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Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain

simple groups of type A, and P ⊆ G be a parabolic subgroup. Extending the results of Popov [8], we enumerate all

triples (G,P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P ×G/P × . . .×G/P (n

factors), (b) the number of G-orbits on the multiple flag variety is finite.

1 Introduction

Let G be a semisimple connected algebraic group over an algebraically closed field of characteristic zero, and

P ⊆ G be a parabolic subgroup. One easily checks that G-orbits on G/P ×G/P are in bijection with P -orbits

on G/P . The Bruhat decomposition of G implies that the number of P -orbits on G/P is finite and that these

orbits are enumerated by a subset in the Weyl group W corresponding to G. In particular, there is an open

G-orbit on G/P ×G/P . So we come to the following questions: for which G, P and n ≥ 3 is there an open

G-orbit on the multiple flag variety (G/P )n := G/P ×G/P × . . .×G/P? For which G, P and n is the number

of orbits finite?

First, let π : G̃→ G be a simply connected cover. Then π induces a bijection between parabolic subgroups

P ⊆ G and P̃ ⊆ G̃, namely P̃ = π−1(P ), and an isomorphism G̃/P̃ → G/P . Also, G̃/P̃ may be considered as G-

variety since Kerπ acts trivially on it. In this sense the isomorphism is G-equivariant. Therefore, we may replace

G with its simply connected cover and vice versa. Moreover, any connected and simply connected semisimple

group G is isomorphic to G(1) × . . .×G(k), where G(i) are simple, and for every parabolic subgroup P ⊆ G

there exist parabolic subgroups P (i) ⊆ G(i) such that G/P ∼= G(1)/P (1) × . . .×G(k)/P (k). The product of groups

G(1) × . . .×G(k) acts on the product of varieties (G/P )n ∼= (G(1)/P (1))n × . . .× (G(k)/P (k))n componentwise.

Therefore, the G-orbits on (G/P )n are products of G(i)-orbits on (G(i)/P (i))n. A G-orbit on (G/P )n is open if

and only if it is a product of k open orbits on (G(i)/P (i))n, and the number of G-orbits on (G/P )n is finite if for
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every i the number of G(i)-orbits on (G(i)/P (i))n is finite. Hence in the sequel we may assume that G is simple.

Recall that we may replace any simple group G with its simply connected cover and vice versa, hence we may

replace it by any group locally isomorphic to G. So we may consider only one simple group of each type.

The classification of multiple flag varieties with an open G-orbit for maximal subgroups P was given by

Popov in [8]. We need some notation to formulate his result. Fix a maximal torus in G and an associated simple

root system {α1, . . . , αl} of the Lie algebra g = LieG. We enumerate simple roots as in [4]. Let Pi ⊂ G be the

maximal parabolic subgroup corresponding to the simple root αi.

Theorem 1.1. [8, Theorem 3] Let G be a simple algebraic group. The diagonal G-action on the multiple flag

variety (G/Pi)
n is generically transitive if and only if n ≤ 2 or (G,n, i) is an entry in Table 1:

Table 1. Generically transitive actions for maximal parabolic subgroups

Type of G (n, i)

Al n < (l+1)2

i(l+1−i)
Bl, l ≥ 3 n = 3, i = 1, l
Cl, l ≥ 2 n = 3, i = 1, l
Dl, l ≥ 4 n = 3, i = 1, l − 1, l
E6 n = 3, 4, i = 1, 6
E7 n = 3, i = 7

In [8], the following question was posed: for which non-maximal parabolic subgroups P ⊂ G is there an

open G-orbit in (G/P )n? We solve this problem for all simple groups except for those of type Al.

Denote the intersection Pi1 ∩ . . . ∩ Pis by Pi1,...,is . It is easy to see that Pi1,...,is is a parabolic subgroup and

that every parabolic subgroup is conjugated to some Pi1,...,is .

Theorem 1.2. Let G be a simple algebraic group that is not locally isomorphic to SLl+1, P ⊂ G be a non-

maximal parabolic subgroup and n ≥ 3. Then the diagonal G-action on the multiple flag variety (G/Pi)
n is

generically transitive if and only if n = 3 and (G,P ) is one of the pairs in Table 2:

Table 2. Generically transitive actions for non-maximal parabolic subgroups

Type of G P

Dl, l ≥ 5 is odd P1,l−1, P1,l

Dl, l ≥ 4 is even P1,l−1, P1,l, Pl−1,l

The case Al requires a separate investigation because even in the case of maximal parabolic subgroups,

there are much more pairs (P, n) for which there is an open G-orbit in (G/P )n, and the list of all non-maximal

subgroups with this property may be much more complicated.
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Now let us consider actions with a finite number of orbits. Recall that a G-variety X is called spherical

if a Borel subgroup B ⊆ G acts on X with an open orbit. It is well-known that the number of B-orbits on a

spherical variety is finite, see [2, 10]. Equivalently, the number of G-orbits on G/B ×X is finite if X is spherical.

Therefore, if P ⊆ G is a parabolic subgroup and X is a spherical G-variety, then the number of G-orbits on

G/P ×X is finite. The classification of all pairs of parabolic subgroups (P,Q) such that G/P ×G/Q is spherical

is given in [5, 9]. According to this classification, if (G,Pi) is an entry in Table 1, then G/Pi ×G/Pi is spherical

and hence the number of G-orbits on G/Pi ×G/Pi ×G/Pi is finite. In the last section we prove that the number

of G-obits on (G/P )n is infinite if n ≥ 4. We also check directly that if (G,P ) is an entry in Table 2, then the

number of G-orbits on G/P ×G/P ×G/P is infinite. Finally, from [6, Theorem 2.2] we see that if the flag

variety GLl+1/P
(1) ×GLl+1/P

(2) ×GLl+1/P
(3), where P (i) are parabolic, has a finite number of GLl+1-orbits,

then at least one of these parabolic subgroups is maximal. This result can be applied to SLl+1 directly as well

since the central torus of GLl+1 is a subgroup of all parabolic subgroups and acts trivially on the flag variety.

