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II.3.1. Molien’s formula 29
II.3.2. Molien’s formula for isotypic components 31
II.3.3. Symmetries of Poincaré series 33
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CHAPTER I

Representation theory of finite groups

I.1. Basic definitions and examples

k is the ground field;

G is a finite group; the neutral element of G is denoted by 1I.

E is a k-vector space. (Usually, dimk(E) <∞.)

Aut k(E) ⊂ End k(E) = {f : E → E | f is k-linear}.

Definition 1. A linear representation of G inE is a group homomorphism ρ : G→ Aut k(E).

That is, a representation is a triple (G, ρ,E). However, we will say abusing the language
that ρ is a representation; E is also called a representation space of G or a G-module. When-
ever we wish to stress that E corresponds to ρ, we write Eρ for it.

• dimEρ = deg ρ is the degree of the representation ρ.

Let e = (e1, e2, . . . , en) be a basis forE. Then Aut k(E) ' GLn(k) and ρ(e) : G→ GLn(k)

is a matrix representation of G. Here ρ(e)(σ) is a non-singular n× n matrix for any σ ∈ G.

Definition 2. Two matrix representations ρi : G→ GLni(k), i = 1, 2, are said to be equiva-
lent if n1 = n2 and there is C ∈ GLn1(k) such that C−1ρ1(σ)C = ρ2(σ) for any σ ∈ G.

Definition 3. Two linear representations ρi : G → Aut k(Ei), i = 1, 2, are said to be
equivalent (isomorphic) if dimE1 = dimE2 and there is an isomorphism C : E1 → E2 such
that Cρ1(σ) = ρ2(σ)C for any σ ∈ G.

Notation: ρ1 ' ρ2.

We do not distinguish equivalent representations. Our goal is to describe the representa-
tions of G up to equivalence.

I.1.1. Basic constructions. Let X be a finite set. The set of all k-valued functions on
X is a finite-dimensional k-vector space; dimk k[X] = #X . The group of all bijections
X → X , denoted Aut (X), is isomorphic to a symmetric group. Any σ ∈ Aut (X) induces
the linear transformation σ∗ of k[X] defined by the formula

(σ∗f)(x) = f(σ−1x), f ∈ k[X], x ∈ X .

The role of σ−1 in the right hand side is that it guarantees us the right order in composi-
tions: we then have (στ)∗ = σ∗τ∗.
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6 I. REPRESENTATION THEORY OF FINITE GROUPS

Any group homomorphism s : G → Aut (X) defines the linear representation ρs of G in
k[X] by the formula:

ρs(σ) = s(σ)∗.

This ρs is called the permutation representation associated with (s,X).

1o. X = G and G acts on itself by left multiplications. That is, s(σ1)σ2 = σ1σ2. Here
ρs = L, the left regular representation of G in k[G].

2o. X = G and G acts on itself by right multiplications. That is, s(σ1)σ2 = σ2(σ1)
−1.

Here ρs = R, the right regular representation of G in k[G].

Exercise 1. Prove that L ' R. [Hint: Use the inversion s 7→ s−1.]

3o. The adjoint representation of G in k[G]. Here X = G and Ad (σ1)σ2 = (σ1)
−1σ2σ1.

4o. The restriction of a representation to a subgroup. If H is a subgroup of G, then
ρ|H : H → Aut k(E) is a representation of H .

5o. If H is a subgroup of G, then take X = G/H and define s : G→ Aut (G/H) by the
formula s(σ1)σ2H = (σ1σ2)H . This yields a representation of G in the space k[G/H].

6o. More generally, let Ē be an H-module (via ρ̄ : H → Aut k(Ē)). Consider the
finite-dimensional vector space

E = {f : G→ Ē | f(gh−1) = ρ̄(h)f(g)} .

It becomes a G-module in a very natural way. Define ρ : G→ Aut k(E) by

(ρ(σ)f)(g) = f(σ−1g), σ, g ∈ G .

The representation ρ is called the induced representation. Notation: ρ = IndGH(ρ̄). If dim Ē =

1 and ρ̄ ≡ 1, then E is naturally isomorphic to k[G/H] and we obtain Example 50 as a
particular case of this construction.

7o. If (ρ, E), (ρ′, E ′) are G-modules, then Hom k(E,E ′) is again a G-module. For f ∈
Hom k(E,E ′) and σ ∈ G, we set

(σ·f)(x) = ρ′(σ)(f(ρ(σ−1)x)) .

8o. The dual (contragredient) representation. Since E∗ = Hom k(E,k), it is a special
case of Example 7o. We write ρ∗ for the representation dual to ρ.

9o. If (G, ρ,E) and (G, µ, V ) are two representations, then ρ ⊗ µ : G → Aut k(E ⊗ V )

defines a representation, which is called the tensor product of ρ and µ.

Exercise 2. The G-modules Hom k(E,E ′) and E∗ ⊗ E ′ are naturally isomorphic.
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I.2. Invariant subspaces and complete reducibility

Let (G, ρ,E) be a representation.

Definition 4. U ⊂ E is an invariant (or G-invariant) subspace if ρ(σ)U ⊂ U for all σ ∈ G.

Any invariant subspace yields the subrepresentation and the factor-representation of G:{
ρU : G→ GL(U) = Aut k(U), ρU(σ) = ρ(σ)|U

ρE/U : G→ GL(E/U) = Aut k(E/U), ρE/U(σ)(v + U) = ρ(σ)(v) + U.

If U ⊕ U ′ = E is a vector space decomposition, then we obtain in the matrix form:

ρ(σ) =

(
ρU(σ) ∗

0 ρE/U(σ)

)
.

Definition 5. A representation (G, ρ,E) is said to be irreducible, if {0} and E are the only
invariant subspaces. In this case, the G-module E is said to be simple.

We say that an invariant subspace is non-trivial if it is different from {0} and E. An invari-
ant subspace U is said to be minimal if U 6= 0 and ρ|U is irreducible.

Example I.2.1. The monomial representation of the symmetric group Σn.
Let e1, . . . , en be a a basis of an n-dimensional space E. For a permutation σ ∈ Σn, we
set M(σ)(ei) = eσ(i). Obviously, k(e1 + . . . + en) is an invariant subspace, hence M is not
irreducible. Next, E0 = {

∑
xiei | xi ∈ k &

∑
xi = 0} is a complementary invariant

subspace.

Exercise 3. Prove that E0 is a simple Σn-module.
[Hint: if σ12(x) 6= x, then σ12(x)− x is proportional to e1 − e2.]

Definition 6. A representation (G, ρ,E) is said to be completely reducible if every invariant
subspace U ⊂ E has an invariant complement.

Notation: EG = {x ∈ E | ρ(σ)x = x ∀σ ∈ G}. It is an invariant subspace of E.

Lemma I.2.2. If #G is invertible in k, then EG has a unique invariant complement.

Proof. Consider the operator

TG : E → E, TG(x) =
1

#G

∑
σ∈G

σx.

Clearly, TG is a projection of E to EG. Furthermore, TG(σx) = TG(x) for any x ∈ E, σ ∈ G.
Hence ker (TG) is an invariant complement to EG. Assume that E ′ is another invariant
complement to EG. Applying TG to E ′, we obtain TG(E ′) ⊂ E ′ ∩ EG = {0}. Therefore
E ′ ⊂ ker (TG) and hence they are equal for dimension reason. �
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Lemma I.2.3. If V, V ′ are G-modules and ϕ : V → V ′ is a surjective G-homomorphism, then
ϕ|V G : V G → (V ′)G is surjective, too.

Proof. Consider the commutative diagram:

V −−−→ V ′

TG

y yTG
V G −−−→ (V ′)G

whose vertical arrows

are surjective in view of Lemma I.2.2. �

Definition 7. Let (G, ρi, Ei), i = 1, 2, be two representations of G. A mapping ϕ ∈
Hom k(E1, E2) is called a G-homomorphism or intertwining operator if ϕ(ρ1(σ)x) = ρ2(σ)ϕ(x)

for any σ ∈ G, x ∈ E1. The set of all intertwining operators is denoted by Hom G(E1, E2).

If ϕ is a G-homomorphism, then kerϕ and Imϕ are invariant subspaces.

Example I.2.4. C ∈ Hom (E1, E2) is aG-homomorphism if and only ifC is aG-fixed vector
in Hom (E1, E2). That is, Hom G(E1, E2) = (Hom (E1, E2))

G.

Theorem I.2.5 (Maschke). If #(G) is invertible in k, then every representation ofG is completely
reducible.

Proof. Let U be an invariant subspace of a G-module E. Then

V = Hom k(E,U)→ Hom k(U,U) = V ′, (f ∈ V ) 7→ f |U ,

is a surjective G-homomorphism. Hence

ψ : V G = Hom G(E,U)→ Hom G(U,U) = (V ′)G

is surjective, too. The space (V ′)G contains a distinguished element, namely, idU . If idU =

ψ(p), then p : E → U is a G-projection. Therefore ker (p) is a G-invariant complementary
subspace. �

This is a general scheme of proving the complete reducibility, which applies in much more
general context. The crucial point here is Lemma I.2.2 and the existence of the projection
to the subspace of G-fixed points. The rest of the proof does not exploit the fact that G
is finite. In case of compact Lie groups, the averaging operator TG is replaced with the
invariant integration on G.

Corollary I.2.6. Any representation of G is a direct sum of irreducible representations,

Remark. It follows from the complete reducibility that any G-module E can be pre-
sented as a direct sum of minimal invariant subspaces. In general, such a decomposi-
tion is not unique. A more coarse but canonical decomposition—thew so-called isotypic
decomposition—will be discussed below.
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Theorem I.2.7 (Schur’s Lemma). Let ρ1, ρ2 be irreducible representations of G and f : E1 →
E2 a G-homomorphism.

(i) If ρ1 6' ρ2, then f = 0;
(ii) If ρ1 ' ρ2 and f 6= 0, then f is an isomorphism; furthermore, if k = k̄, then

dimk Hom G(E1, E2) = 1.

Proof. (i) It follows from the fact the ker (f) and Im (f) are invariant subspaces.

(ii) If f 6= 0, then we must have ker (f) = 0 and Im (f) = E2, i.e., f is aG-isomorphism.
Suppose f1, f2 ∈ Hom G(E1, E2) are two G-isomorphisms. Then s = f2f

−1
1 : E1 → E1 is

a G-isomorphism. If k = k̄, then s has a non-trivial eigenvector, i.e., sv = λv for some
v ∈ E1 and λ ∈ k. Then s − λ·id is a G-homomorphism having non-trivial kernel. Hence
s = λ·id and f2 = λf1. �

From now on, we assume that k is algebraically closed and the orders of all finite groups
under consideration are invertible in k.

Theorem I.2.8. Let (G, ρ,E) and (H,µ, V ) be two irreducible representations. Then (G×H, ρ⊗
µ,E ⊗ V ) is also irreducible.

Proof. We have G = G× {e} ⊂ G×H and

ρ⊗ µ|G ' mρ, where m = deg µ .

It follows that any simple G-submodule of E⊗ V is isomorphic to E (induction on m and
an application of Schur’s Lemma). Let U be a minimal G-invariant subspace of E ⊗ V .
Then U ' E as G-module, and we are going to prove that all such subspaces have a very
special form.

Let f1, . . . , fm be a basis for V . Then for any u ∈ U we have

u =
m∑
i=1

αi ⊗ fi, αi ∈ E .

In this way, we obtain the mappings φi : U → E, φi(u) = αi, i = 1, . . . ,m. Clearly,
φi ∈ Hom G(U,E) for each i. Hence φi = ciφ, where φ is a fixed isomorphism of U and E,
and ci ∈ k. Hence u =

∑
i ciφ(u)⊗ fi = φ(u)⊗

∑
i cifi. Thus, U is of the form E ⊗ {v} for

v =
∑

i cifi ∈ V .

Let W be a non-trivial G×H-invariant subspace. Then W ⊃ E⊗{v0} for some v0 and
hence W ⊃ E ⊗ span{Hv0}. Since µ is irreducible, span{Hv0} = V . �
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I.3. The decomposition of the group algebra

The vector space k[G] has a natural structure of a k-algebra, which we consider later. In
this section, we regard k[G] only as a k-vector space and a G-module.

Let (ρ, E) be an arbitrary representation of G and (ρij(s)) is a matrix of ρ(s) with re-
spect to some basis of E. Then ρij ∈ k[G] and we set

M(ρ) = span{ρij | i, j = 1, . . . , dimE} ⊂ k[G] .

We say that M(ρ) is the space of matrix coefficients of ρ. First, notice that M(ρ) does not
depend on the choice of a basis. Indeed,

(I.3.1) M(ρ) = span{x 7→ tr (ξ·ρ(x)) | ξ ∈ End k(V )}.

It suffices to consider the spaces of matrix elements only for irreducible representations.
For, if ρ ' ρ1 ⊕ ρ2, then M(ρ) = M(ρ1) +M(ρ2).

The crucial observation is that End k(E) and k[G], which are G-modules as yet, can be
regarded asG×G-modules. The representation ofG×G in k[G] is obtained by combining
the left and right regular representations of G. For this reason, it will be denoted ‘LR’.

