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Mathematics is the part of physics, where experiments are cheap
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The kinematic fast dynamo problem

Ignoring the Lorenz force, the system of magnetohydrodynamics may be reduced to a
Navier-Stokes type equation.

The kinematic dynamo equations
∂B

∂t
= (B · ∇)v − (v · ∇)B + ε∆B;

∇ · v = ∇ · B = 0.

v is the (known) velocity field of a fluid filling a certain compact domain M;

B is the (unknown) magnetic field;

ε is a dimensionless parameter reflecting the magnetic diffusion through the
boundary of M.

Problem (Main fast dynamo problem)

Does there exist a divergence-free velocity field v in a bounded domain M tangent to
the boundary, such that the energy of the magnetic field B(t) grows exponentially in
time for some initial field B0 in the presence of small diffusion (ε > 0)?
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From flows to diffeomorphisms

1 Dynamo problem is a Cauchy problem (for a Navier-Stokes type equation).

2 A case of special interest are stationary velocity fields in three-dimensional
domains, diffeomorphic to R3.

The problem has a discrete version.

Lemma

The exponent of the Laplacian is the Weierstrass transform.

(exp(ε∆)B)(z) = (WεB)(z)
def
=

∫
Rd

1

(
√

2πε)d
exp
(
−
|z − t|2

2ε2

)
B(t)dt

The Lemma gives a natural discretization of the dynamo equation, where the action of
piecewise diffeomorphisms is used instead of the transport by a flow

Fε : B 7→ (Wεg∗)B, g is a piecewise diffeomorphism.

Problem (Discrete version)

Does there exist a volume preserving diffeomorphism g : M → M, such that the energy
of the magnetic field B grows exponentially with number of iterations of the map Fε
for some initial field B0 in the presence of small diffusion (ε > 0)?
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Dynamo Theorems

Theorem (The case ε = 0 is easy)

On an arbitrary n-dimensional manifold any divergence-free vector field with a
stagnation point with a unique positive eigenvalue is a non-dissipative kinematic fast
dynamo.

Theorem (Dissipative dynamos on surfaces)

Let g : M → M be an area-preserving diffeomorphism of the two-dimensional compact
Riemannian manifold M. Then g is a dissipative fast dynamo if and only if the
induced linear operator g∗1 on the first homology group has an eigenvector with
eigenvalue |λ| > 1. The dynamo increment is independent of ε:

lim
n→∞

1

n
ln ‖Bn‖ = ln |λ|

for almost any initial vector field B0. (Here Bn+1 = exp(ε∆)g∗Bn. )

Theorem (Antidynamo theorem)

A transitionally, helically, or axially symmetric magnetic field in R3 cannot be
maintained by a dissipative dynamo action.
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Integral operator viewpoint

In order to solve the problem, we should

1 provide a manifold M;

2 specify an area-preserving diffeomorphism g : M → M;

3 give an initial magnetic field B0 on M.

In particular,

1 Anosov diffeomorphisms will do, but don’t exist in R3

2 growth rate estimations is a question of independent interest

Is there any general theory to help us?

We have an integral operator

Fε : B 7→
∫

M

1

(
√

2πε)d
exp
( |g−1x − y |d

2ε2

)
dg−1(g(x))B(y)dy ,

on bounded analytic fields on M, which is nuclear, if the kernel is L2 and has a weak
singularity on diagonal. The kernel

Gε(x , y) =
1

(
√

2πε)d
exp
( |g−1x − y |d

2ε2

)
dg−1(g(x))
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Fredholm determinant and zeta function

Fredholm determinant

det(1− zFε) = exp
( ∞∑

k=1

−
zn

n
TrF n

ε

)
The trace of the integral operator

TrF n
ε =

∫
M
Tr

n∏
j=1

dg−1(g(xj ))Tr

n−1∏
j=1

wε(g−1xj − xj+1)wε(g−1xn − x1)dx1 . . . dxn

The limit operator, corresponding to ε = 0 is acting on the space of bounded analytic
vector fields on M and satisfies hypotheses of Ruelle – Grothendieck theory; we deduce

1 Fredholm determinant det(1− zF0) is an entire function;

2 there exist a power series expansion det(1− zF0) = 1 +
∞∑

j=1
aj z

n;

3 the coefficients aj can be calculated from periodic orbits of g ;

4 zeros of the truncated expansion converge to the largest eigenvalue
superexponentially fast.
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Examples

We can use the method to analyse some models.

1 stretch-fold map with shear. Let’s identify R2 with C and consider

g(x , y) =

{
(2x , 1

2
y), if 0 < x < 1

2
,

(2− 2x , 1− 1
2

y), if 1
2
< x < 1;

B 7→ exp(iαy)g∗B;

(this model is very popular in physics literature); and get the eigenvalue
2 cos(α/2) exp(iα/2).

2 CAT map on the two-dimensional torus with shear

B 7→
(

exp(2πik1x)
exp(2πik2y)

)
· g∗B

and get 3+
√

5
2

, the eigenvalue of the determinant of the CAT’s map.

Alas, the convergence is not uniform and there is no justification for interchanging the
limits ε→ 0 and n→∞ in the determinant approximation.

The principal reason is that multipliers of periodic orbits don’t keep data about
induced action on vector fields. Technically, smooth bounded vector fields in R3 don’t
form a Banach space, and we can’t use zeta functions.
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The provisional flow

Figure: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red). The labels
S1 and S2 mark periodic saddle points. τ1,2,3,4 stand for manifolds equivalent to cylinders.
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The integral operator

We consider a steady vector field and ignore the diffusion, in order to get an operator
acting on Banach space.

∂B

∂t
= (B · ∇)v − (v · ∇)B

∇ · v = ∇ · B = 0.

Let νt be the fluid flow defined by v , and let V (x , t) be the trajectory of x , that we
consider as a map of the flow into itself.

Bi (z, t) =
∑

j

∂νt
i

∂xj

∣∣∣
y

Bj (y , 0) =

∫
M

∑
j

δ(y − ν−t x)
∂νt

i

∂xj

∣∣∣
y

Bj (y , 0)dy

This is an integral operator with the kernel

Gij (x , y , t) = δ(y − ν−t x)
∂νt

i

∂xj

∣∣∣
y

Using chaos theory of Cvitanovic, one can calculate the trace of G from periodic
orbits of the flow νt ;
In the case of real analytic hyperbolic flow, Fredholm determinant is an entire
function;
The leading eigenvalue can be calculated from the power series expansion.
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Trace formula by Cvitanovic

By definition,

TrG(t) =

∫
M

G(x , x , t)dx =

∫
M
δ(x − ν−t x)

∂νt
i

∂xj

Let `(γ) be the length of the periodic orbit γ; and let Pγ be the differential of the
Poincare map at the intersection with the periodic orbit. Then

TrG(t) =
∑
γ

`(γ)
∞∑

s=1

TrPs
γ

| det(1− P−s
γ )|

δ(t − s`(γ))

Using limit cycles data, we can

calculate the leading eigenvalue of the Fredholm determinant using zeta function
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