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Abstract. We sketch the proof of the following result: the subword com-
plexity of arbitrary morphic sequence is either Θ(n2), or O(n3/2).

1 Introduction

Morphisms and morphic sequences are well known and well studied in combina-
torics on words (e. g., see [1]). We study their subword complexity.

Let Σ be a finite alphabet. A mapping ϕ: Σ∗ → Σ∗ is called a morphism if
ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗. A morphism is determined by its values on
single-letter words. A morphism is non-erasing if |ϕ(a)| ≥ 1 for each a ∈ Σ, and
is called coding if |ϕ(a)| = 1 for each a ∈ Σ. Let |ϕ| denote maxa∈Σ |ϕ(a)|.

Let ϕ(s) = su for some s ∈ Σ, u ∈ Σ∗, and suppose ∀n ϕn(u) is not empty.
Then an infinite sequence ϕ∞(s) = limn→∞ ϕn(s) is well-defined and is called
pure morphic. Sequences of the form ψ(ϕ∞(s)) with coding ψ are called morphic.

In this paper we study a natural combinatorial characteristics of sequences,
namely subword complexity. Subword complexity of a sequence β is a function
pβ: N → N where pβ(n) is the number of all different n-length subwords occurring
in β. For a survey on subword complexity, see, e. g., [2]. Pansiot showed [4] that
the subword complexity of an arbitrary pure morphic sequence adopts one of
the five following asymptotic behaviors: O(1), Θ(n), Θ(n log log n), Θ(n log n),
or Θ(n2). Since codings can only decrease subword complexity, the subword
complexity of every morphic sequence is O(n2). We formulate the following main
result.

Theorem 1. The subword complexity pβ of a morphic sequence β is either
pβ(n) = Θ(n1+ 1

k ) for some k ∈ N, or pβ(n) = O(n log n).

Note that for each k the complexity class Θ(n1+ 1
k ) is non-empty [3].

However in this extended abstract we show the technics used in the proof of
this main result considering the following weaker case of Theorem 1.

Theorem 2. The subword complexity pβ of a morphic sequence β is either
pβ(n) = Θ(n2), or pβ(n) = O(n3/2).

We give an example of a morphic sequence β with pβ = Θ(n3/2) in Section 6.
Let Σ be a finite alphabet, ϕ: Σ∗ → Σ∗ be a morphism, ψ: Σ∗ → Σ∗ be a

coding, α be a pure morphic sequence generated by ϕ, and β = ψ(α) be a morphic
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sequence. By Theorem 7.7.1 from [1] every morphic sequence can be generated
by a non-erasing morphism, so further we assume that ϕ is non-erasing.

To prove Theorem 2, we prove the following two propositions:

Proposition 1. If there are evolutions of 2-blocks arising in α that are not
continuously periodic, the subword complexity of β is Ω(n2).

Proposition 2. If all the evolutions of 2-blocks arising in α are continuously
periodic, the subword complexity of β is O(n3/2).

Most part of the paper is devoted to formulation of what k-blocks, evolutions
and continuously periodic evolutions are. Similarly, one can generalize the no-
tion of a continuously periodic evolution of k-blocks to each k ∈ N, generalize
Propositions 1 and 2 to an arbitrary k, and thus prove Theorem 1. (Actually,
the notion of continuously periodic evolution of k-blocks needs more technical
details, but Propositions 1 and 2 can be reformulated easily: 2-blocks, n2 and
n3/2 should be replaced by k-blocks, n1+1/(k−1) and n1+1/k, respectively). How-
ever, the full detailed proof of Theorem 1 (and Theorem 2 as well) needs much
more space and will be published elsewhere.

We will speak about occurrences in α. Strictly speaking, we call a pair of a
word γ and a location i in α an occurrence if the subword of α that starts from
position i in α and is of length |γ| is γ. This occurrence is denoted by αi...j if
j is the index of the last letter that belongs to the occurrence. In particular,
αi...i denotes a single-letter occurrence, and αi...i−1 denotes an occurrence of the
empty word between the (i − 1)-th and the i-th letters. Since α = α1α2α3 . . . =
ϕ(α) = ϕ(α1)ϕ(α2)ϕ(α3) . . ., ϕ might be considered either as a morphism on
words (which we call abstract words sometimes), or as a mapping on the set of
occurrences in α. Usually we speak of the latter, unless stated otherwise.