Thus we come to the following result.

Theorem 1.3. Let G be a simple algebraic group, P ⊂ G be a parabolic subgroup and n ≥ 3. The following

properties are equivalent.

1. The number of G-orbits on (G/P )n is finite.

2. n = 3, P is maximal, and there is an open G-orbit on G/P ×G/P ×G/P .

3. n = 3, and G/P ×G/P is spherical.

Corollary 1.4. Let n ≥ 3. The number of G-orbits on (G/P )n is finite if and only if n = 3 and (G,P ) is one

of the pairs listed in Table 3:

Table 3. Actions with finite numbers of orbits

Type of G P

Al any maximal
Bl, l ≥ 3 P1, Pl
Cl, l ≥ 2 P1, Pl
Dl, l ≥ 4 P1, Pl−1, Pl
E6 P1, P6

E7 P7

Let us mention a more general result for classical groups. Let P (1), . . . , P (n) be parabolic subgroups in G.

We call the variety G/P (1) × . . .×G/P (n) a generalized multiple flag variety. The classification of all generalized

multiple flag varieties with a finite number of G-orbits is given in [6] for G = SLl+1 and in [7] for G = Sp2l.

Proofs of Theorems 1.2 and 1.3 use methods developed in [8]. In several cases for G = SO2l the existence

of an open orbit is checked directly.
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2 Preliminaries

Let G be a connected simple algebraic group over an algebraically closed field K of characteristic zero and

g = LieG. Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. These data determine a root system Φ of

g, a positive root subsystem Φ+ and a system of simple roots ∆ ⊆ Φ+, ∆ = {α1, . . . , αl}. Choose corresponding

Chevalley generators {xi, yi, hi} of g. We have [h, xi] = α(h)xi, [h, yi] = −α(h)yi for all h ∈ t = LieT and

hi = [xi, yi].

Let I = {αi1 , . . . , αis} ⊆ ∆ be a subset. The Lie algebra of the parabolic subgroup PI := Pi1,...,is is

p = b⊕
⊕
α∈ΦI

gα,

where b = LieB and ΦI ⊆ Φ− denotes the set of the negative roots such that their decomposition into the sum

of simple roots does not contain the roots αi, i ∈ I. For example, P∆ = B and P∅ = G. It is known [3, Theorem

30.1] that if a parabolic group P contains B, then P = PI for some I ⊆ ∆. Therefore any parabolic subgroup

P ⊆ G is conjugate to some PI . If P = PI for some I ⊆ ∆, we denote by P− the parabolic subgroup whose Lie

algebra is

p− = t⊕
⊕

α∈−ΦI∪Φ−

gα.

Denote the weight lattice of T by X(T ). Let X+(T ) be the subsemigroup of dominant weights with respect

to B. Assume first that G is simply connected. Then X+ is generated by the fundamental weights π1, . . . , πl.

Given a dominant weight λ, denote the simple G-module with the highest weight λ by V (λ). If G is not simply

connected, we may consider a simply connected cover p : G̃→ G, the dominant weight semigroup X+(p−1(T ))

and the highest weight G̃-module V (λ).

Let G be a simple group and P = Pi1,...,is be a parabolic subgroup. Notice that if there is an open G-

orbit on (G/P )n, then there exists an open G-orbit on (G/Pi)
n for all i ∈ {i1, . . . , is}. Indeed, since P ⊆ Pi,

one has the surjective G-equivariant map G/P → G/Pi, gP 7→ gPi. It induces the surjective G-equivariant map

ϕ : (G/P )n → (G/Pi)
n, and the image of an open G-orbit on (G/P )n under ϕ is an open G-orbit on (G/Pi)

n.

Similarly, if G acts on (G/P )n with an open orbit and m < n, then G acts on (G/P )m with an open orbit.

Theorem 1.1 leaves us very few cases of non-maximal parabolic groups to consider. Namely, if n > 3 and

G is of type Bl, Cl or Dl, then G never acts on (G/P )n with an open orbit. If n = 3 and G is of type Bl or

Cl, it suffices to consider P = P1,l, and we show that there is no open orbit in this case. If n = 3 and G is of

type Dl, an open orbit may exist only if P = PI where I ⊆ {α1, αl−1, αl}. So there are four cases to consider.

We reduce the case P1,l−1 to the case P1,l. If G is of type E6, the only parabolic group we should consider is

P = P1,6. We show that there is no open orbit for n = 3. For G of type E7, if there existed an open G-orbit

on (G/P )n for n ≥ 3, then the only maximal parabolic subgroup containing P would be P7, but in this case P

would be maximal itself. If G is of type E8, F4 or G2, an open orbit never exists for maximal parabolic subgroups
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whenever n ≥ 3, so there are no cases to consider.

Given a group G acting on an irreducible variety X with an open orbit, according to [8] we denote the

maximal n such that there is an open G-orbit on Xn by gtd(G : X). If G acts on Xn with an open orbit, we

say that the action G : X is generically n-transitive.

We make use of the following fact proved by Popov.

Proposition 2.1. [8, Corollary 1 (ii) of Proposition 2] Let G be a simple algebraic group, P be a parabolic

subgroup, P− be an opposite parabolic subgroup, L = P ∩ P− be the corresponding Levi subgroup and u− be

the Lie algebra of the unipotent radical of P−. If P is conjugate to P−, then gtd(G : G/P ) = 2 + gtd(L : u−) =

2 + gtd(L : u).

