Introduction

Example

Approach

Rigorous Bounds

The End

Estimating characteristic parameters of hyperbolic systems

Polina Vytnova joint work with Mark Pollicott and Oliver Jenkinson

University of Warwick and Queen Mary University of London

January 2017

It is a fact of experience that computer simulations of a relatively naive sort are generally fairly reliable indicators of the properties of concrete dynamical systems.

O. E. Lanford III

Introduction ●○○	Example 0000	Approach 000000	Rigorous Bounds	The End
History				

- Periodic points are easy to compute and give a lot of information on hyperbolic systems
- A paper "Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets" by Jenkinson & Pollicott appeared in 2002
- An algorithm for computing Hausdorff dimension of dynamically defined sets based on periodic orbit data was presented
- But back then fast computers were very big and not accessible to general public

Introduction OOO	Example 0000	Approach 000000	Rigorous Bounds	The End
the Years Pa	assed			

The algorithm has been used to compute various parameters:

- Entropy (Lyapunov Exponents)
- Diffusion Coefficient (Variance)
- Pressure
- Linear Response (Derivatives of Averages of Maps)
- Rate of Mixing (Decay of Correlations)
- Moments
- • • • • • • •
- Hausdorff Dimension of Dynamically Defined Sets (Limit Sets, Julia Sets, ...)

Introduction	Example	Approach	Rigorous Bounds	The End
00•	0000	000000	000000	000

Open Question: Accuracy

- The algorithm gives a sequence of numbers *a_n*, each of which depends on periodic points up to period *n*
- The sequence hopefully converges and
- The limit is the quantity we are interested in

$$\lim_{n\to\infty}a_n=a$$

- We are happy if $\lg |a_n a_{n-1}| \le -\alpha n$ for some $\alpha > 0.1$
- We conclude that $|a_{n_{max}} a| \le \alpha n_{max}$, where n_{max} is the maximum period our computer can deal with in 24 hours

Main Question

Is the result trustworthy?

	pprodon	Tigorous Dounus	The Linu
000 000 0	00000	000000	000

Case Study: Lanford map

The Lanford map

$$T(x): = 2x + \frac{1}{2}x(1-x) \mod 1$$

(Visualize a slightly perturbed doubling map)

- Introduced by O. Lanford in 1998 paper "Informal Remarks on the Orbit Structure of Discrete Approximations to Chaotic Maps"
- Brought to my attention by S. Galatolo during his talk "Rigorous estimation of the speed of convergence to equilibrium" in April 2016.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

Properties

The Lanford map

- 1 C^{ω} expanding map: $|T'| \geq \frac{3}{2}$
- 2 Admits a unique invariant measure μ equivalent to Lebesgue measure.
- 3 The abstract dynamical system (*T*; μ) is ergodic and isomorphic to a Bernoulli shift.
- A shadowing theorem which ensures that the computed orbit stays near to some true orbit over arbitrarily large numbers of steps holds
- 5 A central limit theorem holds

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000
$\mathbf{T} \mathbf{i} \mathbf{v} \mathbf{i}$				

The Variance

Theorem (Central Limit Theorem) Let g be a real-valued analytic function. Then

$$\mu\left(\left\{x\in[0,1]\colon a\leq\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}g(T^{k}x)\leq b\right\}\right)$$
$$\stackrel{n\to\infty}{\longrightarrow}\frac{1}{\sqrt{2\pi}\sigma}\int_{a}^{b}\exp\left(\frac{-t^{2}}{2\sigma^{2}}\right)\mathrm{d}t$$

The value

$$\sigma^{2} := \lim_{n \to \infty} \frac{1}{n} \int \left(\sum_{k=0}^{n-1} g(T^{k} x) \right)^{2} d\mu(x)$$

is called *the variance* of the test function g.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

First Numerical Result

W. Bahsoun, S. Galatolo, I. Nisoli, and X. Niu in "Rigorous approximation of diffusion coefficients for expanding maps", using Ulam's method: for $g = x^2 - \int x^2 d \mu$ we have that

 $\sigma_{\mu}^{2}(g) \in [0.3458, 0.4512].$

We can do better!

O. Jenkinson, M. Pollicott & P.V.:

$$\sigma^2_\mu(g) \in [0.360109486199160 \pm 10^{-18}]$$
 .

The cost?

- (1) about $6.7 \cdot 10^8$ periodic points of the period up to 25
- ② arbitrary-precision calculations with accuracy of 10^{-200}
- 3 about 24 computer hours (no special RAM requirements)

Definition

Let $F(x) \stackrel{\text{def}}{=} -\log |T'(x)|$ be a C^{ω} function. The pressure function is $P(F) \stackrel{\text{def}}{=} \sup_{m \in \mathcal{M}} \{h(m) + \int F dm\}$ where \mathcal{M} is the set of *f*-invariant probability measures h(m) is the entropy. Supremum is achieved at SRB measure μ .