We call a finite word γ p-periodic with left (resp. right, complete) period δ
if |δ| = p and γ = δδ . . . δδ1...k (resp. γ = δp−k+1...pδ . . . δ, γ = δ . . . δ). If δ is
known, we will shortly call γ a left (resp. right, completely) δ-periodic word. δ
will be always considered as an abstract word. The subword γ|γ|−k+1...|γ| is called
the incomplete occurrence, where 0 ≤ k < |δ|. All the same is with sequences of
symbols or numbers.

The function ra: N → N, ra(n) = |ϕn(a)| is called the growth rate of a. Let
us define orders of letters with respect to ϕ. We say that a ∈ Σ has order k if
ra(n) = Θ(nk−1), and has order ∞ if ra(n) = Ω(qn) for some q > 1 (q ∈ R).

Consider a directed graph G defined as follows. Vertices of G are letters of Σ.
For every a, b ∈ Σ, for each occurrence of b in ϕ(a), construct an edge a → b. For
instance, if ϕ(a) = abbab, we construct two edges a → a and three edges a → b.
Fig. 1 shows an example of graph G.

Using the graph G, one can prove the following

Lemma 1. For every a ∈ Σ, either a has some order k < ∞, or has order ∞.
For every a of order k < ∞, either a never appears in ϕn(a) (and then a is called
pre-periodic), or for each n a unique letter bn of order k occurs in ϕn(a), and
the sequence (bn)n∈Z≥0 is periodic (then a is called periodic). If a is a periodic
letter of order k > 1, then at least one letter of order k − 1 occurs in ϕ(a).
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Fig. 1. An example of graph G for the following morphism ϕ: ϕ(a) = aab, ϕ(b) = c,
ϕ(c) = cde, ϕ(d) = e, ϕ(e) = d. Here a is a letter of order ∞, b is a pre-periodic letter
of order 2, c is a periodic letter of order 2, d and e are periodic letters of order 1.

2 Blocks and Semiblocks

A (possibly empty) occurrence αi...j is a k-block if it consists of letters of order
≤ k, and the letters αi−1 and αj+1 both have order > k. The letter αi−1 is
called the left border of this block and is denoted by LB(αi...j). The letter αj+1
is called the right border of this block and is denoted by RB(αi...j).

The image under ϕ of a letter of order ≤ k cannot contain letters of order > k.
Let αi...j be a k-block. Then ϕ(αi...j) is a suboccurrence of some k-block which
is called the descendant of αi...j and is denoted by Dc(αi...j). The l-th superde-
scendant (denoted by Dcl(αi...j)) is the descendant of . . . of the descendant of
αi...j (l times).

Let αs...t be a k-block in α. Then a unique k-block αi...j such that Dc(αi...j) =
αs...t, is called the ancestor of αs...t and is denoted Dc−1(αs...t). The l-th super-
ancestor (denoted by Dc−l(αs...t)) is the ancestor of . . . of the ancestor of αs...t (l
times). If Dc−1(αs...t) does not exist (it can happen only if αs−1 and αt+1 belong
to an image of the same letter), then αs...t is called an origin. A sequence E of
k-blocks, E0 = αi...j , E1 = Dc(αi...j), E2 = Dc2(αi...j), . . . , El = Dcl(αi...j), . . .,
where αi...j is an origin, is called an evolution.

Lemma 2. The set of all abstract words that can be origins in α, is finite.

Corollary 1. The set of all possible evolutions in α (considered as sequences of
abstract words rather than sequences of occurrences in α), is finite.

Now we define atoms inside k-blocks. The l-th left and right atoms exist in
a k-block Em, where E is an evolution, iff m ≥ l > 0. First, define the l-th
atoms inside the k-block El. Let El = αi...j . There is a suboccurrence αs...t =
ϕ(Dc−1(αi...j)) inside of it. The occurrence αi...s−1 that comes from the image
of the left border of the ancestor, is called the l-th left atom of the block and is
denoted by LAl(αi...j). Similarly, the occurrence αt+1...j = RAl(αi...j) is called
the l-th right atom of the block. Then, LAl(Em) = ϕm−l(LAl(El)), and the same
for right atoms. See Fig. 2.