• For ξ ∈ End k(E), we set (g1, g2)·ξ = ρ(g1)ξρ(g2)
−1;

• For f ∈ k[G], we set (LR(g1, g2)f)(x) = f(g−12 xg1).

Consider the linear mapping

µ : End k(E)→ k[G], µ(ξ)(g) := tr (ξ·ρ(g)).

It follows from Eq. (I.3.1) that Imµ = M(ρ).

Proposition I.3.1.
1. µ is a G×G-homomorphism.
2. If ρ is irreducible, then µ is a monomorphism and thereby dimM(ρ) = (deg ρ)2.

Proof. 1. We have to prove that µ((g1, g2)·ξ)(g) = (LR(g1, g2)·µ(ξ))(g) for any g ∈ G.
Here

LHS =tr (ρ(g1)ξρ(g2)
−1ρ(g)) and RHS =µ(ξ)(g−12 gg1) = tr (ξ·ρ(g−12 gg1)).

Now, the equality follows from the standard properties of the trace.

2. The representation of G×G in End k(E) is isomorphic to ρ⊗ ρ∗. Therefore End k(E)

is a simple G × G-module, by virtue of Theorem I.2.8. Since µ 6= 0, the kernel of µ must
be trivial. �

This proposition immediately implies a number of important conclusions.
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Corollary I.3.2.
1. If ρ 6' ρ′, then M(ρ) and M(ρ′) are linearly independent.
2. Each irreducible representation of G occurs as a subrepresentation of L (or R).
3. The number of non-equivalent irreducible representations of G is finite.

Proof. 1. The spaces M(ρ) and M(ρ′) afford non-equivalent representations of G×G.
2. Considering M(ρ) as the G × {1I}-module, we see that ρ occurs as a subrepresentation
of L.

3. Follows from part 2 and the fact that k[G] is finite-dimensional. �

Let Ĝ denote a complete set of pairwise non-equivalent irreducible representations of G.
We also assume that Ĝ = {ρ1, . . . , ρm}. In particular, #Ĝ = m. Set ni = deg ρi.

Theorem I.3.3. The G×G-modules M(ρ1)⊕ . . .⊕M(ρm) and k[G] are isomorphic.

Proof. We have already proved the inclusion ”⊂”. To prove the opposite inclusion, we
show that any f ∈ k[G] is a sum of matrix coefficients of R. Let f1, . . . , fN be a basis for
k[G]. Without loss of generality, we may assume that f = f1. Then we have

g 7→ f(g) = (R(g)f1)(e) =
∑
i

(Ri1(g)fi)(e) =
∑
i

fi(e)Ri1(g) .

Hence f =
∑

i fi(e)Ri1. Because R '
∑
liρi, we conclude that f ∈

⊕m
i=1M(ρi). �

Corollary I.3.4. n2
1 + . . .+ n2

m = #(G).

Corollary I.3.5. L ' R '
∑m

i=1 niρi.

Example I.3.6. We have #(Σ3) = 6. It follows that Σ3 has three representations of degree
1, 1, and 2.

I.4. Characters of linear representations

Let (G, ρ,E) be a linear representation. The function χρ : σ 7→ tr ρ(σ) is called the character
of the representation ρ. A simple or irreducible character is the character of an irreducible
representation.

Definition 8. A function f on the group G is said to be central or class function if
f(σ−1xσ) = f(x) for all σ, x ∈ G.

In other words, f is central if it is invariant with respect to the adjoint representation of G
in k[G]. The space of all central functions is denoted by k[G]#. Since the central functions
are just the functions that are constant on the conjugacy classes of G, dimk[G]# equals the
number of conjugacy classes.

Clearly, the character of any representation is a central function. For simplicity, we
write χi in place of χρi .
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Theorem I.4.1. The simple characters χ, . . . , χm form a basis for k[G]#.

Proof. By Theorem I.3.3, the matrix coefficients of the irreducible representations form
a basis in k[G]. Since χi ∈ M(ρi), χ1, . . . , χm are linearly independent and therefore
m 6 dimk[G]#. Hence we have to only prove that any central function is a k-linear
combination of characters χi. Let f ∈ k[G]#. Then f =

∑
fi, where fi ∈ M(ρi). We have

G×G ⊃ ∆G ' G and the adjoint representation of G is the restriction of LR to ∆G. Hence
each fi is central, too. Hence it suffices to prove that if f ∈M(ρi)∩k[G]#, then f = cχi for
some c ∈ k.

Recall that we have the G × G-isomorphism µ : End k(Ei)
∼−→ M(ρi). Hence f =

µ(ξ) for some ξ ∈ End k(Ei). The assumption that f is central translates to the condition
ρi(σ)ξρi(σ

−1) = ξ for any σ ∈ G. That is, ξ ∈ End G(Ei). Therefore ξ = c·idEi , in view
of the Schur Lemma. It remains to observe that µ(idEi)(g) = tr (idEiρi(g)) = χi(g). Thus,
f = µ(ξ) = cχi. �

Corollary I.4.2. For a finite group G, the number of (the equivalence classes of) irreducible repre-
sentations equals the number of conjugacy classes.

If ρ '
∑

i kiρi, then the each number ki is called the multiplicity (of ρi in ρ).

Corollary I.4.3. The multiplicities are well-defined. Up to equivalence, any representation of G
is uniquely determined by its character.

Proof. If ρ '
∑
kiρi, then χρ =

∑
kiχi. Since the irreducible characters are linearly

independent, the last decomposition is unique. Hence the multiplicities {ki} are well-
defined. �

Exercise 4. Describe all the irreducible complex representations of the dihedral group
Dn = 〈a, b, | an = b2 = 1I, bab−1 = a−1〉. Verify that #Dn = 2n and any σ ∈ Dn is conjugate to
σ−1.

I.5. Orthogonality relations for characters and matrix elements

In this section, k = C. For α ∈ C, we let ᾱ denote the complex-conjugate number.

I.5.1. Invariant inner products. Let (G, ρ,E) be a representation of G. Let ( | ) be a
Hermitian positive-definite sesquilinear form on E. Recall that this means the following:

(x|y) = (y|x), (α1x1 + α2x2|y) = α1(x1|y) + α2(x2|y), and (x|x) > 0 for any x 6= 0.

For brevity, we say that ( | ) is an inner product on the complex vector space E. Letting

T (x|y) =
1

#G

∑
σ∈G

(σx|σy),
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we obtain an inner product satisfying the property T (σx|σy) = T (x|y) for any σ ∈ G,
x, y ∈ E. Such a product is said to be a G-ıinvariant inner product (on E). If U ⊂ E is an
invariant subspace, then U⊥T is an invariant complementary subspace. Here U⊥T stands
for the orthocomplement of U with respect to T . This yields another proof of complete
irreducibility over C.

The above argument also implies that, for any complex representation of G, there is a
basis for E in which all the matrices ρ(σ), σ ∈ G, are Hermitian.

Proposition I.5.1. If ρ is irreducible, then a G-invariant Hermitian form on E is unique, up to a
scalar (real) multiple.

Proof. Assume that T1, T2 are two inner products on E. Then there is a positive β ∈ R
such that the G-invariant form f1 + βf2 is degenerate. (Take β = −T1(x|x)/T2(x|x) for
some x ∈ E.) Its kernel is a non-trivial invariant subspace. Hence f1 + βf2 = 0, and we
are done. �

I.5.2. Orthogonality relations for simple characters. Define the inner product on
C[G] by the formula

(I.5.2) (f |g) =
1

#G

∑
σ∈G

f(σ)g(σ) .

As is easily seen, this inner product respects both L and R-structure in C[G]. That is, this
inner product is G×G-invariant. Indeed,

(LR(σ1, σ2)f |LR(σ1, σ2)g) =
1

#G

∑
σ∈G

f(σ2σσ
−1
1 )g(σ2σσ

−1
1 ).

Since the mapping (σ ∈ G) 7→ (σ2σσ
−1
1 ∈ G) is one-to-one, the last sum differs from the

sum in Eq. (I.5.2) only in the order of terms. This proves the invariance.

We would like to describe orthogonal bases for C[G] and C[G]#.

Proposition I.5.2. For i 6= j, the subspaces M(ρi) and M(ρj) are orthogonal.

Proof. These subspaces afford non-equivalent irreducible representations of G × G.
Therefore the following general assertion applies. �

Lemma I.5.3. Let E be a G-module and U, V are minimal invariant subspaces of E. If U and V
afford non-equivalent representations of G, then they are orthogonal with respect to any invariant
inner product on E.

Proof. Let T be a G-invariant inner product on E. Consider the invariant projection
p : E → U whose kernel is U⊥T . Then the G-homomorphism p|V : V → U is zero in virtue
of Schur’s lemma. That is, V ⊂ U⊥T . �
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Theorem I.5.4 (Orthogonality relations for characters). The simple characters form an or-
thonormal basis in C[G]#.

Proof. Since χi ∈ M(ρi), the orthogonality of χi’s follows from Proposition I.5.2. To
compute the norm of a simple character, we use the decomposition of the right regular
representation: R '

∑
i niρi and an explicit expression for χR. Notice that C[G] has a basis

consisting of δ-functions {hσ | σ ∈ G}, where hσ(σ′) = δσ,σ′ . Since G acts via permutations
in this basis, one readily obtains

χR(σ) =

{
0, σ 6= 1I,

#G, σ = 1I.

Therefore ni = (χR|χi) = ni(χi|χi), and we are done. �

Corollary I.5.5. The norm of a complex character is a non-negative integer. A complex character
of G is irreducible if and only if its norm equals 1.

I.5.3. The isotypic decomposition of aG-module. Let (G,ψ,E) be an arbitrary repre-
sentation and ψ '

∑m
i=1 kiρi. As we know, the multiplicities ki are well-defined. Choosing

somehow a decomposition ofE into a direct sum of minimal invariant subspaces, we may
construct for each i the subspace E[i] ⊂ E that affords the representation kiρi. Our goal is
to prove that the subspaces {E[i]}, i = 1, . . . ,m, do not depend on the choice of minimal
invariant subspaces. To this end, it is enough to construct the canonical G-equivariant
projection E → E[i] for each i.

Proposition I.5.6. The operator Pj =
deg ρj
#G

∑
σ∈G

ψ(σ)χj(σ) ∈ End (E) is the G-equivariant

projection to E[j].

Proof. It follows from the definition that Pj is a G-equivariant operator. Therefore its
restriction to any minimal invariant subspace is a scalar operator. Computing the trace of
Pj on minimal invariant subspaces of all types, we obtain

tr (Pj|Ei) =
deg ρj
#G

∑
σ∈G

χi(σ)χj(σ) = deg ρj(χi|χj) = δi,j deg ρj.

Hence Pj vanishes on Ei if i 6= j and is the identity operator on Ej . Since the definition
of Pj does not depend on the choice of a decomposition, we see that E[j] is canonically
defined as the image of Pj . �

In this way, one obtains the canonical decomposition of a representation space that is
called the isotypic decomposition. Notice that EG is the isotypic component corresponding
to the trivial representation. However, if ki > 1 then the further splitting of E[i] is not
unique.
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Remark. One can establish the orthogonality relations for characters over ”any” field. Let
us just set

(I.5.3) 〈χ1, χ2〉 =
1

#G

∑
σ∈G

χ1(σ)χ2(σ
−1).

If k = C, then χ(σ−1) = χ(σ). Hence Eq. (I.5.2) and (I.5.3) coincide whenever we only
consider the characters of representations, i.e., actually the functions in C[G]#.

I.5.4. Orthogonality for matrix coefficients. Here we obtain a refinement of Theo-
rem I.5.4, which is, however, not quite canonical. Fix an invariant inner product in each
El, l = 1, . . . ,m. By Proposition I.5.1, such a product is essentially unique. Choose an
orthonormal basis for El, and let ρl,ij be the matrix coefficients of ρl with respect to this
basis.

Theorem I.5.7. The matrix coefficients ρl,ij form an orthogonal basis for C[G]. Furthermore,
(ρl,ij|ρl,ij) = 1/ deg ρl.

Proof. In view of Proposition I.5.2, we may restrict ourselves with considering the
matrix elements of a single representation.

Using the G×G-isomorphism µ : End k(El)
∼−→M(ρl), we reduce the problem to lin-

ear operators onEl. We define the inner product on End k(El) by (ξ, η) 7→ 〈ξ, η〉 := tr (ξη∗),
where η∗ stands for the adjoint operator1 of η with respect to the fixed inner product on
El. This inner product is G×G-invariant. Indeed,

〈ρ(g1)ξρ(g2)
−1, ρ(g1)ηρ(g2)

−1〉 = tr (ρ(g1)ξρ(g2)
−1ρ(g2)

∗−1η∗ρ(g1)
∗) =

= tr (ρ(g1)ξη
∗ρ(g1)

∗) = tr (ξη∗).

Here we used the fact that ρi(ξ) and ρi(η) are unitary operators and therefore their adjoint
are equal to their inverses. It follows form Proposition I.5.1 that pushing forward this
inner product to M(ρl), we obtain, up to a scalar (real) multiple, the restriction of the
inner product defined by Eq. (I.5.2).

