
On the chaotic properties of quadratic maps over
non-archimedean fields.

V.Dremov∗, G.Shabat† and P.Vytnova∗∗

∗Moscow State University, Moscow, Russia
†Moscow State University for Humanities, Moscow, Russia

∗∗Moscow Independent University, Moscow, Russia

Abstract. 1 We study dynamic properties of the quadratic maps over arbitrary non-archimedean
fields. We find conditions under which these maps demonstratethe chaotic behavior. For the
quadratic maps defined over a global field the chaos occurs only over a finite number of valuations.

INTRODUCTION

0.0.Consider a general discrete dynamical system on acountableset (=phase space). Formally
it is a deterministicmodel of motion (we knoweverythingabout the orbit of any point) and
there seems to be no context for the chaotic considerations.

However, if we are going to study anddescribethe orbits, we need some additional struc-
tures on the phase space.

First of all, we need somelanguageto specify the points of the phase space. It can be
formalized as arecursivestructure, i.e. the distinguished class of numbering (= bijections with
natural numbers) up to recursive renumberings.

For the most dynamical systems theamount of informationneeded to specify a point (it
can be formalized in terms ofKolmogorov complexity) generically grows along the orbit. In
most cases not all this information is valuable for describing the system qualitatively; e.g., if an
orbit "goes to infinity" (in some sense) we might be not interested in the details of the positions
of the points that are terribly far away.

Thus we impose sometopologieson the phase space in order to be able to describe the
orbits approximately. We emphasize the specific feature of thenonclassicaldiscrete dynamics:
it is not assumed that the phase space carries some distinguished topology; we rather consider
thesetof natural topologies. The product of the completions of thephase space with respect to
all these topologies is provided by a suitableproduct topology; the diagonal embedding of the
phase space into this product should induce its truediscretetopology.
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The adelic dynamics provides a perfect framework for this approach, the phase space be-
ing global number fields; the topologies are defined by their non-archimedean valuations.

In the present paper we consider the simplest non-linear model of this kind — the itera-
tions of quadratic maps. Conceptually our main result is thetheorem 5, according to which the
system demonstrates the chaotic behavior only over the finite number of valuations — precisely
over those ones over which the quadratic map is in some senseaveragely expandingin the fixed
points.

The results of the paper generalize the earlier results of two of the authors Shabat [2]
and Dremov [1]. The similar results overp-adic fields withp 6= 2 were obtained considerably
earlier in Thiran at al. [3].

0.1. The paper is organized as follows. Sections 1 and 2 are devoted to certain elementary
properties of the quadratic maps over non-archimedean fields. Sections 3 and 4 are technical:
under some assumptions the preimages of 0 and of a "large disc" around it are described. In the
section 5 the filled Julia sets for all the quadratic maps overall the non-archimedean local fields
are described. In the section 6 under the assumptions of the section 3 the isomorphism between
the quadratic dynamics on the filled Julia set and some sequence dynamics (Bernoulli shift on
the left-infinite sequences) is established. In the section7 the main results are formulated; the
2-adic case is considered separately. In the section 8 some adelic interpretation of our results is
suggested.

0.2.Some of the notations we use are not quite standard.

For a mapT:X 7→ X and for n ∈ N we denote byTn◦ its nth iterate and byT−n◦ its n in-
verse iterate (possibly multivalued). ByTN◦(x) we denote theT- orbit of x ∈ X; finally, for
Y ⊆ X denote byT−N◦Y:=

⋃

n∈N
T−n◦Y andT−∞Y:=

⋂

n∈N
T−n◦Y.

When X is a metric space denote byFJ (T) the filled Julia set, i.e. the set of elements of
X with boundedT- orbits.

For an alphabet (=finite set of characters)A denote by A−N = {. . .a2a1a0} (where
a0,a1,a2 . . . ∈ A) the set of sequences of elements ofA, infinite to the left.For a finite se-
quenceε we denote its length by|ε|.

For a fieldk denote its set of squares byk2· := {x2 | x∈ k}.