Let E be an evolution of k-blocks. Consider a sequence LB(E0), . . . , LB(El), . . .
All these letters are of order > k, and the letter LB(El+1) is the rightmost letter
of order > k in ϕ(LB(El)). Hence, not later than starting from LB(E|Σ|), this
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αi−1 αi αs−1 αs αt αt+1 αj αj+1

︸ ︷︷ ︸

ϕ(Dc−1(αi...j))
︸ ︷︷ ︸

LAl(αi...j)
︸ ︷︷ ︸

RAl(αi...j)
︸︷︷︸

LB(αi...j)
︸︷︷︸

RB(αi...j)

ϕ(LB(Dc−1(αi...j)))
︷ ︸︸ ︷

ϕ(RB(Dc−1(αi...j)))
︷ ︸︸ ︷

︸ ︷︷ ︸

a k-block El

Fig. 2. Structure of a k-block

sequence (of abstract letters) is periodic. Its period length is denoted by LBP(E).
The same can be said about the sequence of right borders (the period length is
RBP(E)). Their l. c. m. is denoted by BP(E). The exact place of the evolution
where both sequences become periodic (i. e. both of them have reached at least
the first positions of their first periods) is denoted by F(E). The block EF(E) is
called first pre-stable. The block EF(E) and all its superdescendants are called
pre-stable.

Notice that LAl+1(El+1) depends only on LB(El), not on the whole El. Hence,
the sequence LAF(E)+1(EF(E)+1), . . . , LAl(El), . . . is periodic with a period of
length LBP(E) if considered as a sequence of abstract words. Consider one of its
periods, e. g., LAF(E)+1(EF(E)+1), . . . , LAF(E)+LBP(E)(EF(E)+LBP(E)). There are
three possible cases.

Case I. At least one of these words contains a letter of order k.
Case II. None of these words contain a letter of order k, but at least one of

them is not empty.
Case III. All these words are empty.
Similarly, cases I, II and III are defined for right borders and atoms. These

cases happen independently at right and at left, in any combination.
Now we define the core of a pre-stable k-block (notation: C). Consider the

first pre-stable k-block of the evolution. Its core is the whole block. Then, the
core of El+1 is ϕ(C(El)). Thus, C(EF(E)+l) = ϕl(EF(E)). The suboccurrence in
the block between the core and its left (right) border is called its left (right)
component.

We know that F(E) ≤ |Σ|. Thus | C(EF(E))| ≤ D := 2|ϕ||Σ|+1.

Lemma 3. Consider a k-block and its evolution. If case I holds at right (at left),
the right (left) component has growth rate Θ(nk). If case II or III holds, it has
growth rate O(nk−1).

Now we introduce semiblocks to consider evolutions of words that grow ‘at one
side’ (at left or at right only), while evolutions of blocks represent sequences of
words that grow (that may have atoms) ‘at both sides’.

Let αi...j be a (possibly empty) occurrence in α consisting of letters of order
≤ k, and suppose αj+1 has order > k. Suppose also that j − i + 1 ≤ D. Then
αi...j is called a right k-semiblock, and αj+1 is called its right border (a left
border of a right k-semiblock does not exist). The image of the k-semiblock
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under ϕ prolonged right upto the leftmost letter of order > k is also called a
k-semiblock — the descendant of αi...j . Evolution of right k-semiblocks, with
arbitrary k-semiblock of length ≤ D as an origin, is defined analogously to how
it was defined for k-blocks.

Left k-semiblocks and their evolutions are defined in a similar way.
The length of origins of k-semiblock evolutions is bounded by definition, so the

set of all k-semiblock evolutions (considered as sequences of abstract words) is
finite. Like an evolutional sequence of borders of k-block, an evolutional sequence
of left (right) borders of left (right) k-semiblock is eventually periodic with pre-
period not greater than |Σ|.

Pre-stable k-semiblocks and the first pre-stable k-semiblocks are defined anal-
ogously to those of k-blocks. All the notation we introduced for k-blocks, is used
for k-semiblocks as well. Fig. 3 shows the structure of a k-semiblock.