For any $g \in C^{\omega}$, the pressure P(F + tg) is analytic and $rac{\partial P(F + tg)}{\partial t}\Big|_{t=0} = \int g d\mu$

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	00000	000000	000

Transfer operator

Definition

We let *B* be the Banach space of complex-valued bounded analytic functions on $U \supset [0, 1]$ with supremum norm $\|\cdot\|_{\infty}$. To a mapping $F \in B$ and a test function $g \in B$ we associate a family of transfer operators $\mathcal{L}_{t,g}: B \to B$:

$$(\mathcal{L}_{t,g}p)(x) = \sum_{k} e^{(F-tg)(\tau_k x)} p(\tau_k x), \quad t \in \mathbb{R}$$

where $\tau_k : U \to U$ are the local inverses to T, which are C^{ω} contractions satisfying $\overline{\tau_k(U)} \subset U$.

Introduction 000	Example	Approach	Rigorous Bounds	The End
D				

Determinant

Theorem (Grothendieck-Ruelle)

The transfer operator is nuclear. Its determinant is an entire function in z defined as $d: \mathbb{C} \times \mathbb{R} \times C^{\omega}(U) \to \mathbb{C}$

$$d(z, t, g) \stackrel{\text{def}}{=} \det(I - z\mathcal{L}_{t,g}) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \operatorname{Tr}(\mathcal{L}_{t,g}^n)\right)$$

Lemma (Ruelle)

$$d(z, t, g) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{T^n x = x} \frac{\exp(-tg^n(x))}{|(T^n)'(x)| - 1}\right),$$
where $g^n(x) = \sum_{k=0}^{n-1} g(T^k x).$

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

Magic of thermodynamics

Lemma (Ruelle)

For any $z \in \mathbb{C}$, $t \in \mathbb{R}$, and $g \in C^{\omega}(U)$ we have that:

- 1 d(z, t, g) converges to an analytic function for $|z| < e^{-P(F-tg)}$;
- 2 d(z, t, g) has an analytic extension in z ∈ C to the entire complex plane C;
- 3 $z \mapsto d(z, t, g)$ has a simple zero at $z(t, g) = e^{-P(F-tg)}$.

Lemma (Grothendieck-Ruelle)

The power series coefficients of the determinant decrease superexponentially and uniformly in $t \in \mathbb{R}$.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

Cooking approximations up

Write the diffusion coefficient as the 2'nd derivative of pressure

$$\sigma^{2}(g) = \frac{\partial^{2}}{\partial t^{2}} P(-\ln|T'| + tg)\Big|_{t=0}$$

- ② Using the Implicit Function Theorem, express the 2'nd derivative of pressure in terms of the Taylor coefficients of the determinant and their derivatives
- 3 Using Ruelle's Lemma, rewrite the Taylor coefficients and their derivatives in terms of the periodic orbit sums

$$\sum_{T^n(x)=x} \frac{\exp(-tg^n(x))}{|(T^n)'(x)|-1}$$

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

Prospective Bounds

Theorem

Given a piecewise real-analytic Markov map $T : X \to X$ with an absolutely continuous invariant probability measure μ , and a real-analytic $g : X \to \mathbb{R}$, there exists a sequence $\{\sigma_n^2\}$ where n'th element depends only on periodic points of period up to n, and the rate of convergence is faster than exponential. Specifically, if dim X = 1, then there exist explicit constants $A = A_{T,\mu,g} > 0$ and $\alpha = \alpha_{T,\mu,g} \in (0,1)$ such that

$$|\sigma^2_\mu(g) - \sigma^2_n| \leq A lpha^{n^2}$$
 for all $n \in \mathbb{N}$.

Aim

Given T and g to estimate A and α .

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	00000	000

Invisible Superexponential Convergence

n	σ_n^2	$ \sigma_n^2 - \sigma_{n-1}^2 $
12	0.36 010948 61 85859588343561990599828878966607	10 ⁻⁹
13	0.360 1094861 99222993644688357957828705184562	10^{-11}
14	0.3601 09486199 160 481163645430040654615882458	10^{-14}
15	0.36010 9486199160 673287014050839470838927840	10^{-16}
16	0.360109 48619916067 2898306093693521789682071	10^{-20}
17	0.3601094 86199160672898 824643277247080597474	10^{-23}
18	0.36010948 6199160672898824 186 562820134550885	10^{-26}
19	0.3601094861 99160672898824186 828679098981571	10^{-29}
20	0.36010948619 9160672898824186828 5767 23147913	10^{-33}
21	0.360109486199 1606728988241868285767 49246076	10^{-37}
22	0.3601094861991 6067289882418682857674924 1669	10^{-41}

Based on numerical data only, one can guess that the convergence is exponential. Our estimates show that $\alpha \approx 0.86...$ and $A \approx \exp(3)$.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	00000	000

Computational Limits

Question

How big *n* could be?