In particular cases we will see that L is isomorphic to a well-known reductive group (for example, to

K∗ ×GLl−1), and that u (or u−) is isomorphic to a direct sum of well-known L-modules. The exact list of these

modules depends on how the isomorphism between L and the reductive group was chosen. For the semisimple

part of L, in terms of Dynkin diagrams, it depends on the way we identify the Dynkin diagram obtained from

the Dynkin diagram of G (with the enumeration of the vertices as in [4]) by removing the vertices corresponding

to P and the Dynkin diagram of the semisimple part of the well-known reductive group. We prefer to identify

them so that the order of vertices is the same in both cases. We still have to choose the isomorphism between

the centers of L and of the reductive group (despite it is already fixed on the intersection of the center and the

semisimple part, which is a finite group, we still can have several possibilities) and to choose whether to use u

and u−. Among these possibilities, we prefer the one that leads to a simpler description of an L-module. For

example, we prefer to have more tautological modules than the dual ones or more positive K∗-weights.

We suppose that the group SO2l acts in the 2l-dimensional space and preserves the bilinear form whose

matrix with respect to a standard basis is

Q =



1

0 . .
.

1

1

. .
. 0

1


.

When we deal with a tautological GLl-module V , we always assume that we have chosen a basis of V denoted

by e1, . . . , el, unless stated otherwise. Similarly, we denote the corresponding basis of V ∧ V by {ei ∧ ej}

(1 ≤ i < j ≤ l), we denote the basis of V ∗ by {e∗i }, etc. If this does not lead to an ambiguity, when we have

several tautological GLl-modules, we denote a basis of each of them by e1, . . . , el.

We denote the l-dimensional projective space by Pl and the Grassmannian of k-dimensional subspaces in

Kl by Gr(k, l).
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We denote the l × l identity matrix by idl. If A1, . . . , Ak are square matrices, we denote the block diagonal

matrix with blocks A1, . . . , Ak by diag(A1, . . . , Ak). If V is a vector space with a symmetric bilinear form, V1 ⊆ V

and V2 ⊆ V are subspaces with prefixed bases and such that the bilinear form establishes a non-degenerate pairing

between V1 and V2, and A is the matrix of a linear operator on V1, then we denote the matrix of the adjoint

operator on V2 by A∗.

3 Existence of an Open Orbit

3.1 Groups of type Bl, l ≥ 3

By Theorem 1.1, it is sufficient to consider the case P = P1,l. The Dynkin diagram Bl has no automorphisms,

hence P is conjugate to P−. So we may apply Proposition 2.1, and it suffices to check that gtd(L : u) = 0, i. e.

L acts on u with no open orbit.

Let G = SO2l+1. Then L = K∗ ×GLl−1 and the L-module u can be decomposed into the direct sum

V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5. Here V1 is a GLl−1-module (Kl−1)∗ dual to the tautological one and its K∗-weight

is 1, V2 is a trivial one-dimensional GLl−1-module of weight 1, V3 is a tautological GLl−1-module Kl−1 of

weight 0, V4 is a GLl−1-module Kl−1 of weight 1, V5 is a GLl−1-module Λ2Kl−1 of weight 0. According to this

decomposition, we denote the components of a vector u ∈ u by u1, u2, u3, u4, u5.

Notice that there exists a GLl−1-invariant pairing between V1 and V4, whose K∗-weight is 2. Therefore the

rational function

(u1, u4)

u2
2

is a non-constant invariant for L : u, and the action of G on G/P is not generically 3-transitive.

3.2 Groups of type Cl, l ≥ 2

This case is completely similar to the previous one, and again the only thing we should do is to prove that

there is no open L-orbit on u, where L = P ∩ P− is a Levi subgroup of P = P1,l and u is the Lie algebra of the

unipotent radical of P .

Let G = Sp2l. Then L = K∗ ×GLl−1 and the L-module u can be written as V1 ⊕ V2 ⊕ V3 ⊕ V4. Here V1 is

a GLl−1-module (Kl−1)∗ and its K∗-weight is 1, V2 is a GLl−1-module Kl−1 of weight 1, V3 is a GLl−1-module

S2Kl−1 of weight 0, V4 is a trivial GLl−1-module of weight 2. According to this decomposition, we denote the

components of a vector u ∈ u by u1, u2, u3, u4.

We see that there exists a GLl−1-invariant pairing between V1 and V2 with K∗-weight is 2. Therefore we

have a rational invariant

(u1, u2)

u4

for L : u, and the action of G on G/P is not generically 3-transitive.
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3.3 Groups of type Dl, l ≥ 4

This time we should consider the following four cases of parabolic subgroups: P = P1,l−1, P1,l, Pl−1,l, P1,l−1,l.

One easily checks that P and P− are conjugate except for the cases P = P1,l, l odd, and P = P1,l−1, l odd.

Let G = SO2l. There exists a diagram automorphism of G that interchanges αl−1 and αl. It preserves the

maximal torus and the Borel subgroup and interchanges P1,l−1 and P1,l. Therefore, the actions G : G/P1,l−1

and G : G/P1,l are either generically 3-transitive or not generically 3-transitive simultaneously.

In what follows we always suppose that B is the group of all upper-triangular matrices in G (according to

the action of G in the tautological representation), and Pl is the group of all g ∈ G that preserve the subspace

〈e1, . . . , el〉. This eliminates the ambiguity in choosing the numbering of the two last simple roots swapped by

the automorphism of the diagram Dl.

3.3.1 P = Pl−1,l

In this case, P and P− are conjugate, and we have to find gtd(L : u).

The Levi subgroup L is isomorphic to K∗ ×GLl−1 and the L-module u is isomorphic to V1 ⊕ V2 ⊕ V3,

where V1 is a GLl−1-module Λ2Kl−1 and its K∗-weight is 0, V2 is a GLl−1-module Kl−1 of weight 1, V3 is a

GLl−1-module Kl−1 of weight −1. We denote the components of a vector u ∈ u by u1, u2, u3.