αi αt αt+1 αj αj+1

︸ ︷︷ ︸

ϕ(Dc−1(αi...j))
︸ ︷︷ ︸

RAl(αi...j)
︸︷︷︸

RB(αi...j)

ϕ(RB(Dc−1(αi...j)))
︷ ︸︸ ︷

︸ ︷︷ ︸

a right k-semiblock El

Fig. 3. Structure of a right k-semiblock

The core (C) of a k-semiblock is defined similarly too. Namely, let E be an
evolution of k-semiblocks. Consider the first pre-stable k-semiblock of E . Its core
is the whole semiblock. Then, the core of El+1 is ϕ(C(El)). Thus, C(EF(E)+l) =
ϕl(EF(E)). The suboccurrence in the semiblock between the core and its left
border is called its left component.

3 1-Blocks and 1-Semiblocks

Now we will consider 1-blocks and 1-semiblocks more accurately.
From the fact that every 1-block or 1-semiblock consists of letters of order

1 only, and from Corollary 1, it follows that all core lengths are bounded by a
single constant that depends on ϕ and Σ only. For an evolution E , cores of the
block EF(E)+|Σ| and its descendants consist of periodic letters only.

A core of 1-block or 1-semiblock is called its (unique) central kernel.
Consider a 1-block or a right 1-semiblock El where E is an evolution and

l ≥ |Σ|. The concatenation RpreP(El) := RAl−|Σ|+1(El) . . . RAl−1(El)RAl(El) is
called the right pre-period of El. Left pre-periods are defined similarly. All letters
in the right component of a 1-block or a 1-semiblock outside its right pre-period
are periodic.

The left (right) component of a 1-block or a 1-semiblock except its left (right)
pre-period is called the left (right) repetition (notation: LR, RR).
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Lemma 4. Let E be an evolution of 1-blocks or left 1-semiblock, l > F(E)+ |Σ|.
Then there are such abstract words LP(El) (for each l), that LR(El) is a left
LP(El)-periodic word and:

The sequence LP(EF(E)+|Σ|), . . . , LP(El), . . . is periodic. In particular, lengths
of these words are bounded by a constant that depends on Σ and ϕ only.

The lengths of the incomplete occurrences become periodic starting
from LR(EF(E)+|Σ|). The sequence (of abstract words) LpreP(EF(E)+|Σ|), . . . ,
LpreP(El), . . . is periodic. Lengths of these words are bounded by a con-
stant that depends on Σ and ϕ only. The sequence (of abstract words)
C(EF(E)+|Σ|), . . . , C(El), . . . is also periodic.

Let E be an evolution of 1-blocks or of 1-semiblocks. If case I holds at left or
at right, we say that El is stable if l ≥ F(E) + |Σ| + 2 BP(E)|Σ|!. If case III
holds both at left and at right (case II is impossible for 1-blocks), El is stable if
l ≥ F(E) + |Σ|. If El is stable then:

1. It is pre-stable.
2. The pre-periods LpreP(El) and RpreP(El) and the core C(El) belong to the

periodic parts of the corresponding sequences from Lemma 4.
3. If case I holds at left or at right, LR(El) and RR(El) consist of at least two

their periods (when considered as left LP(El)-periodic and right RP(El)-periodic
words, respectively).

The least number l such that El is stable is denoted by S(E).
The following lemma is an easy corollary of Lemma 4.

Lemma 5. Let E be an evolution of 1-blocks or 1-semiblocks. The sequence
| LR(ES(E))|, . . . , | LR(El)|, . . . considered modulo s, is periodic for all s ∈ N.

Fig. 4 shows the detailed structure of a 1-block.

· · · · · ·C(El)LP(El)LP(El) RP(El) RP(El)(a) (b)LpreP(El) RpreP(El)

︸ ︷︷ ︸

LR(El)
︸ ︷︷ ︸

RR(El)

left component
︷ ︸︸ ︷

right component
︷ ︸︸ ︷

Fig. 4. Detailed structure of the 1-block El: (a), (b) — the incomplete occurrences of
periods