It is easily seen that the matrix elements ρl,ij corresponds to the matrix units eij ∈
End k(El) with respect to the fixed orthonormal basis of Ei, and that the matrix units form
an orthonormal basis in End k(El) with respect to the Hermitian form tr (ξη∗). Hence the
matrix coefficients are pairwise orthogonal, and have the same norm.

It remains to compute the norms of matrix elements. Since the matrices ρl(σ) are uni-
tary, we have ∑

j

ρl,ij(σ)ρl,ij(σ) = 1

1The adjoint operator of A : El → El is the operator A∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ El.
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for each σ. Taking the sum over all σ ∈ G and dividing by #G, we obtain∑
j

(ρl,ij|ρl,ij) = 1.

Hence (ρl,ij|ρl,ij) = 1/ dimEl, as required. �

I.5.5. The index of an irreducible representation. Let χρ be the character of an non-
trivial irreducible representation ρ in E. Then

∑
σ∈G χρ(σ) = 0. Indeed, up to a scalar

multiple, it is the inner product of χρ and the character of the trivial representation. It
turns out that the sum of χρ(σ2) also has an interesting description. Recall that ρ is said
to be self-dual, if ρ ' ρ∗. In this case, Eρ has a G-invariant non-degenerate bilinear form.
If ρ is irreducible and self-dual, then such a form is unique up to a scalar multiple (cf.
Proposition I.5.1). Therefore a G-invariant bilinear form is either symmetric or alternate.

Theorem I.5.8. For any irreducible representation, we have
1

#G

∑
σ∈G

χρ(σ
2) ∈ {−1, 0, 1}. These

cases correspond to the following situations:

0: ρ 6' ρ∗;

+1: ρ ' ρ∗ and a G-invariant bilinear form on Eρ is symmetric;

−1: ρ ' ρ∗ and a G-invariant bilinear form on Eρ is alternate.

Proof. Let S2ρ and ∧2ρ denote the second symmetric and exterior power of ρ, respec-
tively. Then an easy calculation with the eigenvalues shows that

χρ(σ
2) = χS2ρ(σ)− χ∧2ρ(σ).

Therefore the sum in question equals dim(S2E)G − dim(∧2E)G. On the other hand, S2ρ+

∧2ρ ' ρ⊗ρ and it follows from Schur’s lemma that dim(E⊗E)G = dim Hom G(E,E∗) 6 1.
In other words, dim(S2E)G + dim(∧2E)G 6 1 and it is equal to 1 if and only if ρ ' ρ∗. The
rest is clear. �

Definition 9. The integer considered in Theorem I.5.8 is called the index of ρ, denoted
ind (ρ).

Remark. If ind (ρ) = 1, then there is a basis for Eρ such that all matrices ρ(σ) are real and
orthogonal. Therefore such representations are said to be of real type. The representations
with ind (ρ) = −1 are also said to be of quaternion type.

Consider the function σ 7→ Q(σ) = #{x ∈ G | x2 = σ}. Obviously, Q ∈ k[G] is a central
function, hence it is a linear combination of simple characters. What are the coefficients?

Exercise 5. Prove that Q =
∑

ρ∈Ĝ ind (ρ)χρ.
[Hint: compute the inner product 〈Q,χρ〉 and use the equality Q(σ) = Q(σ−1).]
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Let inv(G) denote the set of involutions of G. Taking the value of Q at 1I, we obtain

#inv(G) =
∑
ρ∈Ĝ

ind (ρ) deg ρ.

I.5.6. Some miscellaneous results.

1. One-dimensional representations and representations of abelian groups.

Proposition I.5.9. All irreducible representations of G are 1-dimensional if and only if G is
Abelian. In general, the number of the irreducible 1-dimensional representations equalsG/(G,G).

2. Irreducible representations of G1 ×G2.

Proposition I.5.10. Let {ρi}i∈I (resp. {µj}j∈J ) be a full set of pairwise non-equivalent irreducible
representations of G1 (resp. G2). Then {ρi ⊗ µj}i∈I,j∈J is a full set of pairwise non-equivalent
irreducible representations of G1 ×G2.

Proof. By Theorem I.2.8, all the representations ρi ⊗ µj are irreducible. On the other
hand, #conj(G1 × G2) = #conj(G)·#conj(G2). Hence G1 × G2 has #(I × J) irreducible
representations. �

3. Burnside’s Theorem.

Theorem I.5.11. If ρ ∈ Ĝ, then the span of all operators ρ(σ), σ ∈ G, equals End (Eρ).

I.6. The group algebra of G and its properties

The vector space k[G] = {f : G → k} has a natural structure of associative algebra.
Every function f ∈ k[G] can be written as a formal linear combination f =

∑
σ∈G

fσσ, where

fσ = f(σ) ∈ k. In the last form, the multiplication in k[G] is given by the formula

(
∑
σ∈G

fσσ)(
∑
τ∈G

gττ) =
∑
σ,τ∈G

fσgτ (στ).

In the former ”functional” realisation, the multiplication of f, g ∈ k[G] is the convolution.
That is,

(f ∗ g)(σ) =
∑
τ∈G

f(τ)g(τ−1σ).

Exercise 6. Convince yourself that the above two formulae define the same product in k[G].

The vector space k[G] equipped with this product is said to be the group algebra of G. The
two realisations of k[G] will be referred to as ”functional” and ”formal”, respectively. We
will use both realisations. Sometimes the formal realisation is more convenient, because
then G can naturally be regarded as a subset of k[G]. Whenever we regard σ ∈ G as a
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function, we write hσ for it (the delta-function supported at σ). For instance, h1I is the
multiplicative unit of k[G].

Notice that the algebra k[G] is commutative if and only if G is commutative. Let
conj(G) denote the set of conjugacy classes in G. For C ∈ conj(G), set σC :=

∑
σ∈C

σ. That is,

σC ∈ k[G] is the characteristic function of the subset C ⊂ G.

Proposition I.6.1. The elements σC , C ∈ conj(G) form a basis for the centre of k[G].

Proof. Let f =
∑
fσσ and assume that fτ = τf for any τ ∈ G. Then∑

σ∈G

fστ
−1στ =

∑
σ∈G

fσσ.

Therefore fν = fσ whenever ν and σ are conjugate. The rest is clear. �

It follows that the centre of k[G] coincides with the space of central functions. Thus, we
have two bases for k[G]#: {χρ}ρ∈Ĝ and {σC}C∈conj(G).

Exercise 7. Let χ1, . . . , χm and C1, . . . , Cm be all the simple characters and conjugacy classes of
G, respectively. Consider the m×m matrix M = (χi(Cj)). Prove that

| detM|2 =
m∏
i=1

#G

#Ci
.

The matrix M is called the character table of G. The i-th row of M contains all values of χi.

If ρ is a representation of G, then it naturally extends to the homomorphism of associative
algebras k[G] → End k(Eρ), which we denote by ρa. Recall from Theorem I.3.3 the G ×
G-module decomposition k[G] = ⊕ρ∈ĜM(ρ). Now we are in a position to relate this
decomposition with the algebra structure of k[G].

Theorem I.6.2. The group algebra k[G] is isomorphic to the direct sum of the matrix algebras
End (Eρ), ρ ∈ Ĝ.

Proof. Consider ρa : k[G]→ End k(Eρ). It is an associative algebra homomorphism and
aG×G-homomorphism. Furthermore, ρa is onto, since End (Eρ) is a simpleG×G-module.
It follows that ker(ρa) =

⊕
ρ′∈Ĝ\{ρ}

M(ρ′) and it is a subalgebra. Varying ρ, we conclude that

each M(ρ) is a subalgebra of k[G] that is isomorphic to End (Eρ). �

Corollary I.6.3. If χρ is a simple character of G, then χρ ∗ χρ = #G
deg ρ

χρ.

Proof. Since χρ ∈ End (Eρ), we have χρ ∗ χρ ∈ End (Eρ) and it is still a central element
of k[G]. Hence χρ ∗ χρ is proportional to χρ. The corresponding coefficient is determined
by comparing the values at 1I. By definition, we have

χρ ∗ χρ(1I) =
∑
τ∈G

χρ(τ)χρ(τ
−1) = #G〈χρ, χρ〉 = #G,
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while χρ(1I) = deg ρ. �

For any ρ ∈ Ĝ, let e(ρ) denote the component of h1I in M(ρ) ' End (Eρ).

Proposition I.6.4. e(ρ) =
deg ρ

#G
χρ.

Proof. Clearly, each e(ρ) is a central element of k[G], hence e(ρ) = αχρ for some α ∈ k.
As e(ρ) ∗ e(ρ) = e(ρ), α can be determined using Corollary I.6.3. �

As a consequence of Proposition, one obtains the identity in k[G]

(I.6.4)
∑
ρ∈Ĝ

deg ρ

#G
χρ = h1I.

In particular, computing the values at 1I yields the known identity∑
ρ∈Ĝ

(deg ρ)2 = #G.

Using multiplicative properties of characters, we prove below an important property of
representations.

Theorem I.6.5. Suppose chark = 0. Then deg ρ divides the order of G for any ρ ∈ Ĝ.

Proof. It follows from Corollary I.6.3 that χn+1
ρ =

( #G

deg ρ

)n
χρ and hence

χn+1
ρ (1I) =

(#G)n

(deg ρ)n−1
.

In this formula, n can be an arbitrary positive integer. The right-hand side is a rational
number, while the left-hand side is written out as

∑
χρ(σ1)χρ(σ2) . . . χρ(σn+1), where the

sum is taken over all (n+1)-tuples (σ1, . . . , σn+1) ∈ Gn+1 such that σ1 · · ·σn+1 = 1I.

Below, we use some simple properties of algebraic numbers. By definition, α ∈ k is an
algebraic number, if it is a root of a monic polynomial with integral coefficients. Since we
are in the characteristic zero case, Q ⊂ k. The following is true:

• the set of algebraic numbers is a subring of k;
• if α ∈ Q is algebraic, then actually α ∈ Z.

Being sums of roots of unity, the values of characters of finite groups are algebraic num-
bers. It follows the above description that χn+1

ρ (1I) is also an algebraic number, which

belongs to Q. Hence
(#G)n

(deg ρ)n−1
∈ N for any n, which is only possible if #G/ deg ρ ∈ N. �
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I.7. On finite R-groups

In this section k = C.

Definition 10. A finite group G is called an R-group, if all irreducible characters of G are
real-valued.

Since the function σ 7→ χρ(σ) is the character of the dual representation ρ∗, all irreducible
representations of an R-groups are self-dual, and vice versa. In view of Theorem I.5.8,
this means that G is an R-group if and only if ind (ρ) 6= 0 for any ρ ∈ Ĝ.

Example I.7.1. If G is a cyclic group of order m, then it is an R-group if and only if m = 2.
The dihedral group of order 2n is an R-group (see Exercise 4).

Example I.7.2. The symmetric group Σ3 is an R-group. Indeed, its character table is as

follows:

Conj. class 1I (ij) (ijk)

χ1 (triv) 1 1 1
χ2 (sign) 1 -1 1
χ3 (2-dim) 2 0 -1

Actually, Σn is an R-group for any n. It is a special case of a general fact that all irreducible
representations of Weyl groups are defined over Q.

Define the linear operator A : C[G] → C[G] by the formula (Af)(σ) = f(σ−1). In the
formal realisation, we just have A(

∑
fσσ) =

∑
fσσ

−1. Clearly, A2 = id and it is easily
seen that A(f ∗ g) = Ag ∗ Af . For this reason, A is called the anti-involution of C[G].

Below we provide some other characterisations of R-groups.

Theorem I.7.3. The following properties of G are equivalent:

(i) G is an R-group;
(ii) Any σ ∈ G is conjugate to σ−1;
(iii) The function σ 7→ Q(σ) = #{x ∈ G | x2 = σ} is invertible with respect to convolution;

i.e., there is a function Q′ ∈ C[G] such that Q ∗Q′ = h1I.
(iv) The anti-involutionA : C[G]→ C[G] commutes with the convolutions with all elements

of the center of C[G].

Proof. (i)⇐⇒(ii). If G is an R-group, then the characters do not distinguish σ and σ−1,
since χ(σ−1) = χ(σ). As the characters form a basis for the space of central functions, σ
and σ−1 belong to the same conjugacy class.

This argument can be reversed.

(i)⇐⇒(iii). According to Exercise 5, Q =
∑

ind (ρ)χρ. Comparing with Eq. (I.6.4)
shows that Q is invertible if and only if its component in each M(ρ) is non-trivial, i.e.,
ind (ρ) 6= 0.
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(i)⇐⇒(iv). Because the centre of k[G] is spanned by the simple characters, we have to
compare the functions A(χρ ∗ f) and χρ ∗ Af for an arbitrary ρ ∈ Ĝ and f ∈ C[G]. Take
f = hσ, the delta-function corresponding to σ ∈ G (in the functional interpretation), and
compute the value of both functions at τ ∈ G. We obtain:

A(χρ ∗ hσ)(τ) = χρ(τ
−1σ−1) = χρ(στ) and (χρ ∗ A(hσ))(τ) = χρ(στ). �

The proof of equivalence of (i) and (iii) shows that the inverse of Q is equal to Q′ =∑
ρ

1

ind (ρ)

(
deg ρ

#G

)2

χρ.