Let l be even. We prove that there is an open L-orbit on u as follows. We start with a point (u1, u2, u3) ∈ u.

During the proof at each step we impose an open L-invariant condition on (u1, u2, u3) and prove that if the

conditions are satisfied, the point (u1, u2, u3) can be brought to a smaller subset of u. (The elements of this

subset also satisfy the conditions since the conditions are L-invariant.) Finally this subset becomes one point p

(that does not depend on (u1, u2, u3)) and we notice that p satisfies all the open conditions we will have imposed.

This guarantees that the conditions define a non-empty open L-invariant subset in u, i. e. an open L-orbit.

Since l − 1 is odd, the rank of a generic element w ∈ V1 is l − 2. Consider the set of all w ∈ V1 such that

rkw = l − 2. This is an L-invariant subset, so in the sequel we assume that rku1 = l − 2. Then one can apply to

(u1, u2, u3) ∈ u an element of GLl−1 that brings u1 to the following form: u′1 = e1 ∧ e2 + e3 ∧ e4 + . . .+ el−3 ∧

el−2. Denote the images of u2 and u3 under this action by u′2 and u′3.

Any element w ∈ V1 of rank l − 2 gives rise to (degenerate) skew-symmetric forms on V ∗2 and on V ∗3 , and

their kernels are of dimension 1. Consider the subspace Xw = (Kerw)⊥ ⊂ V2 where all the functions from the

kernel of this form vanish. Similarly denote Yw = (Kerw)⊥ ⊂ V2. The conditions u2 /∈ Xu1 and u3 /∈ Yu1 are

open and L-invariant, and we assume in the sequel that they are satisfied. Then u′2 /∈ Xu′1
, its last coordinate is

non-zero, and there is a matrix of the form



∗

idl−2

...

∗

0 . . . 0 λ


, λ 6= 0. (∗)
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that moves u′2 to u′′2 = el−1. Notice that all such elements of GLl−1 preserve u′1. Denote the image of u′3 under

the action of this element by u′′3 .

Now, the subgroup of L of the elements of the form

(diag(A, λ), λ−1), A ∈ Spl−2, λ 6= 0

keeps u′1 and u′′2 unchanged. We have assumed that u3 /∈ Yu1 , so now we have u′′3 /∈ Yu′1 , and the last coordinate

of u′′3 cannot be zero. Then, by an appropriate choice of λ, u′′3 can be brought to an element u′′′3 ∈ V3 whose last

coordinate is 1.

Now we impose the last L-invariant open condition on (u1, u2, u3). Namely, we require that u2 is not a

multiple of u3. Then u′′′3 is not a multiple of u′′2 , and at least one of the first l − 2 coordinates of u′′′3 is non-zero.

Since Spl−2 acts transitively on Kl−2 \ 0, it is possible to bring the vector formed by the first l − 2 coordinates

of u′′′3 to e1. Finally, we have brought u1 to e1 ∧ e2 + e3 ∧ e4 + . . .+ el−3 ∧ el−2, u2 to el−1, u3 to e1 + el−1.

These elements satisfy the open conditions we have introduced, hence they define an open L-orbit in u.

Let l be odd. Then a generic element u1 ∈ V1 gives rise to a non-degenerate skew-symmetric bilinear form

on the GLl−1-module (Kl−1)∗. Furthermore, one can consider the corresponding skew-symmetric form on the

tautological GLl−1-module. This form is obtained by matrix inversion and we denote it by u−1
1 . The following

function is a rational L-invariant:

u−1
1 (u2, u3).

Thus the action of G on G/P is not generically 3-transitive.

3.3.2 P = P1,l

In this case, Proposition 2.1 applies if and only if l is even.

Let l be even. It is sufficient to prove that there is an open L-orbit on u. The proof is organized as in the

previous case for even l.

Again L = K∗ ×GLl−1, and the L-module u can be decomposed into three summands, u = V1 ⊕ V2 ⊕ V3,

but this time V1 is a GLl−1-module Λ2Kl−1 and its K∗-weight is 0, V2 is a GLl−1-module Kl−1 of weight 1, V3

is a GLl−1-module (Kl−1)∗ of weight 1. We denote the components of an element u ∈ u by u1, u2, u3.

The group L in this case is isomorphic to the one in the previous case, and the modules V1 and V2 are also

the same as in the previous case. This enables us to keep the notation Xw that we have introduced for even l.

Again we may suppose that rku1 = l − 2, so it can be brought to u′1 = e1 ∧ e2 + . . .+ el−3 ∧ el−2. We also

suppose that u2 /∈ Xu1 , so it can be eventually moved to u′′2 = el−1 as in the previous case. We denote the image

of u3 under this action by u′′3 . And again the subgroup of L of the elements of the form (diag(A, λ), λ−1) (where

A ∈ Spl−2, λ 6= 0) preserves u′1 and u′′2 .
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This time there exists a GLl−1-invariant pairing between V2 and V3 (denote it by 〈·, ·〉), and we impose the

condition 〈u2, u3〉 6= 0. It guarantees that the last coordinate of u′′3 is non-zero. We also impose the L-invariant

condition u3 /∈ Keru1, which guarantees that the first l − 2 coordinates of u′′3 cannot vanish simultaneously. By

the appropriate choice of λ the last coordinate of u′′3 can be brought to 1, and by the appropriate choice of A we

can finally move it to e∗1 + e∗l−1. So we have moved u1 to e1 ∧ e2 + e3 ∧ e4 + . . .+ el−3 ∧ el−2, u2 to el−1, and u3

to e∗1 + e∗l−1. These elements satisfy the open conditions we have introduced, hence they define an open L-orbit

in u.