4 2-Blocks

Now consider 2-blocks more accurately. First, let us give definitions concerning 2-
blocks that are necessary to define continuously periodic evolutions. Through this
section, we will give examples based on the following morphism ϕ: ϕ(s) = saca,
ϕ(a) = bad, ϕ(b) = dbd, ϕ(c) = ece, ϕ(d) = d, ϕ(e) = e. Then ϕ∞(s) = α =
s aca badecebad dbdbaddeeceedbdbadd . . .. Here s is a letter of order 4, a is a letter
of order 3, b and c are letters of order 2 and d and e are letters of order 1. Consider
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an evolution E of 2-blocks, whose origin is α3...3 = c. A 2-block El where l is
large enough looks as follows:

dd..d
︸ ︷︷ ︸

left component

ee..ecee..e
︸ ︷︷ ︸

core

dd..db . . . bdd..dbdd..db . . . ddbdddbdb
︸ ︷︷ ︸

right component

.

Here case I holds at left and case II holds at right. Intervals denoted by . . . may
contain many intervals denoted by ..

First, let us define stable 2-blocks. We will impose requirements on the number
of iterations to be made from the beginning of the evolution, to guarantee for
the block to be stable.

If a 2-block is stable, it is required to be pre-stable. Other requirements depend
on the case that holds at left and at right of the given block.

Case I (e. g., at right). Consider an alphabet Σ′ which is Σ without all the letters
of order 1. Let us define a morphism ϕ′ as follows: for a ∈ Σ′, to obtain ϕ′(a),
we take the word ϕ(a) and remove all the letters of order 1 from it. Let α′ be
a new pure morphic sequence generated by ϕ′. (If α is non-periodic, then α′ is
infinite.) In other words, α′ is obtained from α by removing all letters of order 1.
All the 2-blocks in α become 1-blocks in α′. In the example, the corresponding
1-block in α′ is cbb . . . b. For a given 2-block in α to be stable, we require the
corresponding 1-block in α′ to be stable too.

Let E be an evolution of 2-blocks in α, α′
s...t be the 1-block corresponding to

αi...j ∈ E . Consider an occurrence of RP(α′
s...t) in α′

s...t. We may assume that
the number of atoms it consists of is divisible by BP(E). A suboccurrence in
αi...j containing all the letters of RP(α′

s...t) and all the letters of order 1 to the
right of RP(α′

s...t) upto the closest letter of order 2, is called a pseudo-period. In
the example, both left and right borders are always a, and BP(E) = 1. Thus,
a right pseudo-period is an occurrence bdd..d (the amount of d’s may differ in
different pseudo-periods).

For a given 2-block to be stable, its right component is required to contain at
least two pseudo-periods. Moreover, all the 1-blocks inside two leftmost of them
should be stable.

Now consider an occurrence of the empty word immediately at left of
RB(EF(E)). This occurrence is a right 1-semiblock (an origin). It is called the
right outer central 1-semiblock of EF(E) and is denoted by RO(EF(E)). Then,
RO(El+1) := Dc(RO(El)). For a 2-block El to be stable, we require RO(El) to be
stable too. In the example, the right outer central semiblock is the occurrence
dd..d between the letters e and b (the leftmost in the right component).

Case II (at right). If case II holds, the right component consists of the right outer
central 1-semiblock (and noting else). For a 2-block to be stable, we require this
1-semiblock to be stable. In the example, case II holds at left, thus the left
component of the block is its left outer semiblock.

Case III. No more requirements.
There are still other requirements concerning the core. If it contains letters of
order 1 only, all these letters are required to become periodic. Let it contain
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some letters of order 2. Consider C(EF(E)). Its length is not greater than D, so
its suboccurrence between its right end and the rightmost letter of order 2 may
be considered as a left 1-semiblock. It is called the right inner central 1-semiblock
(notation: RI). Then, RI(El+1) := Dc(RI(El)). In the example, the right inner
1-semiblock is the word ee..e between the letter c and the right component. For
the 2-block El to be stable, we require LI(El) and RI(El) to be stable. Moreover,
the letters of order 2 inside C(El) should be periodic, all the 1-blocks between
them have to be stable too.

These are all the requirements we impose on 2-block to be stable. The least
number l such that El is stable is denoted by S(E).

Now we define left and right pre-periods of 2-blocks. Let αi...j be a stable
2-block and α′

s...t be the corresponding 1-block. If case I holds (e. g. at right),
the occurrence αu...j is called the right pre-period (RpreP) if u is the maximal
index such that

1. RpreP(α′
s...t) is contained in αu...j .

2. 1-blocks between letters of order 2 in the right component of αi...j outside
αu...j are all stable.

