Result

Approach

The End

Linear Response and Periodic Orbits

Polina Vytnova joint work with Mark Pollicott

Queen Mary University of London and University of Warwick

November 2015

 $Mathematics \ is \ the \ part \ of \ physics, \ where \\ experiments \ are \ cheap$

V. Arnold

Result

Approach

The End

Motivation

Figure: Initially, I learnt about the problem from the ICM(2014) talk by prof. Viviane Baladi, "Linear Response or Else". It was written on transparences and presented in a dark room, so the speaker appeared like a ghost.

Result

Approach

The End

Physical Settings (Ruelle)

Linear response theory deals with the way a physical system reacts to a small change in the applied forces or the control parameters. The system starts in an equilibrium or a steady state ρ , and is subjected to a small perturbation x, which may depend on time. In first approximation, the change $\Delta \rho$ of ρ is assumed to be linear in the perturbation x.

Figure: two great interpreters: IHES prof. David Ruelle and Georgia Tech prof. Predrag Cvitanović.

Introduction	Result
00000	00000

Approach

The End

Mathematical Settings (Baladi)

- a one-paramter family T_λ of diffeomorphisms of a compact manifold M, continuously depending on the parameter λ;
- a large set Λ of paramter values, with accumulation point at 0, such that for any λ ∈ Λ the transformation T_λ admits a unique SRB measure μ_λ;

Question

How smooth is the map $\lambda \rightarrow \mu_{\lambda}$?

Definition (Linear Response)

The dynamical system (T_0, M, μ_0) has *linear response*, if the map $\lambda \to \int g d\mu_{\lambda}$ is differentiable for any $g \in C^1(M)$.

Introduction	Result	Approach	The End
00000	00000	00000	00

The invariant measure

Definition (Sinai-Ruelle-Bowen Measures)

Let f be a C^2 diffeomorphism of a compact manifold M with an Axiom A attractor S. The *SRB* measure is a unique f-invariant Borel probability measure μ on S such that

 $\ensuremath{\textcircled{}}$ $\ensuremath{\mu}$ gives absolutely continuous conditional measures on unstable manifolds;

2 the metric entropy
$$h_{\mu}(f)$$
 satisfies
 $\int |\det(Df|_{E_{\mu}})|d\mu = h_{\mu}(f);$

3 there is a set $V \subset M$ having full Lebesgue measure such that for every continuous observable $\varphi \colon M \to \mathbb{R}$ and any $x \in V$ we have $\frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k x) \to \int \varphi d\mu$.

Result

Approach

The End

First result (flows)

Theorem (Ruelle, generalised by Dolgopyat later)

Let a C^3 vector field $v_0 + \lambda v$ define an axiom A flow f_{λ}^t on M with an attractor S_{λ} , depending continuously on $\lambda \in (-\varepsilon, \varepsilon)$. Then \exists ! SRB measure μ_{λ} with $\operatorname{supp} \mu_{\lambda} = S_{\lambda}$. Furthermore

1 for any C^2 function $g: M \to \mathbb{R}$ the map $\lambda \mapsto \int g d\mu_{\lambda}$ is C^1 on $(-\varepsilon, \varepsilon)$;

2
$$\frac{\partial}{\partial\lambda}\int g d\mu_{\lambda} = \lim_{\omega \to +0} \kappa_{\lambda}(\omega)$$
, where

$$\kappa_{\lambda}(\omega) = \int_{0}^{\infty} e^{i\omega t} \int v(x) \cdot \nabla_{x}(g \circ f_{\lambda}^{t}) \mu_{\lambda}(dx)$$

3 The function κ_λ(ω) is holomorphic for ℑω > 0, extends meromorphically to ℑω > −a and has no pole at 0.

Introduction 000000	Result 00000	Approach 00000	The End
Recent result			

Theorem (Baladi-Todd,Korepanov)

Consider a family f_{λ} : $(0,1) \rightarrow (0,1)$ of Pomeau-Manneville type maps with slow decay of correlations given by

$$f_\lambda(x) = egin{cases} x(1+2^\lambda x^\lambda) & \textit{if } x \in (0,1/2) \ 2x-1 & \textit{if } x \in (1/2,1) \end{cases}$$

where $\lambda \in [0, 1)$. Then each f_{λ} admits a unique a.c. invariant probability measure μ_{λ} and for any $\varphi \in C^1[0, 1]$ the map $\lambda \mapsto \int \varphi d\mu_{\lambda}$ is continuously differentiable on (0, 1).