Let l be odd. Proposition 2.1 does not apply, and we have to find gtd(G : G/P ) directly. We use the following

well-known fact about generically transitive actions:

Lemma 3.1. Let an algebraic group G act on irreducible algebraic varieties W and Y , and let f : W → Y be

a G-equivariant map.

1. The following properties are equivalent:

(a) The action of G on W is generically transitive and f(W ) is dense in Y .

(b) The action of G on Y is generically transitive and if H is the G-stabilizer of a general point y ∈ Y ,

then there exists a dense H-orbit on f−1(y).

2. Assume that 1a and 1b hold. If y ∈ Y and w ∈ f−1(y) are points such that the orbits G · y and Gy · w are

dense in Y and f−1(y) respectively, then the orbit G · w is open in W .

By Theorem 1.1, it is sufficient to check that G acts on G/P ×G/P ×G/P with an open orbit. First, G

acts on G/P transitively, and it follows from Bruhat decomposition that P acts on G/P with finitely many

orbits. The open orbit is the orbit of the point wP where w is a representative of the longest element of the

Weyl group of G in NG(T ). By Lemma 3.1 (2), the orbit G · (P,wP ) ⊆ G/P ×G/P is open in G/P ×G/P .

The stabilizer of the point (P,wP ) equals P ∩ wPw−1. It is known that (in the case under consideration, i. e.

G = SO2l, l odd) wP1w
−1 = P−1 and wPlw

−1 = P−l−1, so G(P,wP ) = P1,l ∩ P−1,l−1. So, by Lemma 3.1 (1) it is

sufficient to check that there is a dense (P1,l ∩ P−1,l−1)-orbit on G/P . Denote H = P1,l ∩ P−1,l−1.

Consider the tautological SO2l-module K2l, and let e1, . . . , e2l be its standard basis. Then H is the group

of all elements of G that preserve the following subspaces: 〈e1〉, 〈e1, . . . , e2l−1〉 (for P1), 〈e1, . . . , el〉 (for Pl),

〈e2l〉, 〈e2, . . . , e2l〉 (for P−1 ), 〈el, el+2, el+3, . . . , e2l〉 (for P−l−1).

Let X ′ ⊂ Gr(l, 2l) be the set of all isotropic subspaces of dimension l in K2l. One easily checks that X ′

is a disjoint union of two SO2l-orbits, and the group O2l interchanges them. If two subspaces belong to the

same SO2l-orbit, then their intersection is non-zero. Denote the orbit SO2l〈e1, . . . , el〉 ⊂ X ′ by X. Then X is

an irreducible subvariety in Gr(l, 2l). Denote the set of all isotropic lines in P2l−1 by Y . For each s ∈ X ′ let

Ys ⊂ P2l−1 be the set of all lines contained in s. Clearly, W = ∪s∈X(s× Ys) is a closed G-invariant subset in

Gr(l, 2l)×P2l−1. One easily checks that G/P = W .
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We are going to use Lemma 3.1 (1) again for the map ψ : W → Y (the projection to the first coordinate).

First, let us find an open H-orbit Z ⊆ Y and an element b ∈ Z. We define Z by introducing open conditions

step by step as in previous cases. Let a ∈ Y . Choose a vector f =
∑2l

i=1 fiei (fi ∈ K) such that 〈f〉 = a.

Suppose that a 6⊆ 〈e2, . . . , e2l−1〉. This subspace is H-invariant since it is the intersection of two H-invariant

subspaces 〈e1, . . . , e2l−1〉 and 〈e2, . . . , e2l〉. Then f1 6= 0, f2l 6= 0. There exists a diagonal matrix of the form

diag(λ, id2l−2, λ
−1) ∈ H that maps f to a vector f ′ =

∑
f ′iei where f ′1 = f ′2l 6= 0. Without loss of generality, f ′1 =

f ′2l = 1 (we may multiply f by a constant). Now suppose that a 6⊆ 〈e1, . . . , el, el+2, el+3, . . . , e2l〉 = 〈e1, . . . , el〉+

〈el, el+2, el+3, . . . , e2l〉. Then f ′l+1 6= 0. There exists a matrix A acting on 〈e2, . . . , e2l−1〉 (see Appendix A for an

exact formula for A) such that diag(1, A, 1) is an element of H and maps f ′ to f ′′ = e1 + el − el+1 + e2l. So we

have moved every line a ∈ Z to b = 〈e1 + el − el+1 + e2l〉 ∈ Z.

Now consider the action of Hb on ψ−1(b). In fact, the action of H◦b will be enough for our purposes. First,

we need a simpler description for this action, so we use the following lemma. The proof of the lemma is technical

and will be given in Appendix A. To formulate the lemma, notice first that the bilinear form on K2l induces a

non-degenerate bilinear form on b⊥/b. Hb preserves b⊥ (and b), so it acts on b⊥/b.

Lemma 3.2. Hb is isomorphic to GLl−2 × {1,−1}. There exists a basis v1, . . . v2l−2 of b⊥/b such that ψ−1(b) is

(Hb-equivariantly) isomorphic to SO(b⊥/b)〈v1, . . . , vl−1〉 and that the matrix of the bilinear form in this basis

is Q. In terms of the isomorphism between H◦b and GLl−2 and the basis of b⊥/b mentioned above, H◦b acts on

b⊥/b by matrices of the form diag(1, (D∗)−1, D, 1), D ∈ GL(〈vl, . . . , v2l−3〉).