3. αu is a letter of order 2.

Notice that αu...j is then completely inside the last L atoms, where L = |Σ| +
max{S(F) : F is an evolution of 1-blocks}. Hence, the sequence (of abstract
words) RpreP(ES(E)), . . . , RpreP(El), . . . is periodic. In the example, the right
pre-period is really long since all the 1-blocks outside it are stable, and the
length of a stable 1-block is greater than |Σ|! = 120. However, its structure can
be written as follows: bd..dbd..d . . . ddbdb.

If case II holds, RpreP(αi...j) := RpreP(RO(αi...j)). If case III holds, the right
pre-period is the occurrence of the empty word immediately at left of αj+1.

Now we define central kernels of stable 2-blocks. Let αi...j be a 2-block.
There may be two kinds of central kernels: ones that are suboccurrences of

C(αi...j) and ones that are outside it. To define central kernels inside C(αi...j),
consider two cases. If it consists of letters of order 1 only, it is called a central
kernel itself. Let C(αi...j) contain letters of order 2. Then, if αi...j is stable,
C(αi...j) can be decomposed into LI(αi...j), RI(αi...j) and some 1-blocks between
them (they all evolute together with the 2-block). Central kernels of the 2-block
are all the cores, left and right pre-periods of these 1-blocks and semiblocks and
letters of order 2 themselves. In the example, central kernels inside the core are
the occurrences of the word eeeee immediately at left and at right of c, the letter
c itself and two occurrences of the empty word between the core and the left and
the right components.

To define central kernels of αi...j at right (or at left) of C(αi...j), consider cases
I, II and III again. If case I holds at right, central kernels at right of C(αi...j)
are RpreP(RO(αi...j)) and C(RO(αi...j)). If case II holds, the only central kernel
at right is C(RO(αi...j)). In case III there are no more cental kernels. In the
example, central kernels outside the core are the occurrence of the word ddddd
immediately at left of the leftmost letter b and two occurrences of the empty
word between the core and the left and the right components once more.
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Central kernels of a block or a semiblock, as well as its right and left pre-
periods, are called simple kernels. A concatenation of consecutive simple kernels
(with no simple kernel immediately at left and at right of it) is called kernel.

The following remarks are easy corollaries of Lemma 4 and the definition of
central kernels. Every kernel of a stable 2-block El corresponds to some kernel of
El+1, and vice versa. Thus, we have evolutional sequences of kernels concerned
with E . (The amount of these sequences equals the amount of kernels in each
El). These sequences are periodic. A part of El between its (consecutive) central
kernels is actually either an empty word or a (left or right) repetition of some
1-block or semiblock αs...t. The part of El+1 between the corresponding central
kernels is the (left or right, respectively) repetition of Dc(αs...t).

The part of a 2-block between its rightmost (leftmost) central kernel and its
right (left) pre-period is called the right (left) pseudorepetition of the 2-block
(notation: RpR, LpR).

Now we can give an example of a 2-block with all its parts marked:

(ddddd)
︸ ︷︷ ︸

LpreP

d..d
︸︷︷︸

LpR
︸ ︷︷ ︸

left component = LO

()()e..(eeeee)
︸ ︷︷ ︸

LI

(c)(eeeee)..e
︸ ︷︷ ︸

RI
︸ ︷︷ ︸

core

()()d..(ddddd)
︸ ︷︷ ︸

RO

b . . .

a pseudo-period
︷︸︸︷

bd..d
︸ ︷︷ ︸

RpR

(bd..db . . . ddbdb)
︸ ︷︷ ︸

RpreP
︸ ︷︷ ︸

right component

.

Here parentheses denote simple kernels and lines above denote kernels. Fig. 5
shows a detailed structure of a 2-block in a more general case.

These are all the notions concerning 2-blocks that are necessary to define
continuously periodic evolutions. We have to say another several words concern-
ing left and right pseudorepetitions. Let αi...j be a 2-block that belongs to an
evolution E and such that case I holds at right. Consider then all the 1-blocks
between the letters of order 2 in RpR(αi...j). The sequence of evolutions they
belong to is denoted by ER(αi...j). ER(αi...j) (EL(αi...j)) is considered beginning
at left (resp. at right).

