Computing Hausdorff dimension of Bernoulli convolutions (on a joint work with M. Pollicott and V. Kleptsyn)

Polina Vytnova
University of Warwick

May 2021

Bernoulli convolution: a special probability measure

Consider the sum of a geometric series with randomly chosen signs:

$$
\xi=\sum_{j=0}^{\infty} \pm \lambda^{j}=\sum_{j=0}^{\infty} \xi_{j} \lambda^{j}
$$

where $\lambda \in[0,1)$ and the signs $\left(\xi_{j}= \pm 1\right)$ are chosen independently. Definition
The probability measure μ_{λ} given by the distribution of values of ξ is called a Bernoulli convolution.

In this talk we will be concerned with properties of μ_{λ}.
For instance, ξ always takes values between $-\frac{1}{1-\lambda}$ and $\frac{1}{1-\lambda}$, because

$$
\sum_{j=0}^{\infty} \lambda^{j}=\frac{1}{1-\lambda} .
$$

Dynamical viewpoint

It is convenient to shift and to rescale the variable ξ to $\left[0, \frac{1}{1-\lambda}\right)$

$$
\xi \mapsto \tilde{\xi}=\frac{\xi+c_{\lambda}}{2}=\sum_{j=0}^{\infty} \tilde{\xi}_{j} \lambda^{j}
$$

where $\tilde{\xi}_{j}$ are i.i.d. assuming values 0 and 1 with equal probability. Observe that

$$
\tilde{\xi}=\sum_{j=0}^{\infty} \tilde{\xi}_{j} \lambda^{j}=\tilde{\xi}_{0}+\lambda \sum_{j=0}^{\infty} \tilde{\xi}_{j+1} \lambda^{j} .
$$

The probability measure $\tilde{\mu}_{\lambda}$ corresponding to the distribution of $\tilde{\xi}$ is the stationary measure for the iterated function system

$$
\begin{gathered}
f_{0}(x)=\lambda x, \quad f_{1}(x)=1+\lambda x: \\
\tilde{\mu}_{\lambda}=\frac{1}{2}\left(f_{0}\right)_{*} \tilde{\mu}_{\lambda}+\frac{1}{2}\left(f_{1}\right)_{*} \tilde{\mu}_{\lambda} .
\end{gathered}
$$

A stationary measure for a system of contracting maps is unique.

Dependence $\tilde{\mu}_{\lambda}$ on λ

Let $\tilde{\mu}_{\lambda}$ be the stationary measure for the iterated function system

$$
f_{0}(x)=\lambda x, \quad f_{1}(x)=1+\lambda x .
$$

Then

- For $\lambda \in\left(0, \frac{1}{2}\right)$, the measure $\tilde{\mu}_{\lambda}$ is supported on a Cantor set. For $\lambda=\frac{1}{3}$, this is a (rescaled) standard "mid- $\frac{1}{3}$ " Cantor set.
- For $\lambda=\frac{1}{2}$, the measure $\tilde{\mu}_{\lambda}$ is the Lebesgue measure on $[0,2]$.
- For $\lambda \in\left(\frac{1}{2}, 1\right)$, the measure $\tilde{\mu}_{\lambda}$ is fully supported on $\left(0, \frac{1}{1-\lambda}\right)$.

Question

What can we say about $\tilde{\mu}_{\lambda}$ for $\lambda>\frac{1}{2}$? For example, is it absolutely continuous or singular (with respect to Lebesgue measure)?

It turns out, properties of $\tilde{\mu}_{\lambda}$ depend on algebraic properties of λ.

First look

For $\lambda=1 / 1.7$ the measure μ_{λ} is fully supported and is singular with respect to Lebesgue measure. The plot shows the graph of the map $D_{k} \rightarrow \mu_{\lambda}\left(D_{k}\right)$ for the uniform partition $\left\{D_{k}\right\}_{k=1}^{2^{16}}$ into 2^{16} equal intervals.

Pisot numbers

Definition

A Pisot number is a real algebraic integer $a>1$ such that all its algebraic conjugates a_{j} (that is, other roots of its minimal polynomial) are less than 1 in absolute value:

$$
P(z)=(x-a)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right) \in \mathbb{Z}[x], \quad \text { and }\left|a_{j}\right|<1, j=2, \ldots, n .
$$

Example

The golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ is a root of $P(x)=x^{2}-x-1$ with the second root $-\frac{1}{\varphi}$.

Lemma
If a is a Pisot number, then the fractional parts $\left\{a^{k}\right\} \rightarrow 0$ as $k \rightarrow \infty$.
Proof.
Consider $a^{k}+a_{2}^{k}+\ldots+a_{n}^{k}$.