Example I.7.4. For G = Σ3, we have

Q = χtriv + χsign + χ2dim = 41I + (123) + (132),

Q′ =
1

36
χtriv +

1

36
χsign +

1

9
χ2dim =

5

18
1I− 1

18
(123)− 1

18
(132).

Exercise 8. The group of quaternion units Q is determined by generators and relations as follows:
Q = 〈a, b | a4 = b4 = 1I, bab−1 = a−1, a2 = b2〉. Determine the conjugacy classes and irreducible
representations of Q, fill in the character table, and compute the indices.

[Answer: the 1-dimensional representations have index 1 and the unique 2-dimensional
representation has index −1.]

Exercise 9. Prove the identity∑
ρ∈Ĝ

ind (ρ)m(deg ρ)2−m = (#G)1−mQm(1I), m > 0.

Derive from this that the number of the self-dual irreducible representations of G is equal to
Q2(1I)/#G.





CHAPTER II

Invariant theory of finite groups

In this chapter, k is an algebraically closed field of characteristic zero.

II.1. Generalities on invariants of finite groups

Let ρ : G → GL(E) be a finite-dimensional representation of a finite group G. Ac-
cording to a general principle, this yields a representation (action) of G in the space of
functions on E. In the context of invariant theory, we restrict ourselves to the polynomial
functions on E. In what follows, k[E] stands for the algebra of polynomials on E, which
is identified with S•E∗, the symmetric algebra (over k) of the dual space E∗.

II.1.1. Noether’s bound for invariants. As was proved earlier (Theorem I.2.5), any
representation of G is completely reducible. In invariant-theoretic terminology, this
means that finite groups are linearly-reductive. By a general result of Invariant Theory,
the algebra k[E]G is finitely generated for any linearly-reductive group G. But in case
of finite groups a more precise result is available. We will need the following auxiliary
result:

Lemma II.1.1. The polynomial algebra k[E] is generated, as vector space, by the powers of linear
forms (i.e., polynomials of degree 1).

Theorem II.1.2 (E. Noether, 1916). The algebra of invariants k[E]G is generated by polynomials

of degree at most #G. That is, the number of generators is at most
(

#G+ n

n

)
, where dimE = n.

Proof. 1o. Set N = #G and k[E]<N = {f ∈ k[E] | deg f 6 N − 1}. Let A be the
subalgebra of k[E]G generated by invariants of degree 6 N . Our goal is to prove that
A = k[E]G.

2o. Consider the vector space B = A · k[E]<N ⊂ k[E]. Let ξ ∈ E∗ = k[E]1. Let us prove
that ξm ∈ B for any m ∈ N. If m < N , then this follows from the definition of B. Next,
consider the polynomial

∏
σ∈G(t − σξ) = tN + a1t

N−1 + . . . + aN , where ai ∈ k[E]G and
deg ai = i. Hence ai ∈ A for all i. Substituting t = ξ, we obtain

ξN ∈ A+ ξA+ . . .+ ξN−1A.

By induction, we then obtain

ξm ∈ A+ ξA+ . . .+ ξN−1A for any m > N.

23
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Using Lemma II.1.1, we conclude that B = k[E].

3o. Take an arbitrary f ∈ k[E]G. By virtue of part 2o, it can be written f =
∑
aifi,

where ai ∈ A and fi ∈ k[E]<N .

Let f 7→ f# denote the (degree-preserving) projection to G-invariants. Then

f = f# =
∑

aif
#
i ,

where f#
i is an invariant of degree < N . Hence f ∈ A, and we are done. �

There is a relative version of Noether’s theorem concerning a ”group–subgroup” pair
G ⊃ H , see [2, Theorem 1.5.2].

II.1.2. The isotypic decomposition and modules of covariants. In Chapter I, we
have defined the isotypic decomposition for any finite-dimensionalG-module. Since k[E]

is a direct sum of finite-dimensional G-modules, one can consider the isotypic compo-
nents for k[E] as well. Hence, k[E] = ⊕ν∈Ĝk[E](ν). If (G, ν,S) is an irreducible represen-
tation, then the corresponding isotypic component is denoted by either k[E](ν) or k[E](S).
Clearly, k[E]G is one of the isotypic components and each k[E](ν) is a k[E]G-module.

Proposition II.1.3. Each k[E](ν) is a finitely generated k[E]G-module. More precisely, if ν is
non-trivial, then k[E](ν) is generated by elements of degree at most #G− 1.

Exercise 10. Prove the proposition, using an adaptation of the previous proof.

Let S be a simple G-module and k[E](S) the isotypic component of type S in k[E]. There
is a natural isomorphism

k[E](S) ' S⊗ Hom G(S,k[E])

and Hom G(S,k[E]) ' (k[E] ⊗ S∗)G. The latter is naturally a k[E]G-module. Let
MorG(E,S) be the vector space of all G-equivariant polynomial mappings α : E → S.
The k[E]G-module structure on MorG(E,S) is defined by

(f ·α)(v) = f(v)α(v), where v ∈ E, f ∈ k[E]G, and α ∈ MorG(E,S).

Lemma II.1.4. The k[E]G-modules MorG(E,S) and (k[E]⊗S)G are naturally isomorphic.

Proof. Suppose c =
∑
fi ⊗ vi ∈ (k[E] ⊗ S)G, where fi ∈ k[E] and vi ∈ S. The

corresponding mapping αc : E → S∗ is defined by αC(y) =
∑
fi(y)vi. Conversely, given

a polynomial mapping α : E → S, we can write α(y) =
∑
gi(y)ei, where (ei) is a basis for

S and the (gi)’s are polynomials on E. Then we associate to α the element cα =
∑
gi ⊗ ei.

It is easily seen that theG-equivariance of α exactly means that cα is aG-invariant element
of the tensor product k[E]⊗S. �
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In view of the lemma, (k[E]⊗S)G is called the module of covariants (of type S). The previ-
ous discussion shows that the isotypic component of type S gives rise to the module of
covariants of type S∗, and vice versa.

II.1.3. The ring extension k[E] ⊃ k[E]G and quotient variety. Set S = k[E], R =

k[E]G, and R+ = ⊕i>1Ri. Let I be the ideal of S generated by R+, i.e., I = SR+.

1o. Each element of k[E] is integral over k[E]G.
Indeed, for any f ∈ S,

∏
σ∈G(t− σ·f) is a monic polynomial in t with coefficients in R.

By a standard fact from Commutative algebra (see [1]), this property is equivalent to
that S is a finite R-module.

2o. R is integrally closed in its field of fractions, Q(R).
For, if g ∈ Q(R) is integral over R, then it is also integral over S. Being a polynomial
algebra, S is a unique factorisation domain. This easily implies that g ∈ S. Thus, g ∈
S ∩Q(R) = R.

3o. Q(R) = Q(S)G.
Clearly, there is an embedding Q(R) ⊂ Q(S)G. Conversely, if f = f1/f2 ∈ Q(S)G, then
one can also write

f1
f2

=
f1
∏

σ 6=1I σ·f2∏
σ∈G σ·f2

∈ Q(R) .

4o. The ideal I is of finite codimension in S.
This is just another way to say that S is a finite R-module. More precisely, let H be a
subspace of S such that H ⊕ I = S. Then an easy argument shows that H spans S as
R-module and that it is a minimal subspace having such property.

5o. If v, v′ ∈ E and G·v 6= G·v′, then there is an f ∈ k[E]G such that f(v) 6= f(v′).
Take any polynomial p such that p|G·v ≡ 1 and p|G·v′ ≡ 0. then p# = (

∑
σ∈G σ·p)/#G is an

invariant polynomial, which still has the same property.

Let E/G denote the affine variety corresponding to R. The embedding R ↪→ S gives
rise to a morphism π : E → E/G. The above properties 1o, 2o, 5o have the following
geometric counterparts:

• π is a finite morphism;
• E/G is a normal variety;
• each fibre of π consists of a single G-orbit; in particular, π−1(π(0)) = {0}.

II.2. Graded algebras and graded modules

In order to deal with the algebra of invariants and isotypic components/modules of co-
variants, we have to discuss some general notions of Commutative algebra.
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II.2.1. Systems of parameters and regular sequences. Let A =
⊕

i>0Ai be a com-
mutative noetherian graded k-algebra such that A0 = k. In this case, each homoge-
neous space Ai is finite-dimensional over k and A+ := ⊕

i>1
Ai is a maximal ideal of A.

Let M = ⊕i∈ZMi be a Z-graded noetherian A-module. Then Mi = 0 for i � 0 and
dimMi < +∞ for all i. For brevity, we then say that A is a graded k-algebra andM is a
graded A-module. The annihilator ofM is AnnAM = {a ∈ A | am = 0 for any m ∈ M}.
Clearly, it is an ideal of A, and A/AnnAM is again a graded k-algebra.

There are homogeneous algebraically independent elements f1, . . . , fr ∈ A such thatA
is a finite k[f1, . . . , fr]-module, see e.g. [2]. The family {f1, . . . , fr} is called a homogeneous
system of parameters (h.s.o.p.) (in A). Then r is necessarily the Krull dimension of A,
denoted KdimA.

Definition 11. A graded A-moduleM is called Cohen-Macaulay (CM for short) ifM is a
free k[f1, . . . , fr]-module for some h.s.o.p. f1, . . . , fr ∈ A/AnnAM. An algebra A is called
a Cohen-Macaulay (CM) algebra if it is a CM A-module.

Notice that AnnAA = 0, so that a h.s.o.p. for A is a sequence in A. A key result from
Commutative Algebra asserts that the property of being CM does not depend on h.s.o.p.,
that is, if M is a CM A-module, then M is a free k[g1, . . . , gr]-module for any h.s.o.p.
{g1, . . . , gr} in A/AnnAM.

Obviously, Definition 11 shows that a polynomial algebra is Cohen-Macaulay. But the
passage from ”some h.s.o.p.” to ”any h.s.o.p.” is non-trivial even in this case. This fact for
polynomial algebras was essentially proved by Macaulay in 1916.

Definition 12. Let f1, . . . , fl be a sequence of homogeneous elements of A+. Then
(f1, . . . , fl) is called a regular sequence (for A) if fi is not a zero-divisor in A/(f1, . . . , fi−1)
for each i. The integer l is called the length of a regular sequence.

It can be shown that the elements of a regular sequence are algebraically independent (try
to prove this!); in particular, l 6 KdimA.

Proposition II.2.1. (i) A sequence (f1, . . . , fl) is regular if and only if A is a free k[f1, . . . , fl]-
module (not necessarily of finite rank); (ii) Suppose that A has a regular sequence f1, . . . , fr,
where r = KdimA. Then f1, . . . , fr is a h.s.o.p. and A is a free k[f1, . . . , fr]-module.

This shows that for graded algebras the property of being CM can also be stated as fol-
lows: A graded algebra A is CM if and only if it has a regular sequence of length KdimA.

II.2.2. The Poincaré series of a graded module.
Since dimMi <∞ for all i, the formal power series

F (M; t) =
∑
i>0

(dimMi)t
i ∈ Z[[t]]
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is well-defined. We say that F (M; t) is the Poincaré series ofM. In particular, we may take
M = A.

Theorem II.2.2 (Hilbert-Serre). The Poincaré series F (M; t) is (the Taylor expansion of) a ra-
tional function. More precisely, if a1, . . . , an are homogeneous generators of A and deg ai = di,
then there is a polynomial p(t) ∈ Z[t] such that

(II.2.1) F (M; t) =
p(t)

n∏
i=1

(1− tdi)
.

Proof. We argue by induction on n. If n = 0, thenM is finite-dimensional over A = k
and F (M; t) is a polynomial. Assume that n > 0 and the assertion is true for algebras with
fewer than n generators. Let φ :M→M be the endomorphism defined by φ(m) = anm.
This yields two exact sequences of graded A-modules:

0→ kerφ→M→M/kerφ→ 0,

0→ Imφ→M→M/Imφ→ 0 .

Then we have (M/kerφ)d ' (Imφ)d+dn . Using the fact that the Poincare series is additive
for short exact sequences of graded A-modules, we deduce from this that

F (M; t) = F (kerφ; t) + t−dnF (Imφ; t),

F (M; t) = F (M/Imφ; t) + F (Imφ; t) .

It follows that (1 − tdn)F (M; t) = F (M/Imφ; t) − tdnF (kerφ; t). NowM/Imφ and kerφ

are modules over the graded algebra A/anA that is generated by n − 1 elements. The
assertion now follows by induction. �

If M is a CM A-module, then the rational function F (M; t) can be written such that
the numerator p(t) is a polynomial with nonnegative coefficients. Indeed, if f1, . . . , fn
is h.s.o.p. for M, with deg fi = di, and η1, . . . , ηl is a homogeneous basis for the free
k[f1, . . . , fn]-moduleMwith deg ηj = ej , then

F (M; t) =
te1 + . . .+ tel
n∏
i=1

(1− tdi)
.

A connection between regular sequences and Poincaré series is revealed in the following
assertion.