Let l be divisible by BP(E) and l−BP(E) > F(E). Consider the concatenation
of (right) atoms RAl−BP(E)(El) . . . RAl−1(El)RAl(El). This concatenation does
not depend on l. It may contain some pre-periodic letters of order 2, but the
same atoms of the |Σ|-th and further superdescendants of El do not contain
them. The same atoms of El+|Σ| form some sequence of periodic letters of order
2, separated by 1-blocks, and all of them do not depend on l. 1-blocks inside the
same atoms of El+|Σ|+m are exactly the m-th superdescendants of ones inside
El+|Σ|, new 1-blocks will no longer arise in that atoms.

All we have said above and Lemma 4 imply the following lemma:

Lemma 6. Let El be a 2-block such that case I holds at right, and let α′
s...t

be the corresponding 1-block. Consider all the letters of order 2 inside its right
component. These letters, except for not more than Q rightmost ones that form
RpreP(α′

s...t), form a pl-periodic sequence. Here Q is a constant that depends on
Σ and ϕ only. pl possibly depends on l, but the sequence (pl)∞l=S(E) is periodic.
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αi

︸ ︷︷ ︸

C(LO)
︸ ︷︷ ︸

RpreP(LO)=RpreP(αi...j)
︸ ︷︷ ︸

LO(αi...j) (which is the left component itself)

(a)
︷ ︸︸ ︷

kernel
︷ ︸︸ ︷

left component of αi...j

2 2αs αt

︸ ︷︷ ︸

C(LI)
︸ ︷︷ ︸

C(RI)
︸ ︷︷ ︸

RpreP(LI)
︸ ︷︷ ︸

LpreP(RI)
︸ ︷︷ ︸

LpreP(αs...t)
︸ ︷︷ ︸

C(αs...t)
︸ ︷︷ ︸

RpreP(αs...t)
︸ ︷︷ ︸

LI(αi...j)
︸ ︷︷ ︸

the 1-block αs...t

︸ ︷︷ ︸

RI(αi...j)

kernel
︷ ︸︸ ︷

kernel
︷ ︸︸ ︷

kernel
︷ ︸︸ ︷

(a)
︷ ︸︸ ︷

(b)
︷ ︸︸ ︷

core of αi...j

2 2 2 2221b 1b 1b1b· · · αj

︸ ︷︷ ︸

C(RO)
︸ ︷︷ ︸

RpreP(RO)
︸ ︷︷ ︸

pseudo-period
︸ ︷︷ ︸

pseudo-period
︸ ︷︷ ︸

RpreP(αs...t)
︸ ︷︷ ︸

RO(αi...j)
︸ ︷︷ ︸

pseudorepetition

(b)
︷ ︸︸ ︷

kernel
︷ ︸︸ ︷

kernel
︷ ︸︸ ︷

right component of αi...j

Fig. 5. Detailed structure of the 2-block αi...j , where case II holds at left and case I
holds at right: 2 denotes a letter of order 2, 1b denotes a 1-block, two letters (a) denote
two parts of a single kernel, two letters (b) denote another kernel. Central kernels are
filled.

Everything we have said about components of 1-blocks, can be said about this
sequence too.

During the evolution (as l grows), ER(El) is prolonged to the right (and is not
changed elsewhere). The amount of blocks added at right per iteration is periodic
(the period length is BP(E)). Thus we can get an infinite sequence, which is
denoted by ER(E).

ER(E) is a periodic sequence if it is considered as sequence of abstract words
with known left and right borders. If two 1-blocks inside ER(El) are at the same
places in two consecutive periods of ER(E), then one of them is the BP(E)-th
superdescendant of another.

The following lemma is a corollary of the periodicities we have noticed above.

