Computing Hausdorff dimension of Bernoulli convolutions (on a joint work with M. Pollicott and V. Kleptsyn)

Polina Vytnova

University of Warwick

May 2021

Bernoulli convolution: a special probability measure

Consider the sum of a geometric series with randomly chosen signs:

$$\label{eq:expansion} \xi = \sum_{j=0}^\infty \pm \lambda^j = \sum_{j=0}^\infty \xi_j \lambda^j,$$

where $\lambda \in [0, 1)$ and the signs $(\xi_j = \pm 1)$ are chosen independently.

Definition

The probability measure μ_{λ} given by the distribution of values of ξ is called a *Bernoulli convolution*.

In this talk we will be concerned with properties of μ_{λ} .

For instance, ξ always takes values between $-\frac{1}{1-\lambda}$ and $\frac{1}{1-\lambda}$, because

$$\sum_{j=0}^{\infty} \lambda^j = \frac{1}{1-\lambda}.$$

Dynamical viewpoint

It is convenient to shift and to rescale the variable ξ to $\left[0, \frac{1}{1-\lambda}\right)$

$$\xi \mapsto \tilde{\xi} = \frac{\xi + c_{\lambda}}{2} = \sum_{j=0}^{\infty} \tilde{\xi}_j \lambda^j,$$

where $\tilde{\xi}_j$ are i.i.d. assuming values 0 and 1 with equal probability. Observe that

$$\tilde{\xi} = \sum_{j=0}^{\infty} \tilde{\xi}_j \lambda^j = \tilde{\xi}_0 + \lambda \sum_{j=0}^{\infty} \tilde{\xi}_{j+1} \lambda^j.$$

The probability measure $\tilde{\mu}_{\lambda}$ corresponding to the distribution of $\tilde{\xi}$ is the stationary measure for the iterated function system

$$f_0(x) = \lambda x, \quad f_1(x) = 1 + \lambda x:$$

$$\tilde{\mu}_{\lambda} = \frac{1}{2} (f_0)_* \tilde{\mu}_{\lambda} + \frac{1}{2} (f_1)_* \tilde{\mu}_{\lambda}.$$

A stationary measure for a system of contracting maps is unique.

Dependence $\tilde{\mu}_{\lambda}$ on λ

Let $\tilde{\mu}_{\lambda}$ be the stationary measure for the iterated function system

$$f_0(x) = \lambda x, \quad f_1(x) = 1 + \lambda x.$$

Then

- For $\lambda \in (0, \frac{1}{2})$, the measure $\tilde{\mu}_{\lambda}$ is supported on a Cantor set. For $\lambda = \frac{1}{3}$, this is a (rescaled) standard "mid- $\frac{1}{3}$ " Cantor set.
- For $\lambda = \frac{1}{2}$, the measure $\tilde{\mu}_{\lambda}$ is the Lebesgue measure on [0,2].
- For $\lambda \in (\frac{1}{2}, 1)$, the measure $\tilde{\mu}_{\lambda}$ is fully supported on $(0, \frac{1}{1-\lambda})$.

Question

What can we say about $\tilde{\mu}_{\lambda}$ for $\lambda > \frac{1}{2}$? For example, is it absolutely continuous or singular (with respect to Lebesgue measure)?

It turns out, properties of $\tilde{\mu}_{\lambda}$ depend on algebraic properties of λ .

First look

For $\lambda = 1/1.7$ the measure μ_{λ} is fully supported and is singular with respect to Lebesgue measure. The plot shows the graph of the map $D_k \to \mu_{\lambda}(D_k)$ for the uniform partition $\{D_k\}_{k=1}^{2^{16}}$ into 2^{16} equal intervals.

Pisot numbers

Definition

A Pisot number is a real algebraic integer a > 1 such that all its algebraic conjugates a_j (that is, other roots of its minimal polynomial) are less than 1 in absolute value:

$$P(z) = (x-a)(x-a_2)\dots(x-a_n) \in \mathbb{Z}[x], \text{ and } |a_j| < 1, \ j = 2,\dots, n.$$

Example

The golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$ is a root of $P(x) = x^2 - x - 1$ with the second root $-\frac{1}{\varphi}$.

Lemma

If a is a Pisot number, then the fractional parts $\{a^k\} \to 0$ as $k \to \infty$.