0.5

0.5

However, explicit quontitative estimates can be useful for constructing (contr)examples.

Introduction	Result	Approach	The End
000000	•0000	00000	
Aim			

Our goal

Given a family f_{λ} of transformations of a compact manifold M, admitting a unique SRB measure μ_{λ} , provide an efficient algorithm for numerical computation of the power series coefficients A and B in expansion

$$\int g d\mu_{\lambda} = \int g d\mu_{0} + A\lambda + B\lambda^{2} + o(\lambda^{2})$$

for any test function $g \in C^{\omega}(M)$, whenever the linear response holds.

We will consider two cases

- (1) Expanding maps of the unit circle \mathbb{T}^1 ;
- 2 Anosov diffeomorphisms of the torus \mathbb{T}^2 .

Introduction	Result	Approach	The End
000000	00000	00000	00

Main Result

Theorem

Let f_{λ} be a C^2 family of expanding maps of the circle, (or Anosov diffeomorphisms of a torus) let μ_{λ} be the a.c. invariant probability measure and let g be a C^{ω} observable. Then

- **1** The partial derivatives $A = \sum_{k=0}^{\infty} a_k$ and $B = \sum_{k=1}^{\infty} b_k$ may be computed as sums absolutely convergent series;
- 2 The k'th terms of both series are defined in terms of periodic points of period ≤ k;
- 3 The partial sums $A_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k$ and $B_n \stackrel{\text{def}}{=} \sum_{k=1}^n b_k$ of the first n terms converge superexponentially to A and B, respectively.

Introduction	Result ○○●○○	Approach 00000	The End
-	 C 1	/1)	

Expanding maps of the circle (I)

 $f_{\lambda}(x) = 2x + \lambda \sin(2\pi x) \mod 1$, where $\lambda \in (-1/2\pi, 1/2\pi)$ An observable $g = \cos(2\pi x)$.

Introduction	Result ○○○●○	Approach 00000	The End
	 	()	

Expanding maps of the circle (II)

The method suggested gives both (rather scary) analytic formulae for A and B and numerical approximations.

n	A_n	B _n	
4	20.2762085	-1256.3094	
5	-1.5659504	113.473941	$\partial \int du $
6	0.0757309	1.12546977	$\int \frac{\partial \lambda}{\partial \lambda} \int \frac{\partial \mu}{\partial \lambda} = \lim_{n \to \infty} A_n = 0;$
7	-0.0018976	7.84724909	
8	$2.503 \cdot 10^{-5}$	7.65567051	
9	$-1.73 \cdot 10^{-7}$	7.65805840	$\frac{\partial^2}{\partial du} \int du = \lim_{n \to \infty} B = 7.66$
10	$6.24 \cdot 10^{-10}$	7.65805063	$\left[\frac{\partial \lambda^2}{\partial \lambda^2}\right] g u \mu_{\lambda} = \lim_{n \to \infty} D_n = 1.00$
11	$-1.15 \cdot 10^{-12}$	7.65805056	
12	$1.42 \cdot 10^{-13}$	7.65805056]

Introduction	Result	Approach	The End
000000	00000	00000	00

Anosov diffeomorphisms of the torus

$$f_{\lambda} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \lambda \begin{pmatrix} \cos(2\pi x) \\ 0 \end{pmatrix} \mod 1, \lambda \in \left(-\frac{1}{2\pi}, \frac{1}{2\pi}\right)$$

An observable $g(x, y) = \sin(19\sin(2\pi x) + 41\cos(2\pi y)).$

Definition

Let $F_{\lambda}(x) \stackrel{\text{def}}{=} -\log |f_{\lambda}'(x)|$ be a C^{ω} function. The *pressure* function is $P(F_{\lambda}) \stackrel{\text{def}}{=} \sup_{m \in \mathcal{M}} \{h(m) + \int F_{\lambda} dm\}$ where \mathcal{M} is the set of f_{λ} -invariant probability measures h(m) is the entropy. Supremum is achieved at SRB measure μ_{λ} .