Lemma 7. Let E be an evolution of 2-blocks, s ∈ N. The sequences
|ES(E)|, . . . , |El|, . . . and | RpR(ES(E))|, . . . , | RpR(El)|, . . . modulo s are periodic.
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5 Continuously Periodic Evolutions

Let E be an evolution of k-blocks (k = 1, 2) or k-semiblocks (k = 1). Let case
II or III hold at right. Let k0 be the order of a := RB(ES(E)). Then ϕ(a) con-
tains a letter of order k0 − 1. Hence, the part of ϕBP(E)(RB(ES(E))) outside
DcBP(E)(ES(E)) will be longer than one letter and will start with a again. Thus
we can construct an abstract sequence (it is built like a pure morphic sequence
and can be prolonged infinitely) starting with a. It is called the right bounding
sequence of ES(E) (notation: RBS). If we consider ES(E)+m (1 ≤ m ≤ BP−1) in-
stead of ES(E), we can build another sequence in the similar way. These sequences
are also called right bounding sequences. These sequences are abstract, they are
not occurrences in α. However, there is a beginning of one of these sequences in
α at right of each block El, and the lengths of these beginnings grow as evolution
passes. Moreover, the length of this beginning is Θ(lk0 ).

Left bounding sequences are defined in a similar way.
Consider all the evolutions E of 1-blocks and 1-semiblocks. Consider all the

words ψ(LP(El)) and ψ(RP(El)) (where El is stable and case I holds at left and at
right, respectively). If one of these encoded periods is completely p-periodic itself
(where p is less than its length), consider the smallest its complete period instead
of it. This (finite due to Lemma 4) set of words is called the set of admissible
periods. A cyclic shift of an admissible period is also called an admissible period.
Since the set of admissible periods is finite, we assume they are enumerated in
some way.

The following definition is very significant for the proof.

Definition 1. Let E be an evolution of k-blocks (k = 1, 2) or k-semiblocks (k =
1) such that |El| → ∞ as l → ∞ (it means that either the core contains letters
of order > 1 or case I or II holds at left or at right). E is called continuously
periodic if for every stable block El = αi...j it is possible to choose some (actually,
not more than three) of its kernels αi1...j1 , . . . , αis...js so that:

1. The total amount of letters of order k in any of the words αjt...it+1 , grows
unboundedly as l → ∞ (thus, in particular, no two central kernels can be chosen);

2. All the words ψ(αjt...it+1), are (left or right) γ-periodic for some admissible
periods γ;

3. If js < j, then case II or III should hold at right (and if E is an evolution
of semiblocks, they should be right ones), the infinite word ψ(αjs...j RBS(El)) is
periodic and its period is admissible,
And similar condition at left.

In fact, Lemma 4 implies that all the evolutions of 1-blocks or 1-semiblocks are
continuously periodic.

After we gave the definition of a continuously periodic evolution, the state-
ments of Propositions 1 and 2 are completely formulated.



On Subword Complexity of Morphic Sequences 157

6 An Example

Here we give an example of a sequence with complexity Θ(n3/2).
Let Σ = {1, 2, 3, 4}. Consider the following morphism ϕ: ϕ(4) = 43, ϕ(3) =

32, ϕ(2) = 21, ϕ(1) = 1 and the following coding ψ: ψ(4) = 4, ψ(3) =
3, ψ(2) = ψ(1) = 1. Then ϕ∞(4) = α = 433232213221211322121121113 . . .,
and ψ(ϕ∞(4)) = β = 433131113111111311111111113 . . . In α there is a unique
evolution E of 2-blocks, whose origin is the occurrence of the empty word between
4 and 3. Case I holds at left, so |El| = Θ(l2). It is clear that E is continuously pe-
riodic evolution, since ψ(El) consists of repeating letters 1. Proposition 2 asserts
pβ = O(n3/2). Let us show pβ = Ω(n3/2).

Indeed, β consists of alternating letters 3 and 2-blocks El. Given a subword
βi...j of length n, consider the longest 2-block βs...t that is completely inside it.
If the longest 2-block in another subword βi′...j′ is of another length or if it is
of the same length but starts from the different location in βi′...j′ than βs...t in
βi...j , the words βi...j and βi′...j′ are obviously distinct.

Assume 3n/4 > |βs...t| > n/2. Then there are Θ(
√

n) possibilities for its
length. There are Θ(n) possibilities for its location in βi...j , thus we obtain
Θ(n

√
n) different subwords of length n in β. Therefore, pβ(n) = Ω(n3/2), and

hence pβ(n) = Θ(n3/2).
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