For a fieldk with the norm‖ · ‖ for a ∈ k and r ∈ R>0 denote the open and closed discs
by

D(a, r):= {x∈ k | ‖x−a‖< r}
D[a, r]:= {x∈ k | ‖x−a‖ ≤ r}



CANONICAL FORMS OF QUADRATIC MAPS

1.0.We fix a fieldk with chark 6= 2 and consider the general quadratic map

q:A1(k) 7→ A1(k)

defined by
q(x) = Ax2+Bx+C

with A,B,C∈ k andA 6= 0.

1.1. The dynamical properties of the aboveq depend only on the similarity class ofq; it
means that we consider the action of the group of affine transformation of argument

x 7→ L(x):= mx+n with m∈ k•, n∈ k

on the set of quadratic transformations. This action is defined by

L•q= L◦q◦L−1◦;

q and thus definedL•q are calledsimilar. The problem is to find the simplest (and traditional)
representatives of similarity classes of the quadratic map.

1.2.It is easy to check that in all the cases the transformation

L(x):= Ax+
B
2

sends
q(x) = Ax2+Bx+C

to
[L•q](y) = y2+c

with

c= AC− B2

4
+

B
2

thus the standard form of the quadratic map

x 7→ x2+c

is universal, and we are going to stick to it in this paper.

The invariant meaning ofc is as follows. Denote by Fix(q) the (generally 2-element) set
of fixed points ofq, i.e., the set of solutions of the quadratic equation

Ax2+Bx+C= x.

It belongs tok or to its quadratic extension depending on whether or not thediscriminant of the
above equation

(B−1)2−4AC



is a square ink. But one checks that

c:= AC− B2

4
+

B
2
=

1
4 ∏

x∈Fix(q)

q′(x)

is always ink. We’ll see that in the case whenk is equipped with a (usually non-archimedean)
metric the dynamical properties ofq depend drastically on the norm ofc; in particular,q
generates the chaotic behavior iff‖c‖ > 1, i.e., whenq is averagely expanding in the fixed
points.We are not aware of any reasonable generalization of this observation.

1.3.The mapq is not always similar to another standard form (thelogisticmap)

[L•q](y) = λy(1−y).

(hence the results of this paper are a bit stronger than thosein Shabat [2] even in the case
k = Qp). The obvious necessary condition is the existence of fixed points ofq defined overk.
It is easy to show that this condition is sufficient as well.

BEHAVIOR OF NORMS ALONG THE ORBITS

2.0.We fix a fieldk with the non-archimedean norm‖ · ‖ and for any elementc ∈ k consider
the quadratic map

Tc:A1(k) 7→ A1(k)

defined by
Tc(x):= x2+c

2.1.Everyx∈ k defines a sequence‖Tn◦
c (x)‖ . In most cases the behavior of the norm is quite

simple.

Theorem 1 According to the values of‖c‖ and‖x‖ the following statements hold:

‖c‖< 1 ‖c‖= 1 ‖c‖> 1

‖x‖< 1 lim
n→∞

‖Tn◦
c (x)‖= ‖c‖, No general statement lim

n→∞
‖Tn◦

c (x)‖= ∞

‖x‖= 1 ‖Tn◦
c (x)‖ ≡ 1 No general statement lim

n→∞
‖Tn◦

c (x)‖= ∞

‖x‖> 1 lim
n→∞

‖Tn◦
c (x)‖= ∞ lim

n→∞
‖Tn◦

c (x)‖= ∞ ‖Tn◦
c ‖ is either

constant or→ ∞

Proof. All the statements about existing limits and about the norms‖Tn◦
c ‖ being constant

are obvious. In the case‖c‖ = ‖x‖ = 1 the lim
n→∞

‖Tn◦
c (x)‖ can exist. E.g., in any field where

‖2‖= 1, x=−1 is a fixed point ofx 7→ x2−2. But it is possible as well that‖c‖= ‖x‖= 1, but
lim
n→∞

‖Tn◦
c (x)‖ does not exist. Over any field the map

x 7→ x2−1



provides a cycle that gives a sequence of norms 0,1,0,1, . . .