The group H◦b being written as the group of all matrices of the form diag(1, (D∗)−1, D, 1) (where

D ∈ GLl−2) is a subgroup of L′ = P ′l−1 ∩ (P ′l−1)−, where we denote by P ′l−1 the parabolic subgroup of SO(b⊥/b)

corresponding to the (l − 1)-th simple root to distinguish it from parabolic subgroups of G. Notice that

SO(b⊥/b)/P ′l−1 is SO(b⊥/b)-isomorphic to SO(b⊥/b)〈v1, . . . , vl−1〉. Denote the unipotent radical of (P ′l−1)−

by U ′−. Now we are going to use one more fact from [8] (see also [1]):

Proposition 3.3. [8, Proposition 2 (i)], see also [1, 14.21] Let P be a parabolic subgroup of a connected

reductive group G. Let P− be an opposite parabolic subgroup (i. e. P ∩ P− is a Levi subgroup in P ). Let U−

be the unipotent radical of P−, u− = LieU−. Denote by p ∈ G/P the image of P under the canonical map

G→ G/P .

Then the orbit U− · p is open in G/P , is L-stable and is L-isomorphic to u−.

In the case under consideration this means that U ′−〈v1, . . . , vl−1〉 is open in SO(b⊥/b)/P ′l−1 and is L′-

isomorphic (and therefore H◦b -isomorphic) to u′− = LieU ′−. It suffices to prove that H◦b acts on u′− with an

open orbit. A direct calculation shows that u′− as H◦b = GLl−2 module (in terms of the isomorphism above) is

isomorphic to Λ2Kl−2 ⊕Kl−2. Denote the components of an element u ∈ u′− by u1 and u2.

Now the situation is similar to the previous cases since l − 2 is odd. Namely, every element of Λ2Kl−2 defines

a skew-symmetric bilinear form on (Kl−2)∗, and the forms of rank l − 3 form an open subset. If rku1 = l − 3,
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(u1, u2) can be brought by the action of GLl−2 to (u′1, u
′
2), where u′1 = e1 ∧ e2 + . . .+ el−4 ∧ el−3. The pairs

(u1, u2) where rku1 = l − 3 and the natural pairing between (any non-zero) element of keru1 ⊂ (Kl−2)∗ and u2

is non-zero form an open GLl−2-invariant subset. If (u1, u2) is in this subset and u1 is already moved to u′1,

then u′2 can be moved to el−2 by a matrix of the form (∗), which preserves u′1.

Therefore, H◦b acts on u′− with an open orbit. By Proposition 3.3, H◦b also acts on (an irreducible variety)

SO(b⊥/b)〈v1, . . . , vl−1〉 with a dense orbit. By Lemma 3.1 (1), H acts on G/P with an open orbit, hence the

action of G on G/P ×G/P ×G/P is generically transitive.

3.3.3 P = P1,l−1,l

The subgroups P and P− are conjugate for all l. It is sufficient to find gtd(L : u), where L = (K∗)2 ×GLl−2 and

the L-module u is isomorphic to the direct sum of 7 simple modules, which we denote by V1, . . . , V7. Namely, V1

is a GLl−2-module (Kl−2)∗ and its (K∗)2-weight is (1, 0), V2 is a trivial GLl−2-module of weight (1, 1), V3 is a

GLl−2-module Kl−2 of weight (0, 1), V4 is a trivial GLl−2-module of weight (1,−1), V5 is a GLl−2-module Kl−2

of weight (0,−1), V6 is a GLl−2-module Kl−2 of weight (1, 0), V7 is a GLl−2-module Λ2Kl−2 of weight (0, 0).

Denote the components of u ∈ u− by u1, . . . , u7.

There exists a GLl−2-invariant pairing between V1 and V3 whose (K∗)2-weight is (1, 1). The following

function is a rational L-invariant:

(u1, u3)

u2
.

Thus, the G-action on G/P is not generically 3-transitive.

3.4 Groups of type E6

The only parabolic subgroup to consider is P = P1,6. The set {1, 6} of Dynkin diagram vertices is invariant under

all automorphisms of the Dynkin diagram. Hence the Weyl group element of the maximal length interchanges

P and P−. We have to find gtd(L : u−).

The Levi subgroup L is locally isomorphic to (K∗)2 × Spin8, and the L-module u− is isomorphic to

V1 ⊕ V2 ⊕ V3. Here, as subspaces in g, V1 (resp. V2, V3) is the direct sum of all gα for which the decomposition

of α ∈ Φ− into the sum of simple roots contains both α1 and α6 with coefficients −1 (resp. α1 with coefficient

−1, α6 with coefficient 0 for V2, α1 with coefficient 0, α6 with coefficient −1 for V3). Consider the following

embedding of Dynkin diagrams D4 → E6: the vertex 1 (resp. 3, 4) is mapped to the vertex 2 (resp. 3, 5). Then,

as L-modules, V1 is a Spin8-module with the lowest weight −π1, i. e. it is a tautological SO8-module (Spin8

acts on V1 with a two-element kernel, and the quotient group is SO8), V2 is a Spin8-module with the lowest

weight −π3, V3 is a Spin8-module with the lowest weight −π4. Denote the components of u ∈ u− by u1, u2, u3.

Since V1 is a tautological SO8-module, there exists an SO8-invariant (and hence Spin8-invariant) quadratic

form on it, which we denote by (u1, u1). There exist diagram automorphisms of Spin8 that transform the

tautological SO8-module to Spin8-modules isomorphic to V2 and V3. So there exist a quadratic Spin8-invariant
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on V2, which we denote by (u2, u2), and a quadratic Spin8-invariant on V3, which we denote by (u3, u3). From

the description of V1, V2 and V3 in terms of root subspaces one can deduce that the (K∗)2-weight of V1 is the

sum of the (K∗)2-weights of V2 and V3. Hence, the following function is a non-trivial rational L-invariant:

(u2, u2)(u3, u3)

(u1, u1)
,

and the G-action on G/P ×G/P ×G/P is not generically transitive.