 Computational Time time ~ # periodic points · precision ~ const · exp(period) · # digits 2²⁵ points of period 25 with precision 10⁻²⁰⁰ ≈ 6 hours
 Memory space ~ # periodic points · precision 2²⁰ points of period 20 with precision of 10⁻²⁰⁰ ≈ 1GB

I have heard of a super cluster (available to CUNY) which can do a 10000 hours computation in 50 hours, but even then $n_{max} = 34$ and you have to wait in a queque to get access.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	○○●○○○	
the Space				

- ⁽²⁾ Choose the space \mathcal{H} to be the Hardy Hilbert space

$$\begin{aligned} \mathcal{H} \colon &= \Big\{ f \colon D \mapsto \mathbb{C} \text{ analytic } | \\ &\sup_{0 < r < 1} \int_0^1 |f(z_0 + r \exp(2\pi\theta i)|^2 d\,\theta < +\infty \Big\}. \end{aligned}$$

- 3 The transfer operator ${\cal L}$ respects ${\cal H}$
- The norm ||L|| can be bounded via the Littlewood Subordination Theorem (for composition operators)

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	000

Approximation Numbers

Approximation numbers for a compact operator $\boldsymbol{\mathcal{L}}$ on a Hilbert space are

$$s_k(\mathcal{L})$$
: = inf{ $\|\mathcal{L} - \Pi_k\|$: rank $(\Pi_k) \le k - 1$ }

Lemma

Given a transfer operator $\mathcal{L}_{g,t}$ the *n*'th Taylor coefficient of the determinant d(z, t, g) is bounded by

$$|c_n(t)| \leq \sum_{j_1 < \ldots < j_n} \prod_{k=1}^n s_{j_k}(\mathcal{L}_{g,t})$$

Introduction	Example 0000	2	Approach 000000	Rigorous Bounds	The End
_					

Approximation Bounds

Basis in the Hardy space on the disc $B(c, \rho)$:

$$m_k(z): = \frac{(z-c)^k}{\rho^k}$$

Lemma

The apprximation numbers have approximation bounds

$$s_k(\mathcal{L}_{g,t}) \leq lpha_k(t)$$
: $= \left(\sum_{j=k-1}^{\infty} \|\mathcal{L}_{g,t}(m_k)\|^2\right)^{1/2}$

Introduction	Example	Approach 000000	Rigorous Bounds ○○○○○●	The End
Divide and	Rule			

- **1** Euler bound: compute $C_t(g)$ and $\theta(T)$: $\alpha_n(t) \leq C_t \theta^n$;
- 2 Estimate numerically $||\mathcal{L}_{g,t}(m_k)||$ for k = 1...500;
- 3 Compute explicitly $|c_n|$, $|c'_n|$ for n = 1, ..., 25;
- (d) Estimate carefully $|c_n|$, $|c'_n|$, $|c''_n|$ for $n = 26, \ldots, 40$;
- Ise Euler bound to estimate the tails.

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000	000000	•00

Other Characteristic Parameters

The same method gives other estimates:

• The entropy (or Lyapunov exponent) of the measure is equal to

 $0.5766178000659767754158241 \pm 10^{-20}$

• The rate of mixing (i.e., the second eigenvalue of the transfer operator) is equal to

 $0.5780796885371219681530689 \pm 10^{-22}$

• The linear response $\frac{\partial}{\partial \lambda} \int x^2 d\mu_{\lambda}|_{\lambda=0.5}$, where μ_{λ} is the absolutely continuous invariant measure for the map $T_{\lambda}(x) = 2x + \lambda x(1-x) \mod 1$, is estimated to be 0.1408202496514802931732639 $\pm 10^{-19}$

 Introduction
 Example
 Approach
 Rigorous Bounds
 The End

 000
 000000
 000000
 000000
 000000

 Other Systems

In order for the method to work, we need

- Markov, analytic, and uniformly expanding map T (or a family of maps, or a group of transformations)
- ② Finitely supported invariant measure
- 3 Banach space of functions
- Muclear transfer operator(s)

Introduction	Example	Approach	Rigorous Bounds	The End
000	0000	000000		○○●
References				

- W. Bahsoun, S. Galatolo, I. Nisoli & X. Niu, Rigorous approximation of diffusion coefficients for expanding maps, *J. Stat. Phys.*, **163** (2016), 1486–1503.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, *Mem. Amer. Math. Soc.*, 16 (1955), 1–140.
- O. E. Lanford III, Informal remarks on the orbit structure of discrete approximations to chaotic maps, *Exp. Math.*, **7** (1998), 317–324.
- D. Ruelle, Zeta-functions for expanding maps and Anosov flows, *Invent. Math.*, 34 (1976), 231–242.
- J. H. Shapiro, *Composition operators and classical function theory*, Springer-Verlag, 1993.