In the case‖c‖ > 1,‖x‖ > 1 the trajectories generally tend to∞. E.g., for k = Q3 and
x= c= 1

3 we have the orbit
1
3
→ 4

9
→ 43

81
→ . . .

with the sequence of norms 3,9,81, . . .But in some special cases (which are the most interesting
from the viewpoint of the present paper) the norms along the orbits are constant. E.g., over
k = Q5 the map

x→ x2− 1
25

has two fixed points12 ±
√

21
16 ∈ Q5 of the norm 5. QED

THE PREORBIT OF 0.

3.0.We fix the triplek ⊃ O ⊃M consisting of a local field, its valuation ring and its maximal
ideal; let p = char(O/M ). We fix the non-archimedean norm‖ · ‖ on k, normalized by the
condition‖p‖= 1

p and the elementc∈ k \O (i.e.‖c‖> 1; this is the only case we’ll need). Our

goal is to describe the setT−N◦
c (0).

3.1.Informally,

T−1◦
c (0) = {x | x2+c= 0}=±

√
−c,

T−2◦
c (0) = {x | x2+c∈ T−1◦

c (0)}= {x | x2 =−c±
√
−c}=±

√

−c±
√
−c

and so on. We should is to give the precise sense to the expressions with nested roots

±

√

. . .±
√

−c±
√

−c±
√
−c

(continued recursively to theleft).

Note that if the roots do not belong to the corresponding fields our notations would be
just the convenient names of the elements of their quadraticextensions; however, we are most
interested in the case where these roots belong tok and we are going rather to provide for our
nested roots certainanalyticsense.

3.2 Proposition.The following statements are equivalent:

3.2.0 −c∈ k2·;
3.2.1 T−1◦

c (0) is non-empty
3.2.2 For any positive natural n the set T−n◦

c (0) is non-empty and, moreover,

#{T−n◦
c (0)}= 2n.



Proof. Implications 3.2.0⇐⇒ 3.2.1⇐= 3.2.2 are trivial; concentrate on 3.2.0=⇒ 3.2.2. The
assumption 3.2.0 impliesc = −a2 for somea ∈ k with ‖a‖ > 1. In fact, we havearbitrarily
attributed the signs to±

√
−c. Further,

±
√

−c±
√
−c=±

√

a2±a=±a(1± 1
a
)

1
2 :=

=±a
[

1+
1
2

1!

(

±1
a

)

+
1
2(

1
2 −1)

2!

(

±1
a

)2
+

1
2(

1
2 −1)(1

2 −2)

3!

(

±1
a

)3
+ . . .

]

,

and this series convergesp-adically (we usep 6= 2); see lemma 1 below.

The longer expressions with nested roots are also defined by the convergent series; see
the next subsection. A similar description in terms ofdichotomic variablescan be found
in Thiran at al. [3]. QED

3.3. Notations of the elements ofT−N◦
c (0). We assumec = −a2 for all a ∈ k and introduce

recursively the numbersbε ∈ k labeled by the stringsε of +’s and -’s

b:= 0,
b±:=±a,

. . . . . . . . .

b±ε:= { solution ofx2−a2 = bε}.

In order to choose the signs forb±ε we introduce recursively the following Laurent series
Bε ∈ Q(( 1

A)) :
B±:=±A,

B±ε:=±
√

A2+Bε:=±A
(

1+
Bε
A2

)

1
2
=±A

[

1+
1
2

1!
Bε
A2 +

1
2(

1
2 −1)

2!

(Bε
A2

)2
+ . . .

]

,

and it makes sense since one proves inductively that

Bε ∈ ±A+Z[
1
2
]
[[1

A

]]

We check that after substituting the free variableA by a∈ k all theBε ’ s converge in‖ · ‖-norm
and hence definebε ∈ k.

LARGE DISC AND THE INVERSE DYNAMICS ON IT

4.0.We keep the same notations, includingc= −a2. Besides, for anyS⊂ k we denote by
√

S
the set{x∈ k | x2 ∈ S}.

