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A computation is a temptation that should be resisted as long as
possible.

J.P. Boyd
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Sets of continued fractions

Continued fraction of x ∈ (0,1) is an expression

x = [0;a1, . . . , an, . . .]∶=
1

a1 +
1

a2 +
1

a3 + ⋱

, an ∈ N

Goal
Give an effective and efficient method for computing Hausdorff
dimension of subsets of an interval which are specified in terms of
continued fraction expansions of their elements.
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We apply our method to the sets:

EN ∶= {[0;a1, a2, . . .] ∣ an ∈ {1,2,3, . . . ,N}}

{[0;a1, a2, . . .] ∣ an ∈ {d1, d2, . . . , dN} ⊂ N}

{[0;a1, a2, . . .] ∣ an ∈ {d1, d2, . . . , dN}, with extra restrictions

ajaj+1 . . . aj+r ≠ di1di2 . . . dir , i1i2 . . . ir ∈ {d1, . . . , dN}r}

{[0;a1, a2, . . .] ∣ an ≡ r(mod N)}, N ≥ 2, 0 ≤ r < N

I will first present our results and then describe the method.
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dimH(E2)

E2 is the Cantor set of numbers whose continued fraction expansions
have digits 1 and 2.

dimH(E2) = 0.5312805062 7720514162 4468647368 4717854930 5910901839

8779888397 8039275295 3564383134 5918109570 1811852398

8042805724 3075187633 4223893394 8082230901 7869596532

8712235464 2997948966 3784033728 7630454110 1508045191

3969768071 3 ± 10−201 (M. Pollicott & P.V., 2020)

If one tries to push the existing zeta function method to get 200
decimal places it would take about 1040 days (the age of our universe
≈ 1015 days).

“I am ashamed to tell you to how many figures I carried
these computations, having no other business”

— Isaac Newton
(on computing 15 digits for π in 1666)
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dimH(E5) (in partial support of
Zaremba conjecture)

E5 is the Cantor set of numbers whose continued fraction expansions
have digits from the set {1,2,3,4,5}.

In 2018 Oliver Jenkinson and Mark Pollicott showed that

dim(E5) = 0.836829445 ± 5 ⋅ 10−9

and in 2020 Mark Pollicott and I improved this to

dim(E5) = 0.8368294436 8120882244 159438727 ± 10−29.
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Short forbidden subsequences (for
Markov and Lagrange spectra)

C. Matheus and C. Moreira, Frac-
tal geometry of the complement
of Lagrange spectrum in Markov
spectrum, arXiv:1803.01230

X ∶= {[0;a1, a2, a3, a4, . . .], an ∈ {1,2} dimH(X) ?< 0.365

121 and 212 forbidden }
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dimH((M ∖L) ∩ (

√

5,
√

13))

X ∶= {[0;a1, a2, a3, a4, . . .], an ∈ {1,2}

121 and 212 forbidden }

dimH((M∖L)∩(
√

5,
√

13)) ≤ 2 dimH(X)

M. Pollicott & P.V. (2020)

dimH(X) =
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Long forbidden subsequences (for
Markov and Lagrange spectra)

C. Matheus and C. Moreira (2020): “ M ∖L near 3.7 has the same
Hausdorff dimension as the Cantor set

Ω ∶= {[0;a1, a2, . . .] ∣ an ∈ {1,2,3} and subwords 13,232,323,1223,

33322,12332223,212332222,2123322211,1112332222,

121233222,3211233222 212,2211233222 212,3211233222 21112,

2221233222 123 and their transposes are forbidden} ”

M. Pollicott & P.V. (2020):

dimH(Ω) = 0.5371534 ± 3 ⋅ 10−7
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Infinite set of partial denominators

V. Chousionis, D. Leykekhman, and M. Urbański.
On the dimension spectrum of infinite subsystems
of continued fractions. (2020)

r(N) s0 s1

0 (2) 0.719360 0.719500
1 (2) 0.821160 0.821177
0 (3) 0.639560 0.640730
2 (3) 0.664900 0.665460
1 (3) 0.743520 0.743586

s0 < dimH Xr(N) < s1, s1 − s0 ≈ 10−4

Fix N ≥ 2, 0 < r ≤ N

Xr(N) = {[0;a1, a2, a3,⋯] ∣ an ≡ r mod N}
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Infinite set of partial denominators

Pollicott—V. (2020)

r(N) dimH(Xr(N))
0 (2) 0.7194980248 3 ± 10−11

1 (2) 0.8211764906 ± 4 ⋅ 10−10

0 (3) 0.6407253143 8 ± 10−11

2 (3) 0.6654623380 4 ± 10−11

1 (3) 0.7435862804 ± 3 ⋅ 10−10

Fix N ≥ 2, 0 < r ≤ N

Xr(N) = {[0;a1, a2, a3,⋯] ∣ an ≡ r mod N}
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Computation and accuracy

We would like to have complete confidence in the accuracy of our
estimates.