Proposition II.2.3.
(i) Suppose f ∈ Ad is not a zero-divisor. Then F (A/(f); t) = F (A; t)(1− td);
(ii) If f1, . . . , fm is a regular sequence in A and deg fi = di, then F (A/(f1, . . . , fm); t) =

F (A; t)
∏m

i=1(1− tdi).
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Proof. Part (ii) follows from (i) by induction. Part (i) follows from the equality
dim(A/(f))m = dimAm − dim(fA)m = dimAm − dim(A)m−d. �

This proposition has a natural extension to gradedA-modules, which is left to the reader.

II.2.3. Some formulae for rational functions. Let F (t) be a rational function of the
form

F (t) =
p(t)

n∏
i=1

(1− tdi)
, where p(t) ∈ Z[t] and di ∈ N.

We wish to have explicit formulae for the first two terms of the Laurent expansion of F (t)

about t = 1. If p(1) 6= 0, then F (t) has the pole of order n at t = 1 and the Laurent
expansion starts as F (t) =

γ

(1− t)n
+

τ

(1− t)n−1
+ . . .

Then the direct computation shows that

(II.2.2) γ =
p(1)∏n
i=1 di

and
2τ

γ
=

n∑
i=1

(di − 1)− 2
p′(1)

p(1)
.

(Here p′ denotes the derivative.) Suppose that p(t) has non-negative coefficients. This
condition is satisfied in the invariant-theoretic situation that is of interest for us. Then we
can write p(t) = te1 + . . .+ tel , where e1 6 . . . 6 el. Then p(1) = l and p′(1) =

∑l
i=1 ei.

The degree of F is the integer degF = deg p −
∑
di = el −

∑
di. If p(t) is a reciprocal

polynomial, that is to say, ei + el+1−i does not depend on i, then 2
l

∑
ei = e1 + el. Hence

2τ/γ = (degree of denominator)− (degree of numerator)− n− e1.

In particular, if p(t) is reciprocal and e1 = 0, then

2τ/γ = − degF − n.

In case p(t) is reciprocal, we have a simple relation between the rational functions F (t)

and F (t−1):

F (t−1) = (−1)nt
∑
di−(e1+el)F (t) = (−1)nt

2τ
γ
−nF (t).

II.2.4. Applications to isotypic components.

Theorem II.2.4. Let (G, ρ,E) be a finite-dimensional representation of a finite group. Then each
isotypic component k[E](ν) is a Cohen-Macaulay k[E]G-module. In particular, the algebra of
invariants k[E]G is Cohen-Macaulay.

Proof. Since k[E] is a finite k[E]G-module, the Krull dimension of k[E]G equals that
of k[E], i.e., n = dimE. Therefore, if {f1, . . . , fn} is a h.s.o.p. in k[E]G, then it is also a
h.s.o.p. in k[E]. Since k[E] is CM, it is a free k[f1, . . . , fn]-module. Hence each isotypic
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component is also a free module. (For, in the graded situation, a direct summand of a free
finitely-generated module is again free.) �

Since k[E] is a domain, the annihilator (in k[E]G) of each isotypic component is trivial.

As a consequence of this theorem and the previous theory, we see that if f1, . . . , fn ∈
k[E]G is h.s.o.p., then it is a regular sequence in k[E] and k[E]/(f1, . . . , fn) is finite-
dimensional.

Remark. An anologue of Theorem II.2.4 is not true in case of infinite reductive groups. If
H is a connected reductive groups, then the number of isotypic components is infinite for
any non-trivial irreducible representation ρ : H → GL(V ). However, for all but finitely
many irreducible representations, the number of CM isotypic components k[V ](ν) is finite.

II.3. Molien’s formula and symmetries of Poincaré series

II.3.1. Molien’s formula. LetG be a finite subgroup ofGL(E). Since the algebra of in-
variants k[E]G is graded, one may consider the corresponding Poincaré series. An explicit
form of it is given by Molien’s formula.

Theorem II.3.1 (T. Molien, 1897).

(II.3.3) F (k[E]G; t) =
1

#G

∑
σ∈G

1

det(idE − σt)
.

Proof. Since dimV G = dim(V ∗)G for any G-module V , we may compute the Poincaré
series for S•E = ⊕m>0SmE, the symmetric algebra of E.

Recall that the averaging operator TG = 1
#G

∑
σ∈G σ yields the projection to the sub-

space of fixed elements in any G-module. Therefore tr (TG) equals the dimension of the
fixed-point subspace. Applying this to the symmetric powers of E, we obtain

dim(SmE)G =
1

#G

∑
σ∈G

χSmE(σ).

Hence

(II.3.4) F (k[E]G; t) = F (S•E; t) =
1

#G

∑
σ∈G

∑
m>0

χSmE(σ)tm.

Let us compute the contribution of each σ to this expression. Suppose dimE = n and
γ1, . . . , γn are the eigenvalues of σ in E. Then

χSmE(σ) =
∑

k1+···+kn=m

γk11 . . . γknn

and hence∑
m>0

χSmE(σ)tm =
∑
m>0

∑
k1+···+kn=m

γk11 . . . γknn t
m =

n∏
j=1

∑
kj>0

(γjt)
kj =

n∏
j=1

1

1− γjt
=

1

det(idE − σt)
.
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Substituting this to Eq. (II.3.4), we obtain Molien’s formula. �

Exercise 11. Prove an “exterior” analogue of Molien’s formula:

F ((∧•E)G; t) =
dimE∑
m=0

(∧mE)Gtm =
1

#G

∑
σ∈G

det(idE + σt).

Recall that an element of finite order σ ∈ GL(E) is called a reflection if rk (idE−σ) = 1. This
means that σ has precisely one eigenvalue not equal to 1.1 Write εσ for this eigenvalue.
Let R(G) denote the set of all reflection in G. Set r(G) = #R(G). If σ ∈ R(G), then the
hyperplane Eσ is called a reflecting hyperplane of G. The set of all reflecting hyperplanes is
denoted byH(G).

Theorem II.3.2. The Laurent expansion of F (k[E]G; t) about t = 1 starts as follows:

F (k[E]G; t) =
1

#G

(
1

(1− t)n
+

r(G)/2

(1− t)n−1
+ . . .

)

That is, γ(k[E]G) =
1

#G
and τ(k[E]G) =

r(G)

2·#G
.

Proof. Let us look at the contribution of various σ ∈ G to Molien’s formula. If σ = 1I,
then det(idE − σt) = (1 − t)n. In general, if ν1, . . . , νn are the eigenvalues of σ, then
det(idE−σt) =

∏
i(1−νit). It follows that if dimEσ = k 6 n, then the term 1/ det(idE−σt)

does not affect the summands a−n
(1−t)n + a−n+1

(1−t)n−1 + . . . + a−k−1

(1−t)k+1 of the Laurent series. This
already proves the formula for a−n = γ(k[E]G) and shows that τ(k[E]G) depends only on

terms
1

det(idE − σt)
with σ ∈ R(G). Then

(II.3.5)
∑

σ∈R(G)

1

det(idE − σt)
=

1

(1− t)n−1
∑

σ∈R(G)

1

1− εσt
.

If σ ∈ R(G), then σ−1 ∈ R(G) as well. Therefore for any εσ the inverse ε−1σ also occurs

in this set of eigenvalues. Since
( 1

1− εt
+

1

1− ε−1t

)
|t=1 = 1, the Taylor expansion of∑

σ∈R(G)

1

1− εσt
about t = 1 starts with the term r(G)/2. �

1Sometimes, especially in old literature, the reflections in our sense are called pseudoreflections, while
the word “reflection” is reserved for pseudoreflections of order two.
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II.3.2. Molien’s formula for isotypic components and modules of covariants. Recall
that the algebra of invariants is just one of many isotypic components sitting in k[E].

Theorem II.3.3. Let k[E](S) be the isotypic component corresponding to a a simple G-module S.
Then its Poincaré series is given by the formula [the Molien formula]

F (k[E](S); t) =
dimS

#G

∑
σ∈G

tr (σ,S)

det(idE − σt)
.

Proof. The proof is very similar to that of Theorem II.3.1. For each Sm(E∗), one should
use the projection onto the S-isotypic component (see Proposition I.5.6) in place of the
averaging operator. �

This formula has some easy but still useful consequences. Recall that we assume that G
is a subgroup of GL(E). In other words, we deal with a faithful representation of G.

Corollary II.3.4.
1. limt→1 F (k[E](S); t)(1− t)n = (dimS)2/(#G);
2. k[E](S) 6= ∅ for any S.

Proof. The second assertion follows from the first. To prove the first assertion, one
should notice that only the summand corresponding to σ = 1I in the Molien formula
contributes to the above limit. �

The second assertion can be stated as follows: every simple G-module S occurs in a suitable
symmetric power of a faithful G-module.

Remark. The above relations shows that k[E](S) ' S⊗(k[E]⊗S∗)G, hence dimk[E](S),n =

dimS· dim(k[E]n⊗S∗)G. Because tr (σ,S∗) = tr (σ−1,S), the Molien formula for modules
of covariants can be written in the equivalent form

(II.3.6) F ((k[E]⊗S)G; t) =
1

#G

∑
σ∈G

tr (σ−1,S)

det(idE − σt)
.

If S is a one-dimensional G-module, then it corresponds to a linear character of G, µ :

G → k×. In this case, we write S = kµ and denote by k[E]µ the respective isotypic
component. That is,

k[E]µ = {f ∈ k[E] | σ·f = µ(σ)f ∀σ ∈ G}.

We also say that k[E]µ is the module of semi-invariants (= relative invariants) of weight µ.
For such modules of covariants, the formula of Theorem II.3.3 reads

(II.3.7) F (k[E]µ; t) =
1

#G

∑
σ∈G

µ(σ)

det(idE − σt)
.
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Given a simple G-module E, there are several natural choices of modules of covariants,
e.g., S = k, E, E∗, and kdet, where det = detE is the linear character assigning the deter-
minant det ρE(σ) to any σ ∈ G. The first choice gives us the algebra of invariants k[E]G.
Our next goal is to look at the Laurent expansions of the Poincaré series in the other cases.

Theorem II.3.5. The Laurent expansion of F (k[E]detE ; t) about t = 1 starts as follows:

F (k[E]detE ; t) =
1

#G

(
1

(1− t)n
− r(G)/2

(1− t)n−1
+ . . .

)
Proof. As in the proof of Theorem II.3.2, it is enough to calculate the contribution to
Eq. (II.3.7) of the neutral element and all reflection in G.

For σ = 1I, we obtain the term
1

#G

n

(1− t)n
. If σ ∈ R(G), then

detE(σ)

det(idE − σt)
=

εσ
(1− t)n−1(1− εσt)

.

Therefore the coefficient of 1/(1− t)n−1 equals∑
σ∈R(G)

εσ
1− εσ

=
∑

σ∈R(G)

(
1

1− εσ
− 1) =

r(G)

2
−
∑

σ∈R(G)

1 = −r(G)

2
.

�

Theorem II.3.6. The Laurent expansion of F ((k[E]⊗ E∗)G; t) about t = 1 starts as follows:

F ((k[E]⊗ E∗)G; t) =
1

#G

(
n

(1− t)n
+
r(G)(n/2− 1)

(1− t)n−1
+ . . .

)
Proof. As in the proof of Theorem II.3.2, it is enough to calculate the contribution to
Eq. (II.3.6) of the neutral element and all reflection in G.

If σ ∈ R(G), then
tr (σ,E)

det(idE − σt)
=

n− 1 + εσ
(1− t)n−1(1− εσt)

.

Therefore the coefficient of 1/(1− t)n−1 equals∑
σ∈R(G)

n− 1 + εσ
1− εσ

= n
∑

σ∈R(G)

1

1− εσ
−
∑

σ∈R(G)

1 =
n

2
r(G)− r(G).

�

Recall thatH(G) is the set of all reflecting hyperplanes (in E) of G.

Theorem II.3.7. The Laurent expansion of F ((k[E]⊗ E)G; t) about t = 1 starts as follows:

F ((k[E]⊗ E)G; t) =
1

#G

(
n

(1− t)n
+

n
2
r(G)−#H(G)

(1− t)n−1
+ . . .

)
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Proof. As in the proof of Theorem II.3.2, it is enough to calculate the contribution to
Eq. (II.3.6) of the neutral element and all reflection in G.

If σ ∈ R(G), then
tr (σ,E∗)

det(idE − σt)
=

n− 1 + ε−1σ
(1− t)n−1(1− εσt)

.

Therefore the coefficient of 1/(1− t)n−1 equals∑
σ∈R(G)

n− 1 + ε−1σ
1− εσ

= n
∑

σ∈R(G)

1

1− εσ
+
∑

σ∈R(G)

ε−1σ =
n

2
r(G)−#H(G).

In the last equality, we use the fact that all the reflections with the same reflecting hy-
perplane, together with 1I, form a cyclic group, see Lemma II.3.8 below. Assume that
this group is of order m. Gathering together all such reflection, we obtain the sum
ε + ε2 + . . . + εm−1, where ε is a primitive root of unity of order m. Since the last sum
equals −1, we conclude that

∑
σ∈R(G) ε

−1
σ = −#H(G). �

Lemma II.3.8.
1. Suppose σ, σ′ ∈ r(G) and Eσ = Eσ′ . If v ∈ E is a non-trivial eigenvector of σ (i.e., σv = εσv),
then v is also an eigenvector of σ′.

