Linear Response and Periodic Orbits

Polina Vytnova
joint work with Mark Pollicott

Queen Mary University of London and University of Warwick
November 2015

Mathematics is the part of physics, where experiments are cheap
V. Arnold

Motivation

Figure: Initially, I learnt about the problem from the ICM(2014) talk by prof. Viviane Baladi, "Linear Response or Else". It was written on transparences and presented in a dark room, so the speaker appeared like a ghost.

Physical Settings (Ruelle)

Linear response theory deals with the way a physical system reacts to a small change in the applied forces or the control parameters. The system starts in an equilibrium or a steady state ρ, and is subjected to a small perturbation x, which may depend on time. In first approximation, the change $\Delta \rho$ of ρ is assumed to be linear in the perturbation x.

Figure: two great interpreters: IHES prof. David Ruelle and Georgia Tech prof. Predrag Cvitanović.

Mathematical Settings (Baladi)

- a one-paramter family T_{λ} of diffeomorphisms of a compact manifold M, continuously depending on the parameter λ;
- a large set Λ of paramter values, with accumulation point at 0 , such that for any $\lambda \in \Lambda$ the transformation T_{λ} admits a unique SRB measure μ_{λ};

Question
How smooth is the map $\lambda \rightarrow \mu_{\lambda}$?

Definition (Linear Response)

The dynamical system (T_{0}, M, μ_{0}) has linear response, if the map $\lambda \rightarrow \int g d \mu_{\lambda}$ is differentiable for any $g \in C^{1}(M)$.

The invariant measure

Definition (Sinai-Ruelle-Bowen Measures)

Let f be a C^{2} diffeomorphism of a compact manifold M with an Axiom A attractor S. The $S R B$ measure is a unique f-invariant Borel probability measure μ on S such that
(1) μ gives absolutely continuous conditional measures on unstable manifolds;
(2) the metric entropy $h_{\mu}(f)$ satisfies
$\int\left|\operatorname{det}\left(\left.D f\right|_{E_{u}}\right)\right| d \mu=h_{\mu}(f)$;
(3) there is a set $V \subset M$ having full Lebesgue measure such that for every continuous observable $\varphi: M \rightarrow \mathbb{R}$ and any $x \in V$ we have $\frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k} x\right) \rightarrow \int \varphi d \mu$.

First result (flows)

Theorem (Ruelle, generalised by Dolgopyat later)
Let a C^{3} vector field $v_{0}+\lambda v$ define an axiom A flow f_{λ}^{t} on M with an attractor S_{λ}, depending continuously on $\lambda \in(-\varepsilon, \varepsilon)$. Then \exists ! SRB measure μ_{λ} with $\operatorname{supp} \mu_{\lambda}=S_{\lambda}$. Furthermore
(1) for any C^{2} function $g: M \rightarrow \mathbb{R}$ the map $\lambda \mapsto \int g d \mu_{\lambda}$ is C^{1} on ($-\varepsilon, \varepsilon$);
(2) $\frac{\partial}{\partial \lambda} \int g d \mu_{\lambda}=\lim _{\omega \rightarrow+0} \kappa_{\lambda}(\omega)$, where

$$
\kappa_{\lambda}(\omega)=\int_{0}^{\infty} e^{i \omega t} \int v(x) \cdot \nabla_{x}\left(g \circ f_{\lambda}^{t}\right) \mu_{\lambda}(d x)
$$

(3) The function $\kappa_{\lambda}(\omega)$ is holomorphic for $\Im \omega>0$, extends meromorphically to $\Im \omega>-a$ and has no pole at 0 .

Recent result

Theorem (Baladi-Todd,Korepanov)

Consider a family $f_{\lambda}:(0,1) \rightarrow(0,1)$ of Pomeau-Manneville type maps with slow decay of correlations given by

$$
f_{\lambda}(x)= \begin{cases}x\left(1+2^{\lambda} x^{\lambda}\right) & \text { if } x \in(0,1 / 2) \\ 2 x-1 & \text { if } x \in(1 / 2,1)\end{cases}
$$

where $\lambda \in[0,1)$. Then each f_{λ} admits a unique a.c. invariant probability measure μ_{λ} and for any $\varphi \in C^{1}[0,1]$ the map $\lambda \mapsto \int \varphi d \mu_{\lambda}$ is continuously differentiable on $(0,1)$.

However, explicit quontitative estimates can be useful for constructing (contr)examples.