Proof. Consider $a^k + a_2^k + \ldots + a_n^k$.

Erdös: singularity for inverse Pisot Theorem (Erdös, 1939)

Let $\lambda \in (\frac{1}{2}, 1)$ be the inverse of a Pisot number. Then μ_{λ} is singular. Proof.

Rewrite the measure as a countable convolution of scaled Bernoulli variables

$$\mu_{\lambda} = \overset{\infty}{\underset{j=1}{\star}} \left(\frac{1}{2} \delta_{-\lambda^{j}} + \frac{1}{2} \delta_{\lambda^{j}} \right)$$

and apply Fourier transform:

$$f(t) \coloneqq \widehat{\mu_{\lambda}}(t) = \prod_{j=0}^{\infty} \overline{(\frac{1}{2}\delta_{-\lambda^{j}} + \frac{1}{2}\delta_{\lambda^{j}})}(t) = \prod_{j=0}^{\infty} \cos(2\pi t\lambda^{j}).$$

Main idea: along the sequence $t_k = \lambda^{-k}$ the values $f(t_k)$ do not tend to zero. Indeed, for $j \leq k$

$$\cos(2\pi t_k \lambda^j) = \cos(2\pi \lambda^{k-j}),$$

and λ^{k-j} are very close to integers, because λ is a Pisot number. This implies singularity of the measure.

Absolute continuity for almost all λ

Theorem (Solomyak, 1995; Erdös conjecture, 1940) For almost every $\lambda \in (\frac{1}{2}, 1)$ the corresponding measure μ_{λ} is absolutely continuous and its density is an L_2 function.

Idea of the proof.

- The random variable ξ can be considered as a family of functions of the variable λ , which is "parametrised" by the choice of signs;
- "Transversality": two such functions are "usually" not very close to each other.
- In order for the measure μ_{λ} to be singular, many these random values should be close to each other.

Theorem (Shmerkin, 2013)

The set of $\lambda \in (\frac{1}{2}, 1)$ such that the corresponding measure μ_{λ} is singular, has Hausdorff dimension zero.

Dimension of a measure

Definition

The Hausdorff dimension of a measure μ is the infimum of dimensions of sets of the full measure:

$$\dim_H \mu \coloneqq \inf \{\dim_H(B) \mid \mu(B) = 1\}.$$

Lemma (Folklore)

The measure μ_{λ} is exact-dimensional. In other words, for μ_{λ} -almost all x we have

$$\lim_{r \to 0} \frac{\log(\mu_{\lambda}([x-r,x+r]))}{\log r} = \dim_{H} \mu_{\lambda}.$$

Question

What can we say about Hausdorff dimension of Bernoulli convolutions?

$\lambda \in (\frac{1}{2}, 1)$ with $\dim_H \mu_{\lambda} < 1$

Any absolutely continuous measure has Hausdorff dimension 1, thus $\dim_H(\{\lambda \mid \dim_H \mu_\lambda < 1\}) = 0$

Theorem (Garsia, 1963)

If λ is a Pisot number, then dim_H $\mu_{\lambda} < 1$.

n	λ	$\dim_H \mu_\lambda$
2	0.61803399	0.99571312
3	0.54368901	0.98040931
4	0.51879006	0.98692647
5	0.50866039	0.99258530
6	0.50413825	0.99603259
7	0.50201705	0.99793744
8	0.50099418	0.99894491
9	0.50049311	0.99946536
10	0.50024546	0.99973060

Estimates for the dimension of the Bernoulli measure for the Pisot root of $x^n - x^{n-1} - \ldots - 1 = 0$, by Grabner at al. (2002)

Uniform lower bounds

Theorem (Varjú, 2018)

For all transcendental $\lambda \in (\frac{1}{2}, 1)$ we have $\dim_H(\mu_{\lambda}) = 1$ (based on Garsia entropy approach and a result of Hochman).

Theorem (Hare, Sidorov, 2018)

For all $\lambda \in (\frac{1}{2}, 1)$ one has $\dim_H \mu_{\lambda} \ge 0.82$ (based on Garsia entropy approach and a result of Hochman). Furthermore $\dim_H \mu_{\lambda} \ge \dim_H \mu_{\lambda^2}$.