Lemma 1 (Effective openness of the set of squares.)Let x0 ∈ k2·. Then B(x0,‖x0‖)⊂ k2·.



Proof. Let y∈ k be such thaty2 = x0. By Taylor formula for anyx with ‖x‖< ‖x0‖

(y2+x)1/2 = y
(

1+
x
y2

)1/2
= y

∞

∑
n=0

1(−1)(−3) . . .(3−2n)
2nn!

·
(

x
y2

)n

In order to prove the convergence of this series estimate thenorm of its general term. Using

− logp‖n!‖p =
[n

p

]

+
[ n

p2

]

+ . . .∼ n
p
· 1
1−1/p

=
n

p−1

We see thatn
√

‖n!‖p ∼ p
− 1

(p−1) , n
√

‖(2n−1)!!‖p = n

√

∥

∥

∥

(2n)!
2nn!

∥

∥

∥

p
∼ p

− 1
(p−1) . Then nth root of

general term satisfies

n

√

∥

∥

∥
y
(−1)(−3) . . .(3−2n)

2nn!
·
( x

y2

)n∥
∥

∥
=

n

√

∥

∥

∥
y
(2n−3)!!

2nn!

∥

∥

∥
·
∥

∥

∥

x
y2

∥

∥

∥
∼ n

√

∥

∥

∥

(2n−1)!!
n!

∥

∥

∥

p

∥

∥

∥

x
x0

∥

∥

∥
< 1

QED
4.1.By definition, for allε ∈⊔∞

n=0{±}{−n...0}

Dε:= D
[

bε;
1

‖a‖|ε|−1

]

.

In particular, the one marked by the empty word is

D = D[0,‖a‖].

Theorem 2 For any n∈ N
T−n◦
−a2 (D) =

⊔

|ε|=n

Dε.

Lemma 2 Let a∈ k and r∈ R>0 satisfy‖a‖> 1 and D[a2, r2]⊂ k2·. Then

√

D[a2, r2] = D
[

a,
r2

‖a‖
]

⊔D
[

−a,
r2

‖a‖
]

Proof. First of all note that‖a‖> r, sinceD[a2, r2]⊂ k2·.

We are going to show that
√

D(a2, r2) ⊇ D[a, r2

‖a‖ ]⊔D[−a, r2

‖a‖ ]. Let x∈ D[a, r2

‖a‖ ]⊔D[−a, r2

‖a‖ ],
then ‖x‖ = ‖a‖, as ‖x− a‖ < ‖a‖ or ‖x+ a‖ < ‖a‖. For one of the choices of the sign
‖x∓a‖= max(‖x‖,‖a‖) = ‖a‖. Then‖x±a‖< ‖a‖, and

‖x2−a2‖= ‖x∓a‖ · ‖x±a‖ ≤ r2

‖a‖ · ‖a‖ ≤ r2.

Hencex2 ∈ D[a2, r2].



Now show that
√

D[a2, r2] ⊆ D[a, r2

‖a‖ ] ⊔ D[−a, r2

‖a‖ ]. Let x ∈
√

D[a2, r2], then (as in the

previous case),‖x‖ = ‖a‖. Therefore‖x∓ a‖ = ‖a‖. Hence ‖a2‖
‖a2−x2‖ =

‖a‖
‖x±a‖ . Therefore

‖a±x‖= ‖a2−x2‖
‖a‖ ≤ r2

‖a‖ . Sox∈ D[a, r2

‖a‖ ]⊔D[−a, r2

‖a‖ ]. QED

Now we prove the theorem 2 by the induction inn. It follows from the effective
openness ofk2· that for the disc D[a2,‖a‖] belongs to k2·. Therefore by lemma 2
T−1◦
−a2 D[0,‖a‖ ] =

√

D[a2,‖a‖ ] = D[a,1] ⊔ D[−a,1] =
⊔

|ε|=1
Dε. Since ±a ∈ D[0,‖a‖ ], we

have
T−1◦
−a2 D[0,‖a‖ ]⊂ D[0,‖a‖ ].

