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Bernoulli convolution: a special
probability measure

Consider the sum of a geometric series with randomly chosen signs:

ξ =
∞

∑
j=0

±λj =
∞

∑
j=0

ξjλ
j ,

where λ ∈ [0,1) and the signs (ξj = ±1) are chosen independently.

Definition
The probability measure µλ given by the distribution of values of ξ is
called a Bernoulli convolution.

In this talk we will be concerned with properties of µλ.

For instance, ξ always takes values between − 1
1−λ

and 1
1−λ

, because

∞

∑
j=0

λj = 1

1 − λ
.



Dynamical viewpoint
It is convenient to shift and to rescale the variable ξ to [0, 1

1−λ
)

ξ ↦ ξ̃ = ξ + cλ
2

=
∞

∑
j=0

ξ̃jλ
j ,

where ξ̃j are i.i.d. assuming values 0 and 1 with equal probability.
Observe that

ξ̃ =
∞

∑
j=0

ξ̃jλ
j = ξ̃0 + λ

∞

∑
j=0

ξ̃j+1λ
j .

The probability measure µ̃λ corresponding to the distribution of ξ̃ is
the stationary measure for the iterated function system

f0(x) = λx, f1(x) = 1 + λx ∶

µ̃λ =
1

2
(f0)∗µ̃λ +

1

2
(f1)∗µ̃λ.

A stationary measure for a system of contracting maps is unique.



Dependence µ̃λ on λ

Let µ̃λ be the stationary measure for the iterated function system

f0(x) = λx, f1(x) = 1 + λx.

Then

● For λ ∈ (0, 1
2
), the measure µ̃λ is supported on a Cantor set. For

λ = 1
3
, this is a (rescaled) standard “mid- 1

3
” Cantor set.

● For λ = 1
2
, the measure µ̃λ is the Lebesgue measure on [0,2].

● For λ ∈ ( 1
2
,1), the measure µ̃λ is fully supported on (0, 1

1−λ
).

Question
What can we say about µ̃λ for λ > 1

2
? For example, is it absolutely

continuous or singular (with respect to Lebesgue measure)?

It turns out, properties of µ̃λ depend on algebraic properties of λ.



First look
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For λ = 1/1.7 the measure µλ is fully supported and is singular with
respect to Lebesgue measure. The plot shows the graph of the map

Dk → µλ(Dk) for the uniform partition {Dk}2
16

k=1 into 216 equal
intervals.



Pisot numbers

Definition
A Pisot number is a real algebraic integer a > 1 such that all its
algebraic conjugates aj (that is, other roots of its minimal
polynomial) are less than 1 in absolute value:

P (z) = (x − a)(x − a2) . . . (x − an) ∈ Z[x], and ∣aj ∣ < 1, j = 2, . . . , n.

Example
The golden ratio ϕ = 1+

√
5

2
is a root of P (x) = x2 − x − 1 with the

second root − 1
ϕ

.

Lemma
If a is a Pisot number, then the fractional parts {ak}→ 0 as k →∞.

Proof.
Consider ak + ak2 + . . . + akn.



Erdös: singularity for inverse Pisot
Theorem (Erdös, 1939)
Let λ ∈ ( 1

2
,1) be the inverse of a Pisot number. Then µλ is singular.

Proof.
Rewrite the measure as a countable convolution of scaled Bernoulli
variables

µλ =
∞∗
j=1

(1

2
δ−λj + 1

2
δλj)

and apply Fourier transform:

f(t) ∶= µ̂λ(t) =
∞

∏
j=0

( 1
2
δ−λj + 1

2
δλj)
⋀

(t) =
∞

∏
j=0

cos(2πtλj).

Main idea: along the sequence tk = λ−k the values f(tk) do not tend
to zero. Indeed, for j ≤ k

cos(2πtkλj) = cos(2πλk−j),

and λk−j are very close to integers, because λ is a Pisot number. This
implies singularity of the measure.



Absolute continuity for almost all λ

Theorem (Solomyak, 1995; Erdös conjecture, 1940)
For almost every λ ∈ ( 1

2
,1) the corresponding measure µλ is absolutely

continuous and its density is an L2 function.

Idea of the proof.

● The random variable ξ can be considered as a family of functions
of the variable λ, which is “parametrised” by the choice of signs;

● “Transversality”: two such functions are “usually” not very close
to each other.

● In order for the measure µλ to be singular, many these random
values should be close to each other.

Theorem (Shmerkin, 2013)
The set of λ ∈ ( 1

2
,1) such that the corresponding measure µλ is

singular, has Hausdorff dimension zero.



Dimension of a measure

Definition
The Hausdorff dimension of a measure µ is the infimum of dimensions
of sets of the full measure:

dimH µ ∶= inf{dimH(B) ∣ µ(B) = 1}.

Lemma (Folklore)
The measure µλ is exact-dimensional. In other words, for µλ-almost
all x we have

lim
r→0

log(µλ([x − r, x + r]))
log r

= dimH µλ.

Question
What can we say about Hausdorff dimension of Bernoulli
convolutions?