This depends on:

● having a theoretical method which gives precise bounds; and

● being able to perform the actual numerical computation and to
estimate numerical errors.

The latter is well understood, though challenging.
The former is the most important and interesting.

I will first present the method in the simplest case:

EN = {[0;a1, a2, . . .] ∣ an ∈ {1,2,3, . . . ,N}}
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Step 1: Introduce a dynamical system

Idea
To compute the Hausdorff dimension of a bounded set X ⊂ B ⊂ R we
want to realise it as a limit set of an iterated function scheme.

More precisely, we want to find a finite family of uniformly
contracting maps T = {T1, . . . , Tk} such that Tj(B) ⊂ B for all
1 ≤ j ≤ k and X is the limit set for T :

x ∈X ⇐⇒
there exists y ∈ B and a sequence {jn} ∈ {1, . . . , k}N such that

x = lim
n→∞

Tjn ○ . . . ○ Tj2Tj1(y)

In fact, since all Tj are uniformly contracting, i.e. ∣T ′j ∣ < 1 − ε for some
ε > 0, the limit depends only on the sequence jn, and not on the
reference point y.
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Iterated function scheme for EN
EN = {x ∈ [0,1]

such that

x = [0;a1, . . . , aj , . . .]∶=
1

a1 +
1

a2 +
1

a3 + . . .

, aj ∈ {1, . . .N}}.

Consider the maps

Tj ∶ [0,1]→ [0,1] Tj ∶x↦
1

x + j , j = 1, . . . ,N ;

(these are inverse branches of the Gauss map x↦ { 1
x
}). Then

lim
n→∞

Ta1 ○ Ta2 ○ . . . ○ Tan(0) = lim
n→∞

1

a1 +
1

a2 +⋯
1

an

∈ EN .
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Step 2: Introduce the operators

Idea
The estimates on the Hausdorff dimension of the limit set of an
iterated function scheme of uniform contractions come from the study
of associated bounded linear operators.

Given the maps Tj ∶ [0,1]→ [0,1], consider the Banach space of
continuous functions C([0,1]) and the family of linear operators
Lt ∶ C([0,1])→ C([0,1]):

[Ltw](x) =
N

∑
j=1

∣Tj(x)′∣t ⋅w(Tj(x))

=
N

∑
j=1

1

(x + j)2t
⋅w ( 1

x + j ) (t > 0)

The operator is called the transfer operator for the iterated function
scheme.

14 / 31
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Spectral radius and dimension

Let ρ(Lt) denote the spectral radius of Lt.

t0

ρ(Lt)

t

1

Lemma (after Bowen and Ruelle, from 1980s)
The map t↦ ρ(Lt) is strictly monotone decreasing and the solution to
ρ(Lt) = 1 is t = dimH(EN).
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Approaches to the spectral radius ρ(Lt)

The so-called “periodic points method” or “dynamical zeta functions
method” (by O. Jenkinson and M. Pollicott, 2002) is to consider a
real analytic function

ζ(z, t) = det(zLt − I)

and to compute the largest zero of ζ(1, t).

Instead, we attempt to compute an approximation to the eigenvector
of Lt corresponding to ρ(Lt).
Useful fact (after Ruelle–Grothendieck):
In the case we consider, i.e. for the transformations Tj ∶x↦ 1

x+aj with

aj ∈ N the operators Lt are nuclear and ρ(t) is the isolated eigenvalue.
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Step 3: Estimates on ρ(Lt)

We can use a sort of “min-max” estimate:

Lemma
Let t0 < t1.

1 If there exists a (positive) polynomial f ∶ [0,1]→ R+ such that

inf
x

Lt0f(x)
f(x) > 1 Ô⇒ then ρ(Lt0) > 1.