For any $g \in C^{\omega}$, the pressure $P(F_{\lambda} + tg)$ is analytic and

$$\frac{\partial P(F_{\lambda} + tg)}{\partial t}\Big|_{t=0} = \int g d\mu_{\lambda}$$

troduction	Result	Approach	The End
00000	00000	0000	00

Transfer operator

Definition

We let *B* be the Banach space of complex-valued bounded analytic functions on $U \supset \mathbb{T}^1$ with supremum norm $\|\cdot\|_{\infty}$. To a family of maps $F_{\lambda} \in B$ and a test function $g \in B$ we associate a family of transfer operators $\mathcal{L}_{u,\lambda,g} : B \to B$:

$$(\mathcal{L}_{u,\lambda,g}f)(x) = \sum_{k} e^{(F_{\lambda} - ug)(T_{k}x)} f(T_{k}x), \quad u \in \mathbb{R}, \ \lambda \in (-\varepsilon, \varepsilon);$$

where $T_k : U \to U$ are C^{ω} contractions $\overline{T_k(U)} \subset U$, such that $F_{\lambda} \circ T_k$ is the identity map.

Introduction	Result	Approach	The End	
000000		00000	00000	00
D .				

Determinant

Theorem (Grothendieck-Ruelle)

The transfer operator is nuclear. Its determinant is an entire function in z. d: $\mathbb{C} \times \mathbb{R} \times (-\varepsilon, \varepsilon) \times C^{\omega}(U) \to \mathbb{C}$ is given by $d(z, u, \lambda, g) \stackrel{\text{def}}{=} \det(I - z\mathcal{L}_{u,\lambda,g}) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \operatorname{trace}(\mathcal{L}_{u,\lambda}^n)\right)$

Lemma (Ruelle)

$$d(z, u, \lambda, g) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{T_{\lambda}^n x_{\lambda} = x_{\lambda}} \frac{\exp(-ug^n(x_{\lambda}))}{|(T_{\lambda}^n)'(x_{\lambda})| - 1},\right)$$

where $g^n(x_{\lambda}) = \sum_{k=0}^{n-1} g(T_{\lambda}^k x_{\lambda}).$

Introduction	Result	Approach	The End
000000	00000	00000	00

Magic of theromodynamics

Lemma (Ruelle)

For any $z \in \mathbb{C}$, $\lambda \in (-\varepsilon, \varepsilon)$, $u \in \mathbb{R}$, and $g \in C^{\omega}(U)$ we have that:

- 1 $d(z, u, \lambda, g)$ converges to an analytic function for $|z| < e^{-P(F_{\lambda} ug)};$
- 2 d(z, u, λ, g) has an analytic extension in z ∈ C to the entire complex plane C;
- 3 $z \mapsto d(z, u, \lambda, g)$ has a simple zero at $z(u, \lambda, g) = e^{-P(F_{\lambda} ug)}$.

Lemma (Grothendieck-Ruelle)

The powerseries coefficients of the determinant decrease superexponentially and uniformly in $u \in \mathbb{R}$ and $\lambda \in (-\varepsilon, \varepsilon)$.

Introduction	Result	Approach	The End
000000	00000	00000	00

Coefficients of the power series

$$d(z, u, \lambda, g) = 1 + \sum_{n=1}^{\infty} a_n(u, \lambda, g) z^n$$

Using the method presented, an 8 years old (dob March 2007) coffee-fed laptop can compute (in about 2 minutes)...

The plot in logarithmic scale of sums of coefficients $|a_n|$ (dark blue) and partial derivatives $\left|\frac{\partial a_n}{\partial u}\right|$ (blue), $\left|\frac{\partial a_n}{\partial \lambda}\right|$ (light blue), $\left|\frac{\partial^2 a_n}{\partial u \partial \lambda}\right|$ (green), $\left|\frac{\partial^2 a_n}{\partial \lambda^2}\right|$ (yellow), and $\left|\frac{\partial^2 a_n}{\partial u \partial \lambda}\right|$ (red) evaluated at $\lambda = 0$, u = 0.

Introduction	Result	Approach	The End
000000	00000	00000	•0

Sometimes, linear response brakes down, but...

Pamela May as the Princess Aurora in Sleeping Beauty at the Royal Opera House in Covent Garden, 1960s.

Introduction	Result	Approach	The End ○●
D (

 V. Baladi and M. Todd. Linear response for intermittent maps. arXiv:1508.02700.

References

- A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, *Mem. Amer. Math. Soc.*, 16 (1955), 1–140.
- A. Korepanov. Linear response for intermittent maps with summable and nonsummable decay of correlations. arXiv:1508.06571.
- D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231–242.
- D. Ruelle. Differentiation of SRB states, Comm. Math. Phys. 187 (1997), 227–241.
- L.-S. Young. What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 108 (2002), no. 5-6, 733-754.