2. For any H ∈ H(G), the set {σ ∈ R(G) | Eσ = H} ∪ 1I is a cyclic subgroup of G.

Proof. 1. Let v′ be a non-trivial eigenvector of σ′. Then v′ = v + x for some x ∈ Eσ.
Assume that x 6= 0. Then the 2-dimensional plane kv ⊕ kx is invariant with respect to the
subgroup generated by σ and σ′. Computing the matrix of [σ, σ′] = σσ′σ−1σ′−1 with the

respect of the basis (v, x), we obtain

(
1 z

0 1

)
, where z =

(1− εσ)(1− εσ′)
εσεσ′

. Hence [σ, σ′]

has infinite order, which contradicts the finiteness of G. Thus, x must be 0.

2. By virtue of part 1, these elements form a subgroup of G, say Γ. The mapping
(σ ∈ Γ) 7→ εσ is an injective homomorphism Γ → k×, and it is well known that any
subgroup of k× is cyclic. �

The number of the reflecting hyperplanes can be strictly less than that of reflections.

Exercise 12. Prove that #R(G) = #H(G) if and only if all reflections are of order two.

II.3.3. Symmetries of Poincaré series. As F (k[E](ν); t) is a rational function in t, it is
conceivable to make the substitution t 7→ t−1. In the context of power series, this means
that we wish to compare the expansions of F (k[E](ν); t) at the origin and infinity.

The following is a straightforward consequence of the Molien formula (Theo-
rem II.3.3).
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Proposition II.3.9. For any simple G-module S, we have

F (k[E](S); t
−1) = (−t)dimEF (k[E](S∗⊗detE); t) .

In particular,
F (k[E]G; t−1) = (−t)dimEF (k[E]detE ; t) .

This yields the following symmetry properties of Poincare series of algebras of invariants.

Corollary II.3.10.

(i) If G ⊂ SL(E), then F (k[E]G; t−1) = (−t)dimEF (k[E]G; t);
(ii) If the equality F (k[E]G; t−1) = (−1)stqF (k[E]G; t) holds for some s, q ∈ Z and G

contains no reflections, then G ⊂ SL(E).

Proof. (i) is obvious.
(ii) Consider the equality of rational functions

(−1)stq
1

#G

∑
σ∈G

1

det(idE − σt)
= (−1)dimEtdimE 1

#G

∑
σ∈G

detσ

det(idE − σt)
.

Comparing the Laurent expansion about t = 1 for both parts, we obtain s ≡ dimE

(mod 2) and q = dimE + r(G). This shows that

tr(G)
∑
σ∈G

1

det(idE − σt)
=
∑
σ∈G

detσ

det(idE − σt)
.

By the hypothesis, r(G) = 0. Then setting t = 0, we obtain #G =
∑

σ∈G detσ. Since each
detσ is a root of unity, we must have detσ = 1 for all σ ∈ G. �

These properties have a homological interpretation, which we discuss below (may be).
Namely, if G ⊂ SL(V ), then k[E]G is a Gorenstein algebra. Conversely, if k[E]G is Goren-
stein and r(G) = 0, then G ⊂ SL(E).

By virtue of Proposition II.3.9, one obtains a natural duality on the set of all isotypic
components (or modules of covariants): S↔ S∗ ⊗ detE .

Exercise 13. Using the ideas from the proof of Theorems II.3.5–II.3.7, prove that the Laurent
expansions of F (k[E](S); t) and F (k[E](S∗⊗detE); t) about t = 1 have the following properties: the
coefficients of 1/(1− t)n are equal and the coefficients of 1/(1− t)n−1 are opposite.

II.4. A reciprocity for invariants of cyclic groups

In this section, we consider a curious example related to the algebra of invariants of a
cyclic group.

Let us begin with an observation concerning the invariants of a regular representation
of any finite group. Let R be the space of the (left) regular representation of G. It turns
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out that Molien’s formula for k[R]G admits a simplification. Let ϕG(d) denote the number
of elements of order d in G.

Theorem II.4.1 (Almkvist-Fossum, 1978). F (k[R]G; t) =
∑
d>1

ϕG(d)

(1− td)#G/d
.

Proof. Using Molien’s formula, it suffices to show that if γ ∈ G is of order d, then
1

det(idR − γt)
=

1

(1− td)#G/d
. Indeed, each coset of 〈γ〉\G is a cycle of length d with

respect to the action of γ. Hence the matrix of γ is the direct sum of the diagonal d-

blocks of the form


0 1 0 . . . 0

0 0 1 . . . 0

0 0
. . . . . . 0

0 0 0
. . . 1

1 0 0 . . . 0

. Since det


1 −t 0 . . . 0

0 1 −t . . . 0

0 0
. . . . . . 0

0 0 0
. . . −t

−t 0 0 . . . 1

 = 1 − td, and

the number of such diagonal blocks equals (#G)/d, we are done. �

Now, we consider the case G = Cn, the cyclic group of order n. Then ϕCn(d) =: ϕn(d) is

almost the usual Euler function. That is, ϕn(d) =

0, if d 6 |n
ϕ(d), if d|n

. Here ϕ(d) is the number

of integers s less than or equal to d such that gcd(s, d) = 1.

Theorem II.4.2 (Elashvili-Jibladze, 1998). Let Rn be the space of the regular representation of
Cn. Then F (k[Rn]Cn ; t) =

∑
a(Cn,m)tm, where

(II.4.8) a(Cn,m) =
1

n+m

∑
d| gcd(n,m)

ϕ(d)

(
n/d+m/d

n/d

)
.

Proof. Left to the reader (exercise!). �

It follows that a(Cn,m) = a(Cm, n) for all n,m ∈ N. This curious equality is obtained via
formal manipulations with power series. It would be interesting to find a more conceptual
explanation of it. One might suggest that this has something to do with the classical
”Hermite reciprocity” for SL2-modules.

Remark. From Eq. (II.4.8) one easily derives the equality of formal power series∑
n,m

a(Cn,m)xnym = −
∞∑
k=1

ϕ(k)

k
log(1− xk − yk) .

II.5. Finite reflection groups: basic properties

Definition 13. Let G ⊂ GL(E) be a finite group. We say that G is a finite reflection group or
finite group generated by reflections (= f.g.g.r.) if the set of reflections, R(G), generates G as
group.
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Notation. If σ ∈ R(G), then lσ ∈ E∗ is a linear form defining the hyperplane Eσ.

The following is the main result on f.g.g.r.

Theorem II.5.1 (Shephard-Todd,1954). For a linear group G ⊂ GL(E), the following condi-
tions are equivalent:

(i) G is a f.g.g.r.
(ii) k[E] is a free k[E]G-module of finite rank;
(iii) k[E]G is a polynomial algebra.

Proof. Set S = k[E], R = k[E]G, R+ = ⊕i>1Ri, and I = SR+ / S.

(i)⇒ (ii) We proceed with a series of assertions. For any p ∈ S, its image in S/I is
denoted by p̄.

Claim 1. Suppose the elements {eα}α∈J in S satisfy the property that {ēα = eα + I | α ∈ J} form
a basis for S/I . Then {eα}α∈J generate the R-module S.

Set M =
∑

α∈JReα. It is a graded R-submodule of S. Arguing by induction on degree,
we prove that M = S. Suppose that Mi = Si for all i < i0. Take any f ∈ Si0 . Then
f̄ =

∑
α∈J kαēα for some kα ∈ k. Therefore f =

∑
α∈J kαeα +

∑
fβrβ , where rβ ∈ R+ and

deg fβ < i0. It follows that f ∈M , and we are done. 2

Claim 2. Let xi ∈ R, yi ∈ S (1 6 i 6 m) be homogeneous elements such that (∗)
∑

i xiyi = 0.
If x1 6∈ Rx2 + · · ·+Rxm, then y1 ∈ I .

For any s ∈ R(G), we define the linear operator ∆s : S → S by the formula s·f − f =

ls∆s(f). Obviously, ∆s decrease the degree by one. That is, either deg ∆s(f) = deg f − 1

or ∆s(f) = 0.

To prove Claim 2, we argue by induction on d = deg y1.
– If d = 0, then x1 = −

∑
i>2 xiyi = −

∑
i>2 xiy

#
i , which contradicts the assumption.

– Suppose d > 0 and the claim is true for elements of degree smaller than d. Applying
∆s to (∗), we obtain

∑
i xi∆s(yi) = 0. By the induction hypothesis, ∆s(y1) ∈ I . Hence

s·y1− y1 ∈ I for any s ∈ R(G). Since G is a f.g.g.r., one easily verifies that σ·y1− y1 ∈ I for
any σ ∈ G. Taking the average yields y#1 − y1 ∈ I and hence y1 ∈ I . 2

Claim 3. Suppose y1, . . . , ym ∈ S satisfy the property that ȳi ∈ S/I are linearly independent over
k. Then y1, . . . , ym are linearly independent over R.

Assume that
∑

i xiyi = 0, xi ∈ R. We perform a decreasing induction on the number
summands in such a relation. In virtue of Claim 2, we have x1 ∈ Rx2 + . . . + Rxm, i.e.,
x1 =

∑
i>2 xizi (zi ∈ R). Then x2(y2 + z2y1) + . . . + xm(ym + zmy1) = 0. Since yi + ziy1 = yi

and these elements are linearly-independent, we have x2 = . . . = xm = 0. Hence x1 as
well, and we are done. 2

Now, we can complete the first part of the proof. Take elements {eα}α∈J in S such
that {ēα} form a basis for S/I . Then they span the R-module S (Claim 1) and are linearly
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independent over R (Claim 3). Hence S is a free R-module. It remains to observe that J
is finite, since S is a finite R-module in case of finite group invariants.

(ii)⇒(iii) Since this part has no relation to invariant theory, we omit the proof. Actu-
ally, k[E]G can be replaced with an arbitrary homogeneous finitely generated subalgebra
of k[E].

(iii)⇒(i) First, we prove that G contains some reflections. Let d1, . . . , dn be the degree
of basic invariants in R. Then

F (R; t) =
n∏
i=1

1

1− tdi
=

1∏n
i=1 di

(
1

(1− t)n
+

∑n
i=1(d1 − 1)/2

(1− t)n−1
+ . . .

)
On the other hand, by Theorem II.3.2, the Laurent expansion of the algebra of invariants
about t = 1 begins with

F (R; t) =
1

#G

(
1

(1− t)n
+

r(G)/2

(1− t)n−1
+ . . .

)
.

Comparing the two expressions, we obtain #G =
∏

i di and r(G) =
∑

i(di − 1). Because
there is an i such that di > 2, we see that r(G) 6= 0. Let U be the (normal) subgroup of G
generated by all reflections. Then U 6= 1I, and according to the first two parts of the proof,
k[E]U is a polynomial algebra. Let ψ1, . . . , ψn be basic U -invariants, with degψi = li. The
preceding argument also works for U and shows that #U =

∏
i li and r(U) =

∑
i(li − 1).

Since k[E]G ⊂ k[E]U , each fi is a polynomial in ψj’s. W.l.o.g., we may assume that d1 6
d2 6 . . . 6 dn and l1 6 l2 6 . . . 6 ln. Then we claim that li 6 di for all i. Assume not, and
let i0 be the minimal index with the property that li0 > di0 . Then the dimension argument
shows that f1, . . . , fi0 are polynomials in ψ1, . . . , ψi0−1. This contradicts, however, the fact
that f1, . . . , fi0 are algebraically independent. Thus, li 6 di for all i, and hence r(U) =∑

i(li − 1) 6
∑

i(di − 1) = r(G). But G and U have the same reflections. Hence li = di for
all i, and therefore #U =

∏
i li =

∏
i di = #G. This means that U = G. �

As a by-product of this proof, we obtain

Corollary II.5.2. Let G be a f.g.g.r. and k[E]G = k[f1, . . . , fn], where deg fi = di. Then #G =∏n
i=1 di and r(G) =

∑n
i=1(di − 1).

We know that k[E] is a free graded k[E]G-module of finite rank and k[E] = ⊕ν∈Ĝk[E](ν)
is the direct sum of k[E]G-modules. Therefore each isotypic component k[E](ν) is a free
k[E]G-module as well.

Proposition II.5.3. For any ν ∈ Ĝ, the rank of the free k[E]G-module k[E](ν) equals (deg ν)2.
Equivalently, for any simpleG-module S, the rank of the module of covariants MorG(V,S) equals
dimS.
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Proof. Suppose rkk[E](ν) = m. Then

F (k[E](ν); t) =

∑m
i=1 t

ki∏n
i=1(1− tdi)

,

where k1, . . . , km are the degrees of the elements of a basis for this module. It follows that
limt→1 F (k[E](ν); t)(1 − t)n = m/

∏
i di = m/(#G). On the other hand, Corollary II.3.4(1)

shows that this limit equals (deg ν)2/(#G). Hence the assertion. �

II.5.1. The coinvariant algebra.

Definition 14. The algebra k[E]/(f1, . . . , fn) is called the coinvariant algebra of G. It is
denoted by k[E]G.

Since the ideal (f1, . . . , fn) is G-stable, k[E]G is a G-module.