Aim

Our goal

Given a family f_{λ} of transformations of a compact manifold M, admitting a unique SRB measure μ_{λ}, provide an efficient algorithm for numerical computation of the power series coefficients A and B in expansion

$$
\int g d \mu_{\lambda}=\int g d \mu_{0}+A \lambda+B \lambda^{2}+o\left(\lambda^{2}\right)
$$

for any test function $g \in C^{\omega}(M)$, whenever the linear response holds.

We will consider two cases
(1) Expanding maps of the unit circle \mathbb{T}^{1};
(2) Anosov diffeomorphisms of the torus \mathbb{T}^{2}.

Main Result

Theorem

Let f_{λ} be a C^{2} family of expanding maps of the circle, (or Anosov diffeomorphisms of a torus) let μ_{λ} be the a.c. invariant probability measure and let g be a C^{ω} observable. Then
(1) The partial derivatives $A=\sum_{k=0}^{\infty} a_{k}$ and $B=\sum_{k=1}^{\infty} b_{k}$ may be computed as sums absolutely convergent series;
(2) The k 'th terms of both series are defined in terms of periodic points of period $\leq k$;
(3) The partial sums $A_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{k}$ and $B_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} b_{k}$ of the first n terms converge superexponentialy to A and B, respectively.

Expanding maps of the circle (I)

$$
f_{\lambda}(x)=2 x+\lambda \sin (2 \pi x) \bmod 1, \text { where } \lambda \in(-1 / 2 \pi, 1 / 2 \pi)
$$

An observable $g=\cos (2 \pi x)$.

Expanding maps of the circle (II)

The method suggested gives both (rather scary) analytic formulae for A and B and numerical approximations.

n	A_{n}	B_{n}
4	20.2762085	-1256.3094
5	-1.5659504	113.473941
6	0.0757309	1.12546977
7	-0.0018976	7.84724909
8	$2.503 \cdot 10^{-5}$	7.65567051
9	$-1.73 \cdot 10^{-7}$	7.65805840
10	$6.24 \cdot 10^{-10}$	7.65805063
11	$-1.15 \cdot 10^{-12}$	7.65805056
12	$1.42 \cdot 10^{-13}$	7.65805056

$$
\frac{\partial}{\partial \lambda} \int g d \mu_{\lambda}=\lim _{n \rightarrow \infty} A_{n}=0
$$

$$
\frac{\partial^{2}}{\partial \lambda^{2}} \int g d \mu_{\lambda}=\lim _{n \rightarrow \infty} B_{n}=7.66 \ldots
$$

Anosov diffeomorphisms of the torus

$$
f_{\lambda}\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}+\lambda\binom{\cos (2 \pi x)}{0} \bmod 1, \lambda \in\left(-\frac{1}{2 \pi}, \frac{1}{2 \pi}\right)
$$

An observable $g(x, y)=\sin (19 \sin (2 \pi x)+41 \cos (2 \pi y))$.

$D \subset \mathbb{T}^{2}$

$f_{0}(D)$

$f_{0.1}(D)$

$$
A=\frac{\partial}{\partial \lambda} \int g d \mu_{\lambda}=\lim _{n \rightarrow \infty} A_{n}=0.002790864776 \ldots
$$

Thermodynamic formalism

 Hyperbolic System

Definition

Let $F_{\lambda}(x) \stackrel{\text { def }}{=}-\log \left|f_{\lambda}^{\prime}(x)\right|$ be a C^{ω} function. The pressure function is $P\left(F_{\lambda}\right) \xlongequal{\text { def }} \sup _{m \in \mathcal{M}}\left\{h(m)+\int F_{\lambda} d m\right\}$ where \mathcal{M} is the set of f_{λ}-invariant probability measures $h(m)$ is the entropy. Supremum is achieved at SRB measure μ_{λ}.

