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Motivation

Figure: Initially, I learnt about the problem from the ICM(2014)
talk by prof. Viviane Baladi, “Linear Response or Else”. It was
written on transparences and presented in a dark room, so the
speaker appeared like a ghost.
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Physical Settings (Ruelle)

Linear response theory deals with the way
a physical system reacts to a small change
in the applied forces or the control parame-
ters. The system starts in an equilibrium or
a steady state ρ, and is subjected to a small
perturbation x , which may depend on time.
In first approximation, the change ∆ρ of ρ is
assumed to be linear in the perturbation x .

Figure: two great interpreters: IHES
prof. David Ruelle and Georgia Tech
prof. Predrag Cvitanović.
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Mathematical Settings (Baladi)

a one-paramter family Tλ of diffeomorphisms of a
compact manifold M , continuously depending on the
parameter λ;

a large set Λ of paramter values, with accumulation point
at 0, such that for any λ ∈ Λ the transformation Tλ

admits a unique SRB measure µλ;

Question

How smooth is the map λ→ µλ?

Definition (Linear Response)

The dynamical system (T0,M , µ0) has linear response, if the
map λ→

∫
gdµλ is differentiable for any g ∈ C 1(M).
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The invariant measure

Definition (Sinai-Ruelle-Bowen Measures)

Let f be a C 2 diffeomorphism of a compact manifold M with
an Axiom A attractor S . The SRB measure is a unique
f -invariant Borel probability measure µ on S such that

1 µ gives absolutely continuous conditional measures on
unstable manifolds;

2 the metric entropy hµ(f ) satisfies∫
| det(Df |Eu)|dµ = hµ(f );

3 there is a set V ⊂ M having full Lebesgue measure such
that for every continuous observable ϕ : M → R and any

x ∈ V we have 1
n

n−1∑
k=0

ϕ(f kx)→
∫
ϕdµ.
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First result (flows)

Theorem (Ruelle, generalised by Dolgopyat later)

Let a C 3 vector field v0 + λv define an axiom A flow f t
λ on M

with an attractor Sλ, depending continuously on λ ∈ (−ε, ε).
Then ∃! SRB measure µλ with suppµλ = Sλ. Furthermore

1 for any C 2 function g : M → R the map λ 7→
∫

gdµλ is
C 1 on (−ε, ε);

2 ∂
∂λ

∫
gdµλ = limω→+0 κλ(ω), where

κλ(ω) =

∫ ∞
0

e iωt

∫
v(x) · ∇x(g ◦ f t

λ )µλ(dx)

3 The function κλ(ω) is holomorphic for =ω > 0, extends
meromorphically to =ω > −a and has no pole at 0.
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Recent result

Theorem (Baladi-Todd,Korepanov)

Consider a family fλ : (0, 1)→ (0, 1) of Pomeau-Manneville
type maps with slow decay of correlations given by

fλ(x) =

{
x(1 + 2λxλ) if x ∈ (0, 1/2)

2x − 1 if x ∈ (1/2, 1)

0 0.5 1
0

0.5

1

where λ ∈ [0, 1). Then each fλ admits a unique a.c. invariant
probability measure µλ and for any ϕ ∈ C 1[0, 1] the map
λ 7→

∫
ϕdµλ is continuously differentiable on (0, 1).

However, explicit quontitative estimates can be useful for
constructing (contr)examples.
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Aim

Our goal

Given a family fλ of transformations of a compact manifold M ,
admitting a unique SRB measure µλ, provide an efficient
algorithm for numerical computation of the power series
coefficients A and B in expansion∫

gdµλ =

∫
gdµ0 + Aλ + Bλ2 + o(λ2)

for any test function g ∈ Cω(M), whenever the linear response
holds.

We will consider two cases
1 Expanding maps of the unit circle T1;
2 Anosov diffeomorphisms of the torus T2.
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Main Result

Theorem

Let fλ be a C 2 family of expanding maps of the circle, (or
Anosov diffeomorphisms of a torus) let µλ be the a.c. invariant
probability measure and let g be a Cω observable. Then

1 The partial derivatives A =
∞∑
k=0

ak and B =
∞∑
k=1

bk may be

computed as sums absolutely convergent series;

2 The k’th terms of both series are defined in terms of
periodic points of period ≤ k;

3 The partial sums An
def
=

n∑
k=1

ak and Bn
def
=

n∑
k=1

bk of the

first n terms converge superexponentialy to A and B,
respectively.
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Expanding maps of the circle (I)

fλ(x) = 2x + λ sin(2πx) mod 1, where λ ∈ (−1/2π, 1/2π)
An observable g = cos(2πx).