Erdös: singularity for inverse Pisot

Theorem (Erdös, 1939)

Let $\lambda \in\left(\frac{1}{2}, 1\right)$ be the inverse of a Pisot number. Then μ_{λ} is singular.
Proof.
Rewrite the measure as a countable convolution of scaled Bernoulli variables

$$
\mu_{\lambda}=\underset{j=1}{\star}\left(\frac{1}{2} \delta_{-\lambda^{j}}+\frac{1}{2} \delta_{\lambda^{j}}\right)
$$

and apply Fourier transform:

$$
f(t):=\widehat{\mu_{\lambda}}(t)=\prod_{j=0}^{\infty} \overline{\left(\frac{1}{2} \delta_{-\lambda^{j}}+\frac{1}{2} \delta_{\lambda^{j}}\right)}(t)=\prod_{j=0}^{\infty} \cos \left(2 \pi t \lambda^{j}\right) .
$$

Main idea: along the sequence $t_{k}=\lambda^{-k}$ the values $f\left(t_{k}\right)$ do not tend to zero. Indeed, for $j \leq k$

$$
\cos \left(2 \pi t_{k} \lambda^{j}\right)=\cos \left(2 \pi \lambda^{k-j}\right)
$$

and λ^{k-j} are very close to integers, because λ is a Pisot number. This implies singularity of the measure.

Absolute continuity for almost all λ

Theorem (Solomyak, 1995; Erdös conjecture, 1940)
For almost every $\lambda \in\left(\frac{1}{2}, 1\right)$ the corresponding measure μ_{λ} is absolutely continuous and its density is an L_{2} function.

Idea of the proof.

- The random variable ξ can be considered as a family of functions of the variable λ, which is "parametrised" by the choice of signs;
- "Transversality": two such functions are "usually" not very close to each other.
- In order for the measure μ_{λ} to be singular, many these random values should be close to each other.

Theorem (Shmerkin, 2013)

The set of $\lambda \in\left(\frac{1}{2}, 1\right)$ such that the corresponding measure μ_{λ} is singular, has Hausdorff dimension zero.

Dimension of a measure

Definition

The Hausdorff dimension of a measure μ is the infimum of dimensions of sets of the full measure:

$$
\operatorname{dim}_{H} \mu:=\inf \left\{\operatorname{dim}_{H}(B) \mid \mu(B)=1\right\} .
$$

Lemma (Folklore)

The measure μ_{λ} is exact-dimensional. In other words, for μ_{λ}-almost all x we have

$$
\lim _{r \rightarrow 0} \frac{\log \left(\mu_{\lambda}([x-r, x+r])\right)}{\log r}=\operatorname{dim}_{H} \mu_{\lambda} .
$$

Question

What can we say about Hausdorff dimension of Bernoulli convolutions?

$\lambda \in\left(\frac{1}{2}, 1\right)$ with $\operatorname{dim}_{H} \mu_{\lambda}<1$

Any absolutely continuous measure has Hausdorff dimension 1, thus

$$
\operatorname{dim}_{H}\left(\left\{\lambda \mid \operatorname{dim}_{H} \mu_{\lambda}<1\right\}\right)=0
$$

Theorem (Garsia, 1963)
If λ is a Pisot number, then $\operatorname{dim}_{H} \mu_{\lambda}<1$.

n	λ	$\operatorname{dim}_{H} \mu_{\lambda}$
2	$0.61803399 \ldots$	$0.99571312 .$.
3	$0.54368901 \ldots$	$0.98040931 .$.
4	$0.51879006 \ldots$	$0.98692647 .$.
5	$0.50866039 \ldots$	$0.99258530 .$.
6	$0.50413825 \ldots$	$0.99603259 .$.
7	$0.50201705 \ldots$	$0.99793744 .$.
8	$0.50099418 \ldots$	$0.99894491 .$.
9	$0.50049311 \ldots$	$0.99946536 .$.
10	$0.50024546 \ldots$	$0.99973060 .$.

Estimates for the dimension of the Bernoulli measure for the Pisot root of $x^{n}-x^{n-1}-\ldots-1=0$, by Grabner at al. (2002)

Uniform lower bounds

Theorem (Varjú, 2018)
For all transcendental $\lambda \in\left(\frac{1}{2}, 1\right)$ we have $\operatorname{dim}_{H}\left(\mu_{\lambda}\right)=1$ (based on Garsia entropy approach and a result of Hochman).

Theorem (Hare, Sidorov, 2018)
For all $\lambda \in\left(\frac{1}{2}, 1\right)$ one has $\operatorname{dim}_{H} \mu_{\lambda} \geq 0.82$ (based on Garsia entropy approach and a result of Hochman). Furthermore $\operatorname{dim}_{H} \mu_{\lambda} \geq \operatorname{dim}_{H} \mu_{\lambda^{2}}$.

Theorem (V. Kleptsyn, M. Pollicott, P.V., 2021)
For all $\lambda \in\left(\frac{1}{2}, 1\right)$ one has $\operatorname{dim}_{H} \mu_{\lambda} \geq 0.96399$. Moreover, $\operatorname{dim}_{H} \mu_{\lambda} \geq G(\lambda)$ for an explicit piecewise-constant function G (based on random processes methods).
... a couple of weeks later ...
Theorem (D.-J. Feng, Z. Feng, 2021)
For all $\lambda \in\left(\frac{1}{2}, 1\right)$ one has $\operatorname{dim}_{H} \mu_{\lambda} \geq 0.9804085$, the dimension corresponding to the root of $\lambda^{3}-\lambda^{2}-\lambda-1=0$ (based on partition entropy approach).

