Lyapunov Spectrum with Arbitrary Many Inflection Points

Polina Vytnova (Warwick), joint work with M. Pollicott (Warwick) and O. Jenkinson (QMUL)

Lyapunov Spectrum

The Lyapunov exponent of a piece-wise differentiable mapping $T:[0,1] \rightarrow[0,1]$ is a function

$$
\lambda(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\left(T^{\circ n}\right)^{\prime}(x)\right|
$$

if the limit exists.

- The Lyapunov exponent is well defined on a set of full measure for any invariant measure μ;

- L. Barreira \& J. Schmelling, 2000:

For conformal repellers and SSFTs the set of points where the Lyapunov exponent does not exist has full Hausdorff dimension;

- For ergodic measure μ, we can define

$$
\lambda_{\mu}=\int_{0}^{1} \log \left|T^{\prime}(x)\right| d \mu
$$

- H. Weiss, 1999:

$$
\begin{aligned}
{[0,1]=} & \{x \in[0,1] \mid \lambda(x) \text { doesn't exist }\} \cup \\
& \cup\left\{x \in[0,1] \mid \lambda(x)=\lambda_{\mu}\right\} \cup\left\{x \in[0,1] \mid \lambda(x) \neq \lambda_{\mu}\right\}
\end{aligned}
$$

The Lyapunov spectrum is the map given by

$$
L(\alpha)=\operatorname{dim}_{H}\{x \in[0,1] \mid \lambda(x)=\alpha\}
$$

Consider

- equilibrum measure μ_{t}
- entropy $h\left(\mu_{t}\right)$

Then

$$
L(\alpha)=\frac{1}{\alpha} \inf _{t \in \mathbb{R}}\left(h\left(\mu_{t}\right)+t \alpha-t \int \log \left|T^{\prime}\right| d \mu_{t}\right)
$$

Using the pressure function

$$
L(\alpha(t))=\frac{h\left(\mu_{t}\right)}{\alpha(t)}=\frac{P\left(-t \log \left|T^{\prime}\right|\right)}{\alpha(t)}+t
$$

Lyapunov spectrum is an analytic function taking values in an open interval; in most numerical experiments it appears to have a unique local maxima.

Cookie Cutters

Given a set of pairwise disjoint closed intervals $I_{k} \in[0,1]$, we say that the map $T: \bigcup_{k=1}^{N} I_{k} \rightarrow[0,1]$ is a cookie-cutter with N branches if

- $T\left(I_{k}\right)=[0,1]$ for $k=1, \ldots, N$
- the map T is of the class $C^{1+\varepsilon}$ for an $\varepsilon>0$
- $\left|T^{\prime}\right|>1$ for all $x \in \bigcup_{k=1}^{N} I_{k} \rightarrow[0,1]$.
- The cookie cutter is linear if $\left.T\right|_{I_{k}}$ is affine for any $1<k<N$.

Linear Cookie Cutters Formulae

Consider a linear cookie-cutter map T with n branches of slopes a_{1}, \ldots, a_{n}. Then,

$$
\begin{aligned}
\alpha(t) & =\frac{\sum_{i=1}^{n}\left|a_{i}\right|^{t} \log \left|a_{i}\right|}{\sum_{i=1}^{n}\left|a_{i}\right|^{t}} \\
L(\alpha(t)) & =\frac{\log \left(\sum_{i=1}^{n}\left|a_{i}\right|^{t}\right)}{\alpha(t)}-t
\end{aligned}
$$

Main Result (after O.J., M.P. \& P.V.)

- For any $m \in \mathbb{N}$ there exists a linear cookie cutter with at least $2 m$ inflection points.
- The construction is explicit and the resulting cookie cutter consists of approximately $\exp \left(5 m^{2}\right)$ branches.
- The result is easily extends to the Gaussian cookie cutters consisting of a few branches of the continued fraction map $T_{k_{1}}, \ldots, T_{k_{N}}$,

$$
T_{k_{j}}(x)=\frac{1}{x}-k_{j}, \text { for } x \in\left[\frac{1}{k_{j}+1}, \frac{1}{k_{j}}\right]
$$

Figure 1: Linear cookie cutter with 62 branches and 6 inflection points

