. Appl. 20 (1986), no 1, 1-11.