2 If there exists a (positive) polynomial g ∶ [0,1]→ R+ such that

sup
x

Lt1g(x)
g(x) < 1 Ô⇒ then ρ(Lt1) < 1.

This lemma gives us a way to estimate the dimension.

Corollary
If we can find f, g as above then t0 < dimH(EN) < t1.
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Summary — so far

Given N ≥ 2 and t0 < t1, to show that dimH(EN) ∈ [t0, t1] if suffices to
...

guess (or construct) two positive polynomials f, g ∶ [0,1]→ R+

such that

0 1

Lt0f

f

0 1

Lt1g

g

Lt0f ≥ f Ô⇒ t0 ≥ dimH(EN) Lt1g ≤ g Ô⇒ dimH(EN) ≤ t1

It only remains to construct such functions f and g, which is the final
step.
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Step 4: Cooking up test functions

We could just try and guess the functions f and g (and hope we get
lucky), but a more systematic approach is to use a bit of interpolation
theory.

● Fix a natural number m (e.g., m = 6).

● We can introduce

1 pk(x) ∈ C([0,1]) — the Lagrange polynomials (1 ≤ k ≤m ), and
2 xk ∈ [0,1] — the Chebyshev nodes (1 ≤ k ≤m )

so that pi(xj) = δij . for 1 ≤ i, j ≤m
● Given t consider the m ×m matrix At(i, j) = (Ltpi)(xj) for

1 ≤ i, j ≤m.

● Let wt = (w1
t ,⋯,wmt ) be the (left) eigenvector for the largest

eigenvalue.

● Finally, set fm,t(x) =
m

∑
k=1

wkt pk(x).
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Step 5: Verification

To apply the “min-max” principle, we need to confirm that

1 fm,t > 0; and

2 supx
Ltfm,t(x)
fm,t(x) < 1 (or infx

Ltgm,t(x)
gm,t(x) > 1 )

Fortunately, fm,t is a polynomial, so its derivative can be computed
with arbitrary precision, this allows us to verify the first inequality.
To verify the second inequality, we differentiate

(Ltfm,t
fm,t

)
′

= (Ltfm,t)′ ⋅ fm,t − (fm,t)′ ⋅Ltfm,t
(fm,t)2

In the case of EN , the numerator is sum a rational functions with

coefficients ( 1
x+n)

t
, n = 1, . . . ,N . It turns out that

(Ltfm,t)′ ⋅ fm,t − (fm,t)′ ⋅Ltfm,t → 0 as m→∞

exponentially fast.
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the end of part I

next: part II
abstract setting and technical details
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Intermission

We can use the break to compute the dimension of some sets. Let
AN ∶= {d1, d2, . . . , dN} ⊂ N, dj < 1000 for all 1 ≤ j ≤ N .

XAN
∶= {[0;a1, a2, . . .] ∣ an ∈ AN}, N ≤ 10

or

YAN ,r̄ ∶= {[0;a1, a2, . . .] ∣ an ∈ AN , with extra restrictions

ajaj+1 . . . aj+r1 ≠ di1di2 . . . dir1 , i1i2 . . . ir1 ∈ (AN)r1

ajaj+1 . . . aj+r2 ≠ di1di2 . . . dir2 , i1i2 . . . ir2 ∈ (AN)r2

∗ ∗ ∗

ajaj+1 . . . aj+rk ≠ di1di2 . . . dirk , i1i2 . . . irk ∈ (AN)rk} ⊊XAN

with N,k ≤ 5 and rj ≤ 5 for all 1 ≤ j ≤ k.
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Iterated function scheme

Let A ⊂ N be a finite alphabet. For a ∈ A define

Ta∶ [0,1]→ [0,1], Ta ∶ x↦
1

x + a

To any word wn = {wj}nj=1, wk ∈ A associate

Twn
∶= Twn ○ Twn−1 ○ . . . ○ Tw1

The limit set
XA ∶=⋃

w

lim
n→∞

Twn
(0) ⊂ R.