Theorem II.5.4. k[E]G affords the regular representation of G.

Proof. Being a G-module, the coinvariant algebra has the isotypic decomposition
k[E]G = ⊕ν∈Ĝk[E]G,(ν) = ⊕ν∈ĜmνEν . To compute the multiplicities mν , we use the fact
that f1, . . . , fn is a regular sequence. Therefore

dimk[E]G,(ν) = F (k[E]G,(ν), t)|t=1 = F (k[E]ν , t)
n∏
i=1

(1− tdi)|t=1 =

(deg ν)2

#G
·
∏n

i=1(1− tdi)
(1− t)n

= (deg ν)2 .

Hence mν = deg ν, and the assertion follows from Corollary I.3.5. �

Remark. 1. Although k[E]G and k[G] are isomorphic as G-modules, they are quite differ-
ent as algebras.

2. Suppose that k = C, E = h is a Cartan subalgebra of semisimple Lie algebra l,
and G = W is the the corresponding Weyl group. Then a famous result of A. Borel (1953)
asserts that k[h]W is isomorphic to the cohomology ring of the flag variety of L.

II.6. Semi-invariants of finite reflection groups

Throughout this section,G ⊂ GL(E) is a f.g.g.r and f1, . . . , fn ∈ k[E]G are basic invariants,
deg fi = di.

As was already noticed, each isotypic component is a free k[E]G-module. In particular,
if µ is a linear character of G, then k[E]µ is generated by a single homogeneous polyno-
mial. Such a polynomial is said to be a basic semi-invariant (of weight µ). Our goal in this
section is to describe basic semi-invariants for all linear characters of G. We begin with
describing a distinguished isotypic component.
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Definition 15. A polynoimal f ∈ k[E] is said to be anti-invariant or skew-invariant (w.r.t.
G) if σ·f = detE(σ)f for any σ ∈ G.

Hence the set of all anti-invariant polynomials is the isotypic component correspond-
ing to the linear character σ 7→ detE(σ). For the next theorem, we need some notation.
Recall that, for σ ∈ R(G), εσ is the only non-unit eigenvalue of σ and lσ is a non-zero lin-
ear form determining the hyperplaneEσ. There is the natural mapping p : R(G)→ H(G),
σ 7→ Eσ. By Lemma II.3.8, p−1(H) ∪ {1I} is a cyclic group. The order of this group is de-
noted by cH . Without loss of generality, we may assume that, for all elements of p−1(H),
we have chosen one and the same linear form, which is denoted by lH .

Theorem II.6.1.

(i) J = det

(
∂fi
∂xj

)
is a semi-invariant of weight detE ;

(ii) J = α
∏

σ∈R(G)

lσ = α
∏

H∈H(G)

lcH−1H for some α ∈ k×;

(iii) k[E]detE = k[E]GJ .

Proof. (i) If f ∈ k[E]G, then span{∂f/∂xj | j = 1, . . . , n} is a G-stable subspace which
affords the representation ρ. Hence if M =

(
∂fi
∂xj

)
, then σ·M = ρ(σ)M . Therefore σ·J =

det(σ·M) = det ρ(σ) detM = detE(σ)J . Since f1, . . . , fn are algebraically independent, we
also have J 6= 0.

(ii) For σ ∈ R(G), we have det(σ) = εσ. Hence σ·J = εσJ . Since (εσ − 1)J = σ·J − J =

lσ∆σ(J) 6= 0, we see that lσ divides J . Write J = laσK, where K and lσ are relatively
prime. Then σ·K = K. (Otherwise, we would obtain that lσ still divides K.) Notice that
σ·lσ = ε−1σ lσ. Hence

εσJ = σ·J = σ·(laσK) = ε−aσ laσK = ε−aσ J .

Without loss of generality, we may assume that σ is a generator of the cyclic group asso-
ciated with the hyperplane H = Eσ. It then follows that cH divides a + 1, and therefore
a > cH − 1. Repreating this argument for each H ∈ H(G), we obtain, in view of the fact
that different linear forms are mutually prime in k[E], that

∏
H∈H(G) l

cH−1
H divides J . As

deg J = r(G) =
∑

H∈H(G) cH − 1, the two polynomials are equal, up to a scalar multiple.

(iii) Let F be an arbitrary semi-invariant of weight detE . Then the very same argument
shows that J =

∏
H∈H(G) l

cH−1
H divides F . Hence F = J ·Q for some Q ∈ k[E]G. �

Similar ideas are being used in the proof of the general description of ”basic” semi-
invariants.

The group G permutes the elements of H = H(G). For any G-orbit O ∈ H/G, set
fO =

∏
H∈O lH . It is a polynomial of degree #O.
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Lemma II.6.2. Each fO is a semi-invariant of G. More precisely, for σ ∈ R(G), we haveif Eσ ∈ O, then σ·fO = ε−1σ fO,

if Eσ 6∈ O, then σ·fO = fO.

Proof. The first claim follows from the fact that O is a G-orbit. Indeed, each g ∈ G

preserves the set of reflecting hyperplanes inO. Hence g·fO has the same divisor of zeros
as fO. That is, g·fO = αgfO for some αg ∈ k×. The second claim follows from the following
two facts (both are already used above):

(1) σ·lσ = ε−1σ lσ;

(2) if σ ∈ R(G), F ∈ k[E], and σ·F = αF with α 6= 1, then lσ divides F . �

Obviously, the cyclic subgroups associated with different hyperplanes in the orbitO have
the same order. Therefore we can write cO for cH , where H ∈ O.

Theorem II.6.3. (1) Any homogeneous semi-invariant of G is of the form
∏
O⊂H f

aO
O ·f1, where

0 6 aO 6 cO − 1 and f1 ∈ k[E]G; (2) The semi-invariants corresponding to different strings of
numbers {aO | O ∈ H/G} have different weights.

Proof. 1. It follows from Lemma II.6.2 that each such polynomial is a semi-invariant.
Furthermore, since f cOO is invariant, it is enough to assume that aO 6 cO − 1.

Suppose that F is a homogeneous semi-invariant, which is not an invariant. Then
there is a σ ∈ R(G) such that ∆σ(F ) 6= 0. Hence F has a factor lσ and therefore fO, where
O is the orbit containing Eσ, divides F . Then the induction on the degree shows that each
homogeneous semi-invariant is of the required form.

2. This follows from Lemma II.6.2. �

It follows from Theorem II.6.3 that the polynomials
∏
O∈H/G f

aO
O , where 0 6 aO 6 cO − 1,

form a full set of basic semi-invariants for all linear characters of G. In particular, the total
number of nontrivial linear characters of G equals (

∏
O∈H/G cO)− 1.

Example II.6.4.
∏

σ∈R(G) lσ =
∏
O∈H/G fO is a basic semi-invariant of weight det−1E .

II.7. Miscellaneous results on f.g.g.r.: Shchvartsman, Solomon, Steinberg, etc.

In this section, we prove some important miscellaneous results related to finite reflection
groups.
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II.7.1. Shchvartsman: invariant differential 1-forms. Theorem II.5.1 asserts, in par-
ticular, that G is a f.g.g.r. if and only if all isotypic components are free k[E]G-modules.
Shchvartsman’s theorem strengthens one of the implications. It says that it suffices to
verify the freeness for one specific isotypic component.

Theorem II.7.1 (Shchvartsman, 1982). Suppose E is a simple G-module. Then G is a f.g.g.r. if
and only if MorG(E,E∗) is a free k[E]G-module.

We need some preparations for the proof. We use the notation S, R, I = SR+, as
above. Set M = MorG(E,E∗). There are some well-known connections between R and
the R-module M .

1o. If f ∈ R, then the differential of f , df , can be regarded as a G-equivariant mapping
from E to E∗, i.e., an element of M . Recall that df(v), v ∈ E, is an element of E∗ that is
defined as follows. If u ∈ E and 〈 , 〉 denotes the natural pairing between E and E∗, then
〈df(v), u〉 is the coefficient of t in the Taylor expansion of f(v + tu).

2o. There is a mapping called ”restitution” rt : M → R+, which is defined by
rt(F )(v) := 〈F (v), v〉, where v ∈ E.

3o. Euler’s formula: rt(df) = (deg f)f .
Indeed, the definition of df shows that

rt(df)(v) = 〈df(v), v〉 = {coefficient of t in the expansion of f(v + tv) = (1 + t)deg ff(v)} .

Proof of Shchvartsman’s theorem. Let f1, . . . , fp be a minimal generating system of R.
Without loss of generality, we assume that deg f1 6 . . . 6 deg fp and fi is an invariant of
minimal degree that is not contained in the ideal Sf1 + · · ·+ Sfi−1.

Claim 1. The images of dfi in M/R+M are linearly independent over k.
Assume not, and

∑
αidfi ∈ R+M for some αi ∈ k. Then taking the restitution, we

obtain
∑
αi(deg fi)fi ∈ (R+)2. This contradicts however the construction of the fi’s. [This

argument does not use the fact that M is a free R-module.]

Claim 2. Suppose M ′ is a free graded R′-module of finite rank (R′ is a noetherian graded k-
algebra) and q1, . . . , qp ∈ M ′ satisfy the property that the images of qi’s in M ′/R′+M

′ are linearly
independent over R′/R′+ = k. Then q1, . . . , qp are linearly independent over R′.
This is a standard and easy fact on free modules.

Now, if M is a free R-module, then combining Claims 1 and 2 shows that the dfi’s are
linearly independent over R. It follows that f1, . . . , fp are algebraically independent. (For,
differentiating a polynomial relation between f1, . . . , fp would yield a non-trivial linear
dependence between the dfi with coefficients in R.) 2

Using the previous results, we can describe a natural basis for the free R-module M =

MorG(E,E∗).
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Theorem II.7.2. If G is a f.g.g.r., then MorG(E,E∗) is a free k[E]G-module generated by
df1, . . . ,dfn, where f1, . . . , fn are basic invariants.

Proof. We already know that M is a free R-module, its rank equals n = dimE, and
df1, . . . ,dfn are linearly independent over R. That is, ⊕iR(dfi) is a submodule of M of
the same rank.

To prove that these elements do form a basis, we use the Poincaré series techniques.
By Theorem II.3.6, we have

F (M, t) =
1

#G

(
n

(1− t)n
+
r(G)(n/2− 1)

(1− t)n−1
+ . . .

)
On the other hand, if the degrees of the elements of a basis of M are equal to l1, . . . , ln,
then

F (M, t) =

∑n
j=1 t

lj∏n
i=1(1− tdi)

.

Using formulae from subsection II.2.3 and comparing the coefficient of 1/(1− t)n−1 in the
two Laurent expansions of F (M, t), we obtain

∑n
i=1 li = r(G). Since deg(dfi) = di − 1 and∑

i(di − 1) = r(G), one must have {di − 1 | i = 1, . . . , n} = {li | i = 1, . . . , n}. Hence
M = ⊕iR(dfi). �

In particular, we proved that the sum of degrees of the elements of a homogeneous basis
of the free R-module M = MorG(E,E∗) equals #R(G).

Exercise 14. Let l′1, . . . , l′n be the degrees of the elements of a homogeneous basis of the free R-
module M ′ = MorG(E,E). Prove that

∑
i l
′
i = #H(G). [Hint: Use Theorem II.3.7.]

II.7.2. Solomon: polynomial tensor exterior algebra. Let ∧•(E∗) denote the exterior
algebra of E∗ over k. Then the k-algebra k[E] ⊗ ∧•(E∗) can be regarded as the algebra of
polynomial differential forms on E. Our goal is to describe G-invariant differential forms
if G is a f.g.g.r.

Theorem II.7.3 (Solomon, 1963). Suppose G ⊂ GL(E) is a f.g.g.r. and f1, . . . , fn are basic
invariants in k[E]G. Then (k[E]⊗ ∧•(E∗))G = k[f1, . . . , fn]⊗ ∧•(df1, . . . ,dfn).

Proof. The following proof is essentially based on the equality k[E]detE = k[E]GJ and
the description of J obtained in Theorem II.6.1.

1o. First, we prove that
(
n
j

)
differential forms dfi1 ∧ . . . ∧ dfij , {i1, . . . , ij} ∈ [n], are

linearly independent over k(E). Assume that∑
i1,...,ij

ai1,...,ijdfi1 ∧ . . . ∧ dfij = 0
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is a linear relation with coefficients in k(E). For each subset {i1, . . . , ij}, we multiply this
relation with the remaining dfk, k 6∈ {i1, . . . , ij}. Then

0 = ±ai1,...,ijdf1 ∧ . . . ∧ dfn = ±ai1,...,ijJdx1 ∧ . . . ∧ dxn .

This shows that ai1,...,ij = 0.