So for anyn
T−n◦
−a2 D[0,‖a‖ ] =

⊔

|ε|=n

Dε ⊂ D[0,‖a‖ ],

and the lemma 2 is applicable to every disk it is used for. The theorem 2 is proved.

Corollary 1

T−∞
−a2(D) =

∞⋂

n=0

⊔

|ε|=n

Dε

THE FILLED JULIA SETS

Keep the notations of the previous section (with the exception ofc that now is arbitrary).

Theorem 3 If ‖c‖ ≤ 1, thenFJ (Tc) = O = D[0,1]. If ‖c‖> 1, then

(a) if −c /∈ k2·, thenFJ (Tc) = /0;
(b) if −c∈ k2·, i.e. c=−a2 for some a∈ k, then

FJ (T−a2) = T−∞D[0,‖a‖].

Proof. The statement in the case‖c‖ ≤ 1 follows from the properties of the norm sequence for
Tn◦(x), see section 2.

In the case‖c‖> 1 we see that if‖x‖>
√

‖c‖, then‖Tn◦(x)‖= ‖x‖2n → ∞ and if‖x‖<
√

‖c‖,

then‖Tn◦(x)‖= ‖c‖2n−1 → ∞. Hence theFJ lies on the circle defined by‖x‖=
√

‖c‖.

Consider the case(a). The assumption−c /∈ k2· for any x satisfying‖x‖ =
√

‖c‖ implies
‖x2+c‖ ≥ ‖c‖. Indeed, if‖x2+c‖ < ‖c‖, then−c∈ D(x2,‖x2‖) ⊂ k2· by the effective open-
ness of squares. Hence‖Tn◦(x)‖ ≥ ‖c‖2n−1 → ∞.

In the case(b) we just use our construction of indexed discs:

FJ ⊂ D = D[0,‖a‖ ].



ThenFJ ⊆ T−n◦(D) =
⊔

|ε|=n
Dε, soFJ ⊆

∞⋂
n=0

T−n◦(D) = T−∞D[0,‖a‖ ]

The opposite inclusionFJ ⊇ T−∞D[0,‖a‖ ] is obvious. QED

ISOMORPHISM WITH THE SEQUENCE DYNAMICS

Keep the notations of the section 4. Consider the space{±}−N:= {. . .ε2,ε1,ε0 | εn ∈ {+,−}}
of sequences of pluses and minuses infiniteto the leftendowed with Tikhonov topology. Denote
by

σ:{±}−N 7→ {±}−N: . . .ε2ε1ε0 7→ . . .ε3ε2ε1

theBernoulli shift.

Theorem 4 For any a satisfying‖a‖ > 1 there is an isomorphism of dynamical systems (i.e.
compacts with continuous endomorphisms)

(FJ (T−a2),T−a2)≃ ({±}−N,σ).

Proof. For anyx∈ FJ (T−a2) there exists a unique sequence of embedded discs.

Dε0ε1ε2 ⊂ Dε0ε1 ⊂ Dε0 ⊂ D

such that{x} = . . .∩Dε0ε1 ∩Dε0 ∩D and{T(x)} = . . .∩Dε1 ∩D∩T(D). This construction
defines

I :FJ (T−a2) 7→ {±}N:x 7→ . . .ε2ε1ε0,

and it is easy to check thatI is a homeomorphism satisfyingI ◦T−a2 = σ◦ I . QED

CHAOTIC PROPERTIES OF QUADRATIC MAPS

Restore the notationsk ⊃ O ⊃ M (a local field, its valuation ring and its maximal ideal);
p := char(O/M ). Extend the polynomial maps we consider fromA1(k) to the projective line
P1(k), sending infinity to infinity.

Here are the main results of the paper.

Theorem 5 If p 6= 2, then the map

Tc: P1(k)→ P1(k): x 7→ x2+c

has positive topological entropy iff‖c‖> 1 and−c∈ k2·.