Theorem (V. Kleptsyn, M. Pollicott, P.V., 2021) For all $\lambda \in (\frac{1}{2}, 1)$ one has $\dim_H \mu_{\lambda} \ge 0.96399$. Moreover, $\dim_H \mu_{\lambda} \ge G(\lambda)$ for an explicit piecewise-constant function G (based on random processes methods).

 \ldots a couple of weeks later \ldots

Theorem (D.-J. Feng, Z. Feng, 2021)

For all $\lambda \in (\frac{1}{2}, 1)$ one has $\dim_H \mu_{\lambda} \ge 0.9804085$, the dimension corresponding to the root of $\lambda^3 - \lambda^2 - \lambda - 1 = 0$ (based on partition entropy approach).

The correlation dimension

The existing methods for computing Hausdorff dimension of $\dim_H \mu_{\lambda}$ use the properties of the minimal polynomial of λ and therefore are not suitable for uniform estimates.

Correlation dimension:

$$\dim_{cor} \mu \coloneqq \sup \left\{ \alpha \mid \iint |x - y|^{-\alpha} d\mu(x) d\mu(y) < +\infty \right\}$$

For any probability measure μ ,

 $\dim_{cor} \mu \leq \dim_{H} \mu.$

The correlation dimension is known to be easier to estimate numerically and gives surprisingly good lower bounds on $\dim_H \mu$.

Approach

Let $\alpha < \dim_{cor} \mu_{\lambda}$. Then the function

$$\psi(r) = \iint |x - y + r|^{-\alpha} d\mu_{\lambda}(x) d\mu_{\lambda}(y)$$

is continuous and decreasing as $r \to \infty$.

Stationarity of the measure μ_{λ} with respect to the iterated function scheme $f_0(x) = \lambda x$, $f_1(x) = 1 + \lambda x$, implies

$$\psi(r) = \lambda^{-\alpha} \left(\frac{1}{4} \psi\left(\frac{r-1}{\lambda}\right) + \frac{1}{2} \psi\left(\frac{r}{\lambda}\right) + \frac{1}{4} \psi\left(\frac{r+1}{\lambda}\right) \right)$$

In other words, ψ is the fixed point for the operator

$$\mathcal{D}_{\alpha,\lambda}:\varphi\mapsto [D_{\alpha,\lambda}\varphi](r):=\lambda^{-\alpha}\left(\frac{1}{4}\varphi\left(\frac{r-1}{\lambda}\right)+\frac{1}{2}\varphi\left(\frac{r}{\lambda}\right)+\frac{1}{4}\varphi\left(\frac{r+1}{\lambda}\right)\right)$$

How to obtain a lower estimate for the correlation dimension

Theorem (V. Kleptsyn, M. Pollicott, P.V.)

Let ψ be a positive function, bounded away from 0 and ∞ on an interval $J \supset \left[-\frac{1}{1-\lambda}, \frac{1}{1-\lambda}\right] \supset \operatorname{supp} \mu_{\lambda}$, such that everywhere on this interval

 $[\mathcal{D}_{\alpha,\lambda}\psi](x) < \psi(x).$

Then $\alpha \leq \dim_{cor} \mu_{\lambda}$.

Moreover, for any $\alpha < \dim_{cor} \mu_{\lambda}$ there exists a piecewise-constant function ψ such that the inequality holds.

To find ψ numerically, consider the iterations of the pointwise minimum

 $\varphi \mapsto \min(\mathcal{D}_{\alpha,\lambda}\varphi(x),\varphi(x))$

applied to the indicator function of J.

The dimension of Bernoulli convolutions μ_{λ} is bounded from below by a piecewise-constant function G_2 corresponding to approximately 10000 intervals $\dim_H \mu_{\lambda} \ge G_2(\lambda)$. Due to result by Hare and Sidorov $\dim_H \mu_{\lambda} \ge \dim_H \mu_{\lambda^2}$ and we only need to consider $\lambda < 1/\sqrt{2}$.

Generalisations

The approach we have developed applies to any iterated function scheme of similarities

$$f_j: \mathbb{R} \to \mathbb{R}$$
 $f_j(x) = \lambda x + c_j, \quad 1 \le j \le k,$

and gives a lower bound on the Hausdorff dimension of the stationary measure.

Thank you for your attention!