2o. It follows that, for a fixed j, the dfi1 ∧ . . . ∧ dfij ’s form a basis for the k(E)-vector
space k(E)⊗ ∧j(E∗). In particular, for any ω ∈ (k[E]⊗ ∧j(E∗))G, we can write

ω =
∑
i1,...,ij

ai1,...,ijdfi1 ∧ . . . ∧ dfij ,

where ai1,...,ij ∈ k(E). Since the forms dfi1 ∧ . . . ∧ dfij are G-invariant, each coefficient is
a G-invariant rational function. Multiplying ω with the remaining dfk, k 6∈ {i1, . . . , ij}, as
before, we see that

ai1,...,ijdf1 ∧ . . . ∧ dfn = ai1,...,ijJdx1 ∧ . . . ∧ dxn

is also a G-invariant polynomial differential n-form. Therefore ai1,...,ijJ ∈ k[E]detE . Using
the relation k[E]detE = k[E]GJ , we conclude that ai1,...,ij ∈ k[E] (and isG-invariant!). Thus,
each coefficient ai1,...,ij is actually a polynomial in f1, . . . , fn. �

II.7.3. Steinberg: stabilisers for f.g.g.r.

Theorem II.7.4 (R. Steinberg, 1964). If G is a f.g.g.r., then Gv is a f.g.g.r. for any v ∈ E.

Proof. We give a sketch of the proof that is based on Luna’s slice theorem.

Consider the quotient mappings π : E → E/G and πv : E → E/Gv. Since the orbit G·v
is finite and therefore closed, Luna’s theorem applies to it. In particular, it says that there
is a morphism E/Gv → E/G, which takes πv(v) to π(0), and this morphism is étale in a
Zariski neighbourhood of πv(v). Since G is a f.g.g.r. E/G ' kn. Hence pv(v) is a smooth
point ofE/Gv. WriteE = E ′⊕EGv , whereE ′ is aGv-module. ThenE/Gv ' (E ′/Gv)×EGv .
As v ∈ EGv , the above property of pv(v) implies that

(∗) the image of 0 ∈ E ′ in E ′/Gv is a smooth point.

Let R′ denote the algebra k[E ′]Gv . The property (∗) means that dimk(R′+/R
′2
+) = KdimR′.

But it is well-known that the left-hand side gives the number of elements in a minimal
generating system of a graded k-algebra R′. �

The original proof of Steinberg involved holomorphic functions on E and a subtle char-
acterisation of reflection groups. An elementary proof of Steinberg’s theorem is found by
G. Lehrer (see Intern. Math. Res. Notices (2004), no. 28, 1407–1411).

Corollary II.7.5. For any v ∈ E, the stabiliser Gv is generated by the reflection σ such that
v ∈ Eσ. In particular, Gv = {1I} if and only if v ∈ E \ ∪H∈HH .
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II.8. A return to general theory

Many assertions on f.g.g.r. can be carried over to arbitrary finite linear groups due to
the fact that k[E]G is always a CM algebra. As a sample, we mention a generalisation of
Theorem II.5.4.

Theorem II.8.1. Let G ⊂ GL(E) be an arbitrary linear group and f1, . . . , fn a h.s.o.p. in k[E]G.
Suppose the rank of the k[f1, . . . , fn]-module k[E]G equals m. Then k[E]/(f1, . . . , fn) is isomor-
phic to k[G]m as G-module.

Proof. Left to the reader. �

Next result provides an estimate of the degree of the numerator for the Poincaré series for
k[E]G.

Proposition II.8.2. Suppose f1, . . . , fn is a h.s.o.p. for k[E]G, with deg fi = di, and η1, . . . , ηl is
a homogeneous basis for the free k[f1, . . . , fn]-module k[E]G with deg ηj = ej ; that is, k[E]G =

⊕li=1k[f1, . . . , fn]ηi. Assume that e1 6 . . . 6 el. Then
∑

i(di − 1) − el is the least degree of a
semi-invariant of weight detE .

Proof. Recall that F (k[E]G; t−1) = (−t)nF (k[E]detE ; t) (Proposition II.3.9). On the other
hand,

F (k[E]G; t) =
te1 + . . .+ tel∏n

i=1(1− tdi)
.

Commining these equalities, we obtain

(−1)n
∑

j t
d1+...+dn−ej∏n

i=1(1− tdi)
= (−t)nF (k[E]detE ; t) .

Now equating the initial degrees of the Taylor expansions, we get

d1 + . . .+ dn − el = n+ min{degrees of semi-invariants of weight detE}.

�

This result has an interesting consequence. Recall that the degree of a rational function is
defined in Subsection II.2.3. From the last formulae in the proof, it follows that

degF (k[E]G; t) = −n−min{degrees of semi-invariants of weight detE}.
In particular, degF (k[E]G; t) 6 − dimE, and deg(k[E]G; t)F = − dimE if and only if G ⊂
SL(E).

Again, we wish to point out that some aspects of invariant theory of finite and con-
nected reductive groups are quite different. Suppose that H is connected and semismple,
and V is an H-module. The degree of F (k[V ]H ; t) is well-defined. But in contrast to the
finite group case, one always has degF (k[V ]H ; t) > − dimV . (A criterion for the equality
is also known.)
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II.8.1. A lower bound for degrees of algebraically independent invariants.

Theorem II.8.3. Let U ⊂ GL(E) be a finite group and q1, . . . , qn are algerbaically independent
homogeneous polynomials in k[E]U with deg qi = di. Then

(i) #U 6 d1 · · · dn;
(ii) If #U = d1 · · · dn, then U is a f.g.g.r. and k[E]U = k[q1, . . . , qn].

Proof. Our proof applies if k = C.
(i) Consider two Poincaré series: F1(t) = F (C[q1, . . . , qn]; t) and F2(t) = F (C[E]U ; t).
Considering t as a complex variable, we see that these two series converge if |t| 6 1. Since
C[q1, . . . , qn] is a subalgebra of C[E]U , we have the coefficient-wise inequality F1 4 F2. It
follows that F1(t) 6 F2(t) for any real t in the interval (0, 1). Hence

1

d1 · · · dn
= lim

t→1
(1− t)nF1(t) 6 lim

t→1
(1− t)nF2(t) =

1

#U
.

(ii) If #U = d1 · · · dn, then F2(t) − F1(t) has the pole of order 6 n − 1 at t = 1 and, by the
same argument, the coefficient of 1/(1− t)n−1 is nonnegative. Using the Equation (II.2.2)
and Theorem II.3.2, this nonnegativity translates into the condition

#R(U)

2#U
>

1

d1 · · · dn
·
∑n

i=1(di − 1)

2
,

i.e., #R(U) >
∑n

i=1(di−1). Then one can repeat the argument used in the proof of (iii)⇒(i)
in Theorem II.5.1, which shows that the subgroup of U generated by all reflections coin-
cides with U . The rest is clear. �

II.9. Complete intersections

Let A be a finitely generated graded k-algebra. Then A is a quotient of a graded polyno-
mial ring, i.e., A = k[X1, · · · , XN ]/I , where degXi = di and I is a homogeneous ideal.

Definition 16. The algebra A is called a complete intersection, if I is generated by a regular
sequence. (Equivalently, if I is generated by N −KdimA elements.). If I is generated by
a sole polynomial, then A is called a hypersurface. The same terminology applies to the
corresponding affine variety SpecA.

If I is generated by polynomials of degree m1, . . . ,ml, then the Poincaré series of A is of
the form
(�) F (A; t) =

∏l
i=1(1− tmi)/

∏N
i=1(1− tdi).

This already shows that F (A; t) has a rather specific property: it can be written such that
all the roots of the numerator and denominator are roots of unity.

Warning. If F (A; t) can be written in form (�), then this does not imply that A is a
complete intersection. Furthermore, if F (A; t) = 1/

∏N
i=1(1− tdi), then it is not necessarily
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true that A is a graded polynomial algebra. An example of such phenomenon is found
by R. Stanley in 1978. It is especially instructive for us, sinceA in Stanley’s example is the
algebra of invariants of a finite group.

Example II.9.1 (Stanley). Suppose E = k3 and G is generated by two diagonal matrices
with diagonals (−1,−1, 1) and (1, 1,

√
−1). If k[E] = k[x, y, z], then k[E]G is generated by

monomials x2, xy, y2, z4. It follows that k[E]G is a hypersurface, and the unique relation
is (x2)(y2) = (xy)2. Assuming that deg x = deg y = deg z = 1, we see that the relation is of
degree 4. Therefore F (k[E]G; t) = (1− t4)/(1− t2)3(1− t4) = 1/(1− t2)3.

Below, we consider the following

Question. When is the algebra of invariants of a finite group a complete intersection?

We begin with two simple observation.

1o. If one is only interested in possible algebras of invariants, then it suffices to con-
sider linear groups without reflections.

Indeed, if Gr is the (normal) subgroup of G generated by all reflections, then E/Gr is
an affine space, and the induced action of G/Gr on E/Gr is linear with respect to any sys-
tem of algebraically independent homogeneous generators of k[E]Gr . That is, we obtain
G/Gr ⊂ GL(E/Gr). The key fact is that the linear group G/Gr has no reflections at all.
However, E/G ' (E/Gr)/(G/Gr).

2o. If E/G is a complete intersection andR(G) = ∅, then G ⊂ SL(E).
Formula (�) for A = k[E]G shows that in this case F (k[E]G; t) satisfies the equation
F (k[E]G; t−1) = (−t)dimEF (k[E]G; t). Then one can refer to Corollary II.3.10(ii).

The following theorem of Kac and Watanabe gives a strong necessary condition for
E/G to be a complete intersection. No reasonable sufficient condition is known.

Theorem II.9.2 (Kac-Watanabe, 1982). If E/G is a complete intersection, then E is generated
by elements σ such that rk (σ − id) 6 2.

Proof. Let Gci be the subgroup of G generated by the elements described in the formu-
lation. It is a normal subgroup, and we obtain the commutative diagram

E

����
E/Gci

// E/G

Let us slightly modify the varieties occurring in this diagram. Set G(3) = {σ ∈ G |
codimEE

σ > 3} and Y = E \ ∪
σ∈G(3)

Eσ. Then Y is an open G-stable subset of E, and
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we obtain the modified diagram

Y

����
Y/Gci

ϕ
// Y/G

The advantage of this new diagram is that the action of G/Gci on Y/Gci is free, that is, the
stabiliser of each point in Y/Gci is trivial. The reason is that all points having non-trivial
stabilisers belong to the closed subvariety (E/Gci) \ (Y/Gci). Hence ϕ is an unramified
Galois covering, with the Galois group G/Gci.

Now, we can use the result of Grothendieck which says that if X is an irreducible
complete intersection and Z is a closed subvariety of codimension > 3, then π1(X) =

π1(X \ Z). Here π1(·) denotes the algebraic fundamental group of X . We apply it to
X = E/G. Since E/G is contractible and therefore simply-connected, Y/G is also simply-
connected. The simply-connectedness means that any unramified Galois covering of Y/G
must be trivial. Thus, Y/Gci = Y/G and G = Gci. �

Remarks. 1. The condition of the theorem is not sufficient. Already for n = 3, there are
finite subgroups G of SL3 generated by elements σ such that rk (σ − id) = 2, but E/G is
not a complete intersection.

2. The same type of argument proves the implication (iii)⇒(i) in Theorem II.5.1. In
place of Grothendieck’s result, one has to use the Zariski-Nagata theorem which says that
if X is smooth and codimXZ > 2, then π1(X) = π1(X \ Z).

Example II.9.3. Suppose G ⊂ GL(E) is a f.g.g.r. having the property thatH(G)/G = {pt};
i.e., all reflecting hyperplanes are G-conjugate. (This happens, for instance, if G is the
Weyl group of a simply-laced irreducible root system.) Then all the reflections are of order
two and detE is the only linear character of G. Set G′ = G ∩ SL(E). Then |G : G′| = 2 and
k[E]G

′ is a hypersurface. Indeed, if k[E]G is freely generated by f1, . . . , fn, then k[E]G
′ is

generated by f1, . . . , fn, and J . The unique relation between these polynomials is of the
form J2 = F (f1, . . . , fn). Here F is certain polynomial, which is called the discriminant of
G.

Motivated by similar examples for other reflection groups, R. Stanley [5] conjectured
that ifE/G is a c.i., then there is a f.g.g.r. G∗ ⊂ GL(E) such that [G∗, G∗] ⊂ G ⊂ G∗. Then it
was understood that there are counterexamples in dimension 3, but the conjecture holds
if dimE is sufficiently large. A complete classification of finite linear groups whose alge-
bra of invariants is a complete intersection is obtained by H. Nakajima and N. Gordeev
(independently) in the mid-eighties.
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Example II.9.4. If dimE = 2 and G ⊂ SL(E), then E/G is a hypersurface. Since E/G
is normal, conical, and 2-dimensional, it has a unique singular point; namely, the image
of the origin in E. The corresponding singularity is well-known. It has many names
(Kleinian singularity, simple singularity, platonic singularity, rational double point, sim-
ple critical point) and even more characterisations, see [3]. Recall that the finite subgroups
of SL(2) are the following: Cn – the cyclic group of order n; Dn – the binary dihedral
group of order 4n; T – the binary tetrahedral group of order 24; O – the binary octahedral
group of order 48; I – the binary icosahedral group of order 120. The equations of the
corresponding hypersurfaces are given below.

Cn Xn + Y Z = 0

Dn Xn+1 +XY 2 + Z2 = 0

T X4 + Y 3 + Z2 = 0

O X3 +XY 3 + Z2 = 0

I X5 + Y 3 + Z2 = 0
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