Proof. Follows from the theorem 4 and the results of Nitecki [4] and Adlet et al. [5]. See details
in Shabat [2]. QED

Theorem 6 If p = 2, then the map

P1(k)→ P1(k): x 7→ x2+c

has positive topological entropy iff‖4c‖> 1 and(1−4c) ∈ k2·.



Proof. We formulate and outline the proofs of the analogues of our main statements forp= 2.

Consider the case‖c‖ ≤ ‖1/4‖. Denote the roots ofTc(x) − x by x1 and x2. We have
K := k[x1] = k[x2], with (K : k) ∈ {1,2}. Our norm can be extended to the fieldK . Then
‖2x1‖ ≤ 1, ‖2x2‖ ≤ 1 and moreover‖x1−x2‖= ‖

√
1−4c‖ ≤ 1. SoD[x1,1] = D[x2,1].

Now prove the formulaFJ (Tc) = k ∩ DK [x1,1]. For t:= x− x1 we obtain‖T(x)− x1‖ =
= ‖(x1+ t)2+ c− x1‖ = ‖t(2x1+ t)‖. Hence for‖t‖ ≤ 1 we have‖Tn◦

c (x)− x1‖ ≤ 1 and for
‖t‖> 1 we have‖Tn◦

c (x)−x1‖= ‖t‖2n
.

For any two pointsx,y∈ FJ (Tc) we have

‖Tc(x)−Tc(y)‖= ‖(x−y)(x+y)‖ ≤ ‖x−y‖‖2x1+(x−x1)+(y−x1)‖ ≤ ‖x−y‖.

Hence if‖c‖ ≤ 1/4, then the topological entropy ofTc equals zero.

Consider the case‖c‖ > 1/4. Now we have two distinct disksD[x1,1] and D[x2,1], with
‖x1‖= ‖x2‖=

√

‖c‖ and‖x1−x2‖=
√

‖4c‖. We introduceb±:= x1,2, and construct thebε’s
andDε as in the subsections3.3, 4.1(excluding the empty word). We argue similarly to the
casep 6= 2, but have to introduce some modifications.

As in the casep 6= 2, ‖Tc(x)−x1‖= ‖(x1+ t)2+c−x1‖= ‖t(2x1+ t)‖.

Forx1 /∈ k we have‖Tn◦
c (x)−x1‖= ‖t‖2n

for ‖t‖> ‖2x1‖ and‖Tc(x)−x1‖= ‖2x1‖·‖x−x1‖>
> ‖x−x1‖ for 0< ‖t‖≤‖2x1‖. Hence the filled Julia set is empty and the entropy is equals zero.

But for x1 ∈ k we havex2 = 1− x1 ∈ k and moreover all the discsDε lie within k since
lemma 1 holds for the disksD(x0,‖4x0‖).

Lemma 2 is replaced by the statement
√

D[a2, r2] = D[a, r2

‖2a‖ ] ⊔ D[−a, r2

‖2a‖ ] for all the

discsD[a2, r2] with r2 < ‖4a2‖ (in particular, for all the shifted disks in the proof of the theorem
2). Hence forDε we obtain the formulaDε = D[bε,‖2a‖1−|ε|].

So we prove that onFJ (Tc) our dynamical system is equivalent to the Bernoulli shift as
in the theorem 4. Its topological entropy is positive. QED

ADELIC INTERPRETATION

LetK be a global number field,(K :Q)< ∞. Considerc∈K and

Tc:K −→ K :x 7→ x2+c.

For anyc there is only a finite number ofv’s such thatTc: Kv 7→ Kv demonstrates chaotic
behavior. For any non-archimedean valuation

v:K −→ Z⊔{∞}



we extendTc to
Tc:Kv −→Kv.

According to the theorems 5 and 6 we can introduce the quantitative measure of global chaos:

chao(c):= #{v∈ val(K ) | Tc:Kv −→Kv is chaotic}= #{v∈ val(K ) | ‖c‖v > 1, c∈K 2·
v }.

Perhaps, it deserves further study.
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