The correlation dimension

The existing methods for computing Hausdorff dimension of $\operatorname{dim}_{H} \mu_{\lambda}$ use the properties of the minimal polynomial of λ and therefore are not suitable for uniform estimates.
Correlation dimension:

$$
\operatorname{dim}_{\text {cor }} \mu:=\sup \left\{\alpha\left|\iint\right| x-\left.y\right|^{-\alpha} d \mu(x) d \mu(y)<+\infty\right\}
$$

For any probability measure μ,

$$
\operatorname{dim}_{\text {cor }} \mu \leq \operatorname{dim}_{H} \mu .
$$

The correlation dimension is known to be easier to estimate numerically and gives surprisingly good lower bounds on $\operatorname{dim}_{H} \mu$.

Approach

Let $\alpha<\operatorname{dim}_{\text {cor }} \mu_{\lambda}$. Then the function

$$
\psi(r)=\iint|x-y+r|^{-\alpha} d \mu_{\lambda}(x) d \mu_{\lambda}(y)
$$

is continuous and decreasing as $r \rightarrow \infty$.
Stationarity of the measure μ_{λ} with respect to the iterated function scheme $f_{0}(x)=\lambda x, f_{1}(x)=1+\lambda x$, implies

$$
\psi(r)=\lambda^{-\alpha}\left(\frac{1}{4} \psi\left(\frac{r-1}{\lambda}\right)+\frac{1}{2} \psi\left(\frac{r}{\lambda}\right)+\frac{1}{4} \psi\left(\frac{r+1}{\lambda}\right)\right)
$$

In other words, ψ is the fixed point for the operator

$$
\mathcal{D}_{\alpha, \lambda}: \varphi \mapsto\left[D_{\alpha, \lambda} \varphi\right](r):=\lambda^{-\alpha}\left(\frac{1}{4} \varphi\left(\frac{r-1}{\lambda}\right)+\frac{1}{2} \varphi\left(\frac{r}{\lambda}\right)+\frac{1}{4} \varphi\left(\frac{r+1}{\lambda}\right)\right)
$$

How to obtain a lower estimate for the correlation dimension

Theorem (V. Kleptsyn, M. Pollicott, P.V.)

Let ψ be a positive function, bounded away from 0 and ∞ on an interval $J \supset\left[-\frac{1}{1-\lambda}, \frac{1}{1-\lambda}\right] \supset \operatorname{supp} \mu_{\lambda}$, such that everywhere on this interval

$$
\left[\mathcal{D}_{\alpha, \lambda} \psi\right](x)<\psi(x)
$$

Then $\alpha \leq \operatorname{dim}_{\text {cor }} \mu_{\lambda}$.
Moreover, for any $\alpha<\operatorname{dim}_{\text {cor }} \mu_{\lambda}$ there exists a piecewise-constant function ψ such that the inequality holds.

To find ψ numerically, consider the iterations of the pointwise minimum

$$
\varphi \mapsto \min \left(\mathcal{D}_{\alpha, \lambda} \varphi(x), \varphi(x)\right)
$$

applied to the indicator function of J.

Main result: a lower bound

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_{2} corresponding to approximately 10000 intervals $\operatorname{dim}_{H} \mu_{\lambda} \geq G_{2}(\lambda)$.

Main result: a lower bound

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_{2} corresponding to approximately 10000 intervals $\operatorname{dim}_{H} \mu_{\lambda} \geq G_{2}(\lambda)$.

Main result: a lower bound

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_{2} corresponding to approximately 10000 intervals $\operatorname{dim}_{H} \mu_{\lambda} \geq G_{2}(\lambda)$.

Main result: a lower bound

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_{2} corresponding to approximately 10000 intervals $\operatorname{dim}_{H} \mu_{\lambda} \geq G_{2}(\lambda)$.

Main result: a lower bound

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_{2} corresponding to approximately 10000 intervals $\operatorname{dim}_{H} \mu_{\lambda} \geq G_{2}(\lambda)$. Due to result by Hare and Sidorov $\operatorname{dim}_{H} \mu_{\lambda} \geq \operatorname{dim}_{H} \mu_{\lambda^{2}}$ and we only need to consider $\lambda<1 / \sqrt{2}$.

Generalisations

The approach we have developed applies to any iterated function scheme of similarities

$$
f_{j}: \mathbb{R} \rightarrow \mathbb{R} \quad f_{j}(x)=\lambda x+c_{j}, \quad 1 \leq j \leq k,
$$

and gives a lower bound on the Hausdorff dimension of the stationary measure.

Thank you for your attention!