For any $g \in C^{\omega}$, the pressure $P\left(F_{\lambda}+\operatorname{tg}\right)$ is analytic and

$$
\left.\frac{\partial P\left(F_{\lambda}+t g\right)}{\partial t}\right|_{t=0}=\int g d \mu_{\lambda}
$$

Transfer operator

Definition

We let B be the Banach space of complex-valued bounded analytic functions on $U \supset \mathbb{T}^{1}$ with supremum norm $\|\cdot\|_{\infty}$. To a family of maps $F_{\lambda} \in B$ and a test function $g \in B$ we associate a family of transfer operators $\mathcal{L}_{u, \lambda, g}: B \rightarrow B$:

$$
\left(\mathcal{L}_{u, \lambda, g} f\right)(x)=\sum_{k} e^{\left(F_{\lambda}-u g\right)\left(T_{k} x\right)} f\left(T_{k} x\right), \quad u \in \mathbb{R}, \lambda \in(-\varepsilon, \varepsilon)
$$

where $T_{k}: U \rightarrow U$ are C^{ω} contractions $\overline{T_{k}(U)} \subset U$, such that $F_{\lambda} \circ T_{k}$ is the identity map.

Determinant

Theorem (Grothendieck-Ruelle)

The transfer operator is nuclear. Its determinant is an entire function in z. $d: \mathbb{C} \times \mathbb{R} \times(-\varepsilon, \varepsilon) \times C^{\omega}(U) \rightarrow \mathbb{C}$ is given by $d(z, u, \lambda, g) \stackrel{\text { def }}{=} \operatorname{det}\left(I-z \mathcal{L}_{u, \lambda, g}\right)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \operatorname{trace}\left(\mathcal{L}_{u, \lambda}^{n}\right)\right)$

Lemma (Ruelle)

$$
d(z, u, \lambda, g)=\exp \left(-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{T_{\lambda}^{n} x_{\lambda}=x_{\lambda}} \frac{\exp \left(-u g^{n}\left(x_{\lambda}\right)\right)}{\left|\left(T_{\lambda}^{n}\right)^{\prime}\left(x_{\lambda}\right)\right|-1},\right)
$$

where $g^{n}\left(x_{\lambda}\right)=\sum_{k=0}^{n-1} g\left(T_{\lambda}^{k} x_{\lambda}\right)$.

Magic of theromodynamics

Lemma (Ruelle)
For any $z \in \mathbb{C}, \lambda \in(-\varepsilon, \varepsilon), u \in \mathbb{R}$, and $g \in C^{\omega}(U)$ we have that:
(1) $d(z, u, \lambda, g)$ converges to an analytic function for $|z|<e^{-P\left(F_{\lambda}-u g\right)}$;
(2) $d(z, u, \lambda, g)$ has an analytic extension in $z \in \mathbb{C}$ to the entire complex plane \mathbb{C};
(3) $z \mapsto d(z, u, \lambda, g)$ has a simple zero at $z(u, \lambda, g)=e^{-P\left(F_{\lambda}-u g\right)}$.

Lemma (Grothendieck-Ruelle)
The powerseries coefficients of the determinant decrease superexponentially and uniformly in $u \in \mathbb{R}$ and $\lambda \in(-\varepsilon, \varepsilon)$.

Coefficients of the power series

$$
d(z, u, \lambda, g)=1+\sum_{n=1}^{\infty} a_{n}(u, \lambda, g) z^{n}
$$

Using the method presented, an 8 years old (dob March 2007) coffee-fed laptop can compute (in about 2 minutes)...

The plot in logarithmic scale of sums of coefficients $\left|a_{n}\right|$ (dark blue) and partial derivatives $\left|\frac{\partial a_{n}}{\partial u}\right|$ (blue), $\left|\frac{\partial a_{n}}{\partial \lambda}\right|$ (light blue), $\left|\frac{\partial^{2} a_{n}}{\partial u \partial \lambda}\right|$ (green), $\left|\frac{\partial^{2} a_{n}}{\partial \lambda^{2}}\right|$ (yellow), and $\left|\frac{\partial^{3} a_{n}}{\partial u \partial^{2} \lambda}\right|$ (red) evaluated at $\lambda=0, u=0$.

Sometimes, linear response brakes down, but...

Pamela May as the Princess Aurora in Sleeping Beauty at the Royal Opera House in Covent Garden, 1960s.

References

- V. Baladi and M. Todd. Linear response for intermittent maps. arXiv:1508.02700.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16 (1955), 1-140.
- A. Korepanov. Linear response for intermittent maps with summable and nonsummable decay of correlations. arXiv:1508.06571.
- D. Ruelle, Zeta-functions for expanding maps and Anosov flows, Invent. Math., 34 (1976), 231-242.
- D. Ruelle. Differentiation of SRB states, Comm. Math. Phys. 187 (1997), 227-241.
- L.-S. Young. What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 108 (2002), no. 5-6, 733-754.