λ ∈ (1
2 ,1) with dimH µλ < 1

Any absolutely continuous measure has Hausdorff dimension 1, thus

dimH({λ ∣ dimH µλ < 1}) = 0

Theorem (Garsia, 1963)
If λ is a Pisot number, then dimH µλ < 1.

n λ dimH µλ
2 0.61803399... 0.99571312..
3 0.54368901... 0.98040931..
4 0.51879006... 0.98692647..
5 0.50866039... 0.99258530..
6 0.50413825... 0.99603259..
7 0.50201705... 0.99793744..
8 0.50099418... 0.99894491..
9 0.50049311... 0.99946536..
10 0.50024546... 0.99973060..

Estimates for the dimension of the Bernoulli measure for the Pisot
root of xn − xn−1 − . . . − 1 = 0, by Grabner at al. (2002)



Uniform lower bounds
Theorem (Varjú, 2018)
For all transcendental λ ∈ ( 1

2
,1) we have dimH(µλ) = 1 (based on

Garsia entropy approach and a result of Hochman).

Theorem (Hare, Sidorov, 2018)
For all λ ∈ ( 1

2
,1) one has dimH µλ ≥ 0.82 (based on Garsia entropy

approach and a result of Hochman). Furthermore
dimH µλ ≥ dimH µλ2 .

Theorem (V. Kleptsyn, M. Pollicott, P.V., 2021)
For all λ ∈ ( 1

2
,1) one has dimH µλ ≥ 0.96399. Moreover,

dimH µλ ≥ G(λ) for an explicit piecewise-constant function G (based
on random processes methods).

... a couple of weeks later ...

Theorem (D.-J. Feng, Z. Feng, 2021)
For all λ ∈ ( 1

2
,1) one has dimH µλ ≥ 0.9804085, the dimension

corresponding to the root of λ3 − λ2 − λ − 1 = 0 (based on partition
entropy approach).



The correlation dimension

The existing methods for computing Hausdorff dimension of dimH µλ
use the properties of the minimal polynomial of λ and therefore are
not suitable for uniform estimates.

Correlation dimension:

dimcor µ ∶= sup{α ∣∬ ∣x − y∣−α dµ(x)dµ(y) < +∞}

For any probability measure µ,

dimcor µ ≤ dimH µ.

The correlation dimension is known to be easier to estimate
numerically and gives surprisingly good lower bounds on dimH µ.



Approach

Let α < dimcor µλ. Then the function

ψ(r) =∬ ∣x − y + r∣−αdµλ(x)dµλ(y)

is continuous and decreasing as r →∞.

Stationarity of the measure µλ with respect to the iterated function
scheme f0(x) = λx, f1(x) = 1 + λx, implies

ψ(r) = λ−α (1

4
ψ (r − 1

λ
) + 1

2
ψ ( r

λ
) + 1

4
ψ (r + 1

λ
))

In other words, ψ is the fixed point for the operator

Dα,λ∶ϕ↦ [Dα,λϕ](r) ∶= λ−α (1

4
ϕ(r − 1

λ
) + 1

2
ϕ( r

λ
) + 1

4
ϕ(r + 1

λ
))



How to obtain a lower estimate for the
correlation dimension

Theorem (V. Kleptsyn, M. Pollicott, P.V.)
Let ψ be a positive function, bounded away from 0 and ∞ on an
interval J ⊃ [− 1

1−λ
, 1
1−λ

] ⊃ suppµλ, such that everywhere on this
interval

[Dα,λψ](x) < ψ(x).

Then α ≤ dimcor µλ.
Moreover, for any α < dimcor µλ there exists a piecewise-constant
function ψ such that the inequality holds.

To find ψ numerically, consider the iterations of the pointwise
minimum

ϕ↦min(Dα,λϕ(x), ϕ(x))

applied to the indicator function of J .



Main result: a lower bound
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The dimension of Bernoulli convolutions µλ is bounded from below by
a piecewise-constant function G2 corresponding to approximately
10000 intervals dimH µλ ≥ G2(λ).



Main result: a lower bound
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The dimension of Bernoulli convolutions µλ is bounded from below by
a piecewise-constant function G2 corresponding to approximately
10000 intervals dimH µλ ≥ G2(λ).



Main result: a lower bound
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The dimension of Bernoulli convolutions µλ is bounded from below by
a piecewise-constant function G2 corresponding to approximately
10000 intervals dimH µλ ≥ G2(λ).



Main result: a lower bound
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The dimension of Bernoulli convolutions µλ is bounded from below by
a piecewise-constant function G2 corresponding to approximately
10000 intervals dimH µλ ≥ G2(λ).



Main result: a lower bound
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The dimension of Bernoulli convolutions µλ is bounded from below by
a piecewise-constant function G2 corresponding to approximately
10000 intervals dimH µλ ≥ G2(λ). Due to result by Hare and Sidorov
dimH µλ ≥ dimH µλ2 and we only need to consider λ < 1/

√
2.



Generalisations

The approach we have developed applies to any iterated function
scheme of similarities

fj ∶R→ R fj(x) = λx + cj , 1 ≤ j ≤ k,

and gives a lower bound on the Hausdorff dimension of the stationary
measure.



Thank you for your attention!