It is a Cantor set of numbers whose continued fractions have partial
quotients aj ∈ A.
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quotients aj ∈ A.
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Pressure function

Given a system of contractions {Ta ∣ a ∈ A} we define

PA(t) = lim
n→+∞

1

n
log

⎛
⎝∑wn

∣(Twn ○ ⋯ ○ Tw1)′(0)∣
t⎞
⎠
,

It is a strictly decreasing (convex) analytic function, whose unique
zero is the Hausdorff dimension of the limit set.

dimXA

PA(t)

t

log ∣A∣
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Pressure and dimension

1 Pick an open set U ⊃ [0,1]

2 Consider covers of the limit set XA of the form
Uwn

= {Twn ○ ⋯ ○ Tw1U}
3 The diameters diam(Uwn

) ≈ (Twn ○ ⋯ ○ Tw1)′(0)
4 P (t) = 0 implies that P (t0) < 0 for t0 > t and therefore for n

sufficiently large the Hausdorff content

Ht0
δ (XA) ⪅∑

wn

∣(Twn ○ ⋯ ○ Tw1)′(0)∣
t0

5 For n→ +∞ the RHS → 0 and therefore Ht0(XA) = 0.

6 The outer measure vanishes and thus dimH(XA) ≤ t0
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Transfer operators

The transfer operator is a linear operator acting on a space of Hölder
functions

Lt ∶ Cα([0,1])→ Cα([0,1]) Lt ∶ f ↦ ∑
a∈A

f(Ta)∣T ′a∣t.

Lemma (after Ruelle)
The spectral radius of Lt is eP (t). Furthermore,

1 Lt has an isolated maximal eigenvalue eP (t) associated to a
positive eigenfunction h ∈ Cα([0,1]) and a positive
eigenprojection η∶Cα([0,1])→ ⟨h⟩; and

2 for any f ∈ Cα([0,1]) we have

∥e−nP (t)Lnt f − η(f)∥∞ → 0 as n→ +∞.
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More complicated sets

Alphabet A = {1,2,3,4}

XA = {[0;a1, . . . , an, . . .] ∣ aj ∈ A, ajaj+1 /∈ {14,24,41,42}}

We define a Markov iterated function scheme, consisting of 4 maps
and a transition matrix M

Tj(x) =
1

j + x, j ∈ {1,2,3,4} M =
⎛
⎜⎜⎜
⎝

1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1

⎞
⎟⎟⎟
⎠

The limit set of {Tj}j∈A with respect to M is

{ lim
n→+∞

Tj1 ○ ⋯ ○ Tjn(0) ∣ jk ∈ A,Mjk,jk+1 =1,1≤k≤n − 1} =X
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Summary

We compute the Hausdorff dimension of the following sets:

● {x ∈ [0,1] ∣ x = [0;a1, a2, . . .], an ∈ A} for any finite A ⊂ N with or
without forbidden words.

We improve upper bounds on dimension of the difference of Markov and Lagrange

spectra√
5

√
10

√
13 3.84 3.92 4.01

√
20

√
21

0.93 0.706104 0.986927 0.873316 0.961772

0.7281096 0.8552277 0.8710525 0.8110098 0.8822195

MM

PV

● {x ∈ [0,1] ∣ x = [0;a1, a2, . . .], an ∈ A} for some infinite A, e.g.
Ar,N = {x ≡ r mod N}.

We confirm that there are no local obstructions to Zaremba conjecture.

● limit sets of finitely generated hyperbolic Schottky groups

● limit sets of Blaschke products
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Zaremba Conjecture, 1972

For any natural number q ∈ N there exists p (coprime to q) and
a1,⋯, an ∈ {1,2,3,4,5} such that

p

q
= [a1,⋯, an].

Unfortunately, this conjecture is still open.
However, the conjecture is true for most denominators, there is a
density one result.

Theorem (Bourgain-Kontorovich, Huang)

lim
Q→+∞

1

Q
Card{1 ≤ q ≤ Q∣∃p ∈ N ∶ p

q
= [a1,⋯, an], ai ∈ {1,2,3,4,5}} = 1

The proof is conditional on the fact dimH(E5) > 5
6

.
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Examples for numerical experiments

Alphabet A = {1,2,3,4}

XA = {[0;a1, . . . , an, . . .] ∣ aj ∈ A}

YA = {[0;a1, . . . , an, . . .] ∣ aj ∈ A, ajaj+1 /∈ {14,24,41,42}}

31 / 31



Examples for numerical experiments

Alphabet A = {1,2,3,4}

XA = {[0;a1, . . . , an, . . .] ∣ aj ∈ A}

YA = {[0;a1, . . . , an, . . .] ∣ aj ∈ A, ajaj+1 /∈ {14,24,41,42}}

31 / 31


	Introduction