0 0.5 1
0

0.5
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0 0.5 1
0
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f0 f0.1
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Expanding maps of the circle (II)

The method suggested gives both (rather scary) analytic
formulae for A and B and numerical approximations.

n An Bn

4 20.2762085 −1256.3094
5 −1.5659504 113.473941
6 0.0757309 1.12546977
7 −0.0018976 7.84724909
8 2.503 · 10−5 7.65567051
9 −1.73 · 10−7 7.65805840

10 6.24 · 10−10 7.65805063
11 −1.15 · 10−12 7.65805056
12 1.42 · 10−13 7.65805056

∂

∂λ

∫
gdµλ= lim

n→∞
An =0;

∂2

∂λ2

∫
gdµλ= lim

n→∞
Bn =7.66...
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Anosov diffeomorphisms of the torus

fλ

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
+λ

(
cos(2πx)

0

)
mod 1, λ ∈

(
− 1

2π
,

1

2π

)
An observable g(x , y) = sin(19 sin(2πx) + 41 cos(2πy)).

D ⊂ T2 f0(D) f0.1(D)

A =
∂

∂λ

∫
gdµλ= lim

n→∞
An =0.002790864776 . . .
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Thermodynamic formalism

Hyperbolic System

Pressure Function Transfer Operator

Determinant

Definition

Let Fλ(x)
def
=−log |f ′λ(x)| be a Cω function. The pressure

function is P(Fλ)
def
= supm∈M

{
h(m)+

∫
Fλdm

}
where M is the

set of fλ-invariant probability measures h(m) is the entropy.
Supremum is achieved at SRB measure µλ.

For any g ∈ Cω, the pressure P(Fλ + tg) is analytic and

∂P(Fλ + tg)

∂t

∣∣∣
t=0

=

∫
gdµλ
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Transfer operator

Definition

We let B be the Banach space of complex-valued bounded
analytic functions on U ⊃ T1 with supremum norm ‖ · ‖∞. To
a family of maps Fλ ∈ B and a test function g ∈ B we
associate a family of transfer operators Lu,λ,g : B → B :

(Lu,λ,g f )(x) =
∑
k

e(Fλ−ug)(Tkx)f (Tkx), u ∈ R, λ ∈ (−ε, ε);

where Tk : U → U are Cω contractions Tk(U) ⊂ U , such that
Fλ ◦ Tk is the identity map.
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Determinant

Theorem (Grothendieck–Ruelle)

The transfer operator is nuclear. Its determinant is an entire
function in z. d : C× R× (−ε, ε)× Cω(U)→ C is given by

d(z , u, λ, g)
def
= det(I − zLu,λ,g ) = exp

(
−
∞∑
n=1

zn

n
trace(Ln

u,λ)

)

Lemma (Ruelle)

d(z , u, λ, g) = exp

− ∞∑
n=1

zn

n

∑
T n
λxλ=xλ

exp(−ugn(xλ))

|(T n
λ )′(xλ)| − 1

,


where gn(xλ) =

n−1∑
k=0

g(T k
λ xλ).
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Magic of theromodynamics

Lemma (Ruelle)

For any z ∈ C, λ ∈ (−ε, ε), u ∈ R, and g ∈ Cω(U) we have
that:

1 d(z , u, λ, g) converges to an analytic function for
|z | < e−P(Fλ−ug);

2 d(z , u, λ, g) has an analytic extension in z ∈ C to the
entire complex plane C;

3 z 7→d(z ,u,λ,g) has a simple zero at z(u,λ,g)=e−P(Fλ−ug).

Lemma (Grothendieck–Ruelle)

The powerseries coefficients of the determinant decrease
superexponentially and uniformly in u ∈ R and λ ∈ (−ε, ε).
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Coefficients of the power series
d(z , u, λ, g) = 1 +

∞∑
n=1

an(u, λ, g)zn

Using the method presented, an 8 years old (dob March 2007) coffee-fed
laptop can compute (in about 2 minutes)...
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The plot in logarithmic scale of sums of coefficients |an| (dark blue) and

partial derivatives
∣∣∂an
∂u

∣∣ (blue),
∣∣∂an
∂λ

∣∣ (light blue),
∣∣ ∂2an
∂u∂λ

∣∣ (green),
∣∣∂2an
∂λ2

∣∣
(yellow), and

∣∣ ∂3an
∂u∂2λ

∣∣ (red) evaluated at λ = 0, u = 0.
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Sometimes, linear response brakes down, but...

Pamela May as the Princess Aurora in Sleeping Beauty at the
Royal Opera House in Covent Garden, 1960s.
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