4 Finite Number of Orbits

Proposition 4.1. Let G be a simple algebraic group and P be a proper parabolic subgroup. If n ≥ 4, the

number of G-orbits on (G/P )n is infinite.

Proof . Let P = Pi1,...,is . Consider the dominant weight λ = πi1 + . . .+ πis . Then G/P is isomorphic to the

projectivization of the orbit of the highest weight vector vλ ∈ V (λ). In the sequel we shortly write i = i1.

It is easy to check that y2
i vλ = 0. Denote the unipotent subgroup exp(tyi) by Ui. We see that Uivλ is an

affine line not containing zero. The closure of its image in the projectivization P(V (λ)) is a projective line

P1 ⊆ G/P ⊆ P(V (λ)). Choose n ≥ 4 points (x1, . . . , xn) ∈ P1 × . . .×P1 ⊆ G/P × . . .×G/P . The double ratio

of the first four of these points does not change under G-action. Hence, two n-tuples with different double ratios

cannot belong to the same orbit, and the number of orbits is infinite.

Now we prove that in the cases G = SO2l, P = Pl−1,l and G = SO2l, P = P1,l−1 the number of orbits on

G/P ×G/P ×G/P is infinite (again, the case G = SO2l, P = P1,l can be reduced to the latter one).

Let K2l be the tautological SO2l-module and let e1, . . . , e2l be the standard basis. Let X ′ ⊂ Gr(l, 2l) be

the set of all isotropic subspaces of dimension l in K2l. It is known that G/Pl−1 and G/Pl are isomorphic

to the two connected components of X ′ (respectively). In the sequel we suppose that G/Pl−1 = X ⊆ X ′. For

each s ∈ X let Ys ⊂ P2l−1 be the set of all lines contained in s. One easily checks that the closed subset

Y = ∪s∈X(s× Ys) ⊂ Gr(l, 2l)×P2l−1 is isomorphic to SO2l/P1,l−1.

Similarly, if s ∈ X, denote by Zs ⊂ Gr(l − 1, 2l) the set of all subspaces of dimension l − 1 in s. Let Z be the

closed subset ∪s∈X(s× Zs) ⊂ Gr(l, 2l)×Gr(l − 1, 2l). One easily checks that it is isomorphic to SO2l/Pl−1,l.

First, let l = 3. Consider the following isotropic subspaces: S1 = 〈e1, e2, e4〉, S2 = 〈e2, e3, e6〉, S3 =

〈e1, e3, e5〉. They belong to the same SO6-orbit, and it follows from the choice of the group Pl in the beginning

of Section 3.3 that S1, S2, S3 ∈ X. Choose a line T1 ⊂ S1 such that T1 ⊂ 〈e1, e2〉. Also choose lines T2 ⊂ S2 and

T3 ⊂ S3 such that T2 ⊂ 〈e2, e3〉 and T3 ⊂ 〈e1, e3〉. Impose one more restriction, namely, the sum T2 + T3 should

be direct and should not be equal to 〈e1, e2〉. Consider the point ((S1, T1), (S2, T2), (S3, T3)) ∈ Y × Y × Y . There

are four subspaces of 〈e1, e2〉: 〈e1〉 = S1 ∩ S3, 〈e2〉 = S2 ∩ S3, T1 and T4 = (T2 ⊕ T3) ∩ 〈e1, e2〉. Thus, we have

defined four lines in K6 in terms of intersections and sums of Si and Ti. If we apply an element g ∈ G to these
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four lines, we will obtain four lines defined in the same way using gSi and gTi instead of Si and Ti. The dou-

ble ratio of these four lines in their sum of dimension two is not changed under G-action. Since T1 is chosen

arbitrarily, this double ratio can be any number and the number of orbits is infinite.

Consider the same subspaces Si and Ti and set U1 = T1 ⊕ 〈e4〉, U2 = T2 ⊕ 〈e6〉 and U3 = T3 ⊕ 〈e5〉. The point

((S1, U1), (S2, U2), (S3, U3)) belongs to Z × Z × Z. Note that 〈e1, e2, e3〉 = (S1 ∩ S2)⊕ (S2 ∩ S3)⊕ (S1 ∩ S3) and

Ti = Ui ∩ 〈e1, e2, e3〉. Again we have a subspace of dimension two and four lines in it defined in terms of

intersections and sums of Si and Ui. The existence of SO6-invariant double ratio in this case yields that the

number of orbits is infinite.

Let l > 3. Construct the subspaces Si, Ti and Ui as above, using the last three basis vectors instead

of e4, e5, e6. Let S′i = Si ⊕ 〈e4, . . . , el〉 and U ′i = Ui ⊕ 〈e4, . . . , el〉. The points ((S′1, T1), (S′2, T2), (S′3, T3)) and

((S′1, U
′
1), (S′2, U

′
2), (S′3, U

′
3)) belong to Y × Y × Y and Z × Z × Z, respectively. Consider also the subspace V =

(S′1 ∩ S′2 ∩ S′3)⊥. The restriction of the bilinear form to this subspace is degenerate, its kernel is S′1 ∩ S′2 ∩ S′3 =

〈e4, . . . , el〉. The quotient is a space of dimension 6 with a bilinear form. The quotient morphism restricted to

〈e1, e2, e3, e2l−2, e2l−1, e2l〉 is an isomorphism, so we have subspaces Si, Ti, Ui in the 6-dimensional space. This is

exactly the same situation as we had above for the group SO6, and it enables us to define double ratios for the

points of G/P1,l−1 ×G/P1,l−1 ×G/P1,l−1 and G/Pl−1,l ×G/Pl−1,l ×G/Pl−1,l under consideration, which are

preserved under the G-action. Therefore the number of SO2l-orbits on these multiple flag varieties is infinite.

This finishes the proof of Theorem 1.3.
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A Appendix: Technical details for the proof in Section 3.3.2 (odd case)

We use the notation introduced in Section 3.3.2.
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A.1 Matrix A

A matrix with the desired properties can be written as follows:

A =



0 −f ′2/f ′l+1

idl−2

...
... 0

0 −f ′l−1/f
′
l+1

−f ′2l−1 · · · −f ′l+2 −f ′l+1 −f ′l − 1/f ′l+1 −f ′l−1 · · · −f ′2

0 · · · 0 0 −1/f ′l+1 0 · · · 0

0 −f ′l+2/f
′
l+1

0
...

... idl−2

0 −f ′2l−1/f
′
l+1



.

After a suitable permutation of basis vectors this matrix becomes upper-triangular, so detA =

(−f ′l+1)(−1/f ′l+1) = 1. One can check directly that diag(1, A, 1) ∈ SO2l, the only non-trivial part of the compu-

tation is that diag(1, A, 1)el+1 is an isotropic vector. Its square equals

2((−f ′2/f ′l+1)(−f ′2l−1/f
′
l+1) + . . .+ (−f ′l−1/f

′
l+1)(−f ′l+2/f

′
l+1)) + 2(−f ′l − 1/f ′l+1)(−1/f ′l+1) =

2(f ′2f
′
2l−1 + . . .+ f ′lf

′
l+1 + 1)/(f ′2l+1) =

2(f ′2f
′
2l−1 + . . .+ f ′lf

′
l+1 + f ′1f

′
2l)/(f

′2
l+1) = 0

since f ′ is isotropic.

Now we have to check that diag(1, A, 1)f ′ = e1 + el − el+1 + e2l. Denote diag(1, A, 1)f ′ = f ′′ =
∑
f ′′i ei. It

is clear directly from the description of A that all f ′′i ’s except f ′′l have the desired values. But then f ′′l must

equal 1 since this is the only possibility to make f ′′ isotropic.

A.2 Proof of Lemma 3.2

If D ∈ GL(〈el+1, . . . , e2l−1〉) and λ = ±1, then diag(λ, (D∗)−1, λ, λ,D, λ) ∈ Hb. Suppose that g ∈ Hb. Then g

preserves the subspaces 〈e1〉, 〈e2l〉, 〈el〉 and b, so it preserves their sum 〈e1, el, el+1, e2l〉. Since H〈e2, . . . , e2l−1〉 =

〈e2, . . . , e2l−1〉, g preserves 〈e1, el, el+1, e2l〉 ∩ 〈e2, . . . , e2l−1〉 = 〈el, el+1〉. In particular, gel+1 = λel+1 + µel

for some λ and µ, moreover, λ 6= 0, otherwise gb ⊂ 〈e1, el, e2l〉. But then µ = 0, otherwise gel+1 is

not isotropic. So g preserves 〈el+1〉 and, since gb = b, g multiplies e1, el, el+1 and e2l by the same

constant that can equal ±1 if g ∈ SO2l. Finally, g〈e1, el, el+1, e2l〉 = 〈e1, el, el+1, e2l〉, so g preserves

〈e1, el, el+1, e2l〉⊥ = 〈e2, . . . , el−1, el+2, . . . , e2l−1〉 and the intersection of the latter subspace with H-invariant

subspaces 〈e1, . . . , el〉 and 〈el, el+2, . . . , e2l〉, i. e. 〈e2, . . . , el−1〉 and 〈el+2, . . . , e2l−1〉, respectively. Therefore,

g = diag(λ, (D∗)−1, λ, λ,D, λ) for some D ∈ GL(〈el+1, . . . , e2l−1〉), λ = ±1, and Hb = GLl−2 × {1,−1}.
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The set ψ−1(b) ⊆W is (Hb-equivariantly) isomorphic to the set S ⊆ X consisting of all s ∈ X that

contain b. Consider the operator that maps e1 to e1 − el+1, el to el + e2l and does not move all other basis

vectors. One checks directly that it is an element of SO2l. It brings the subspace 〈e1, . . . , el〉 to the subspace

M = 〈e1 − el+1, e2, . . . , el−1, el + e2l〉 containing b, so M ∈ S.

Now, consider the variety S′ (S ⊆ S′ ⊆ X ′) consisting of all isotropic subspaces r′ of dimension l containing

b. Then S = S′ ∩X. Consider the operator B that interchanges e2 and e2l−1 and does not move all other basis

vectors. B ∈ O2l \ SO2l, so B interchanges X and X ′ \X. Notice that Bb = b, so BS′ = S′, and B interchanges

S and S′ \ S. Since X is a connected component of X ′ and S′ is a closed subset of X ′, S (resp. S′ \ S) contains

at least the connected component of M (resp. BM) in S′. Clearly, if r′ ∈ S′, then r′ ⊂ b⊥. The canonical

projection π : b⊥ → b⊥/b establishes an isomorphism ϕ between S′ and the set of (l − 1)-dimensional isotropic

subspaces of b⊥/b. The latter variety consists of two connected components, which are SO(b⊥/b)-orbits, and

ϕ(S) (resp. ϕ(S′ \ S)) contains at least the connected component of the point π(M) (resp. π(BM)). Therefore,

S is connected and is exactly isomorphic to SO(b⊥/b)π(M).

Consider the following basis of b⊥/b: v1 = π(e1 − el − el+1 − e2l)/2, v2 = π(e2), . . . , vl−1 = π(el−1), vl =

π(el+2), . . . , v2l−3 = π(e2l−1), v2l−2 = π(e1 + el + el+1 − e2l)/2. One checks directly that the matrix of the

bilinear form in this basis is Q, that π(M) = 〈v1, . . . , vl−1〉. Finally, it is clear from the description of Hb above

and the definition of {vi} that H◦b acts by the matrices of the desired form.
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