Estimating fast dynamo growth rate using zeta functions

Polina Vytnova

Queen Mary University of London

March 2015

Mathematics is the part of physics, where experiments are cheap V. Arnold

The kinematic fast dynamo problem

Ignoring the Lorenz force, the system of magnetohydrodynamics may be reduced to a Navier-Stokes type equation.

The kinematic dynamo equations

$$\int \frac{\partial B}{\partial t} = (B \cdot \nabla) v - (v \cdot \nabla) B + \varepsilon \Delta B;$$

$$\nabla \nabla \cdot v = \nabla \cdot B = 0.$$

- v is the (known) velocity field of a fluid filling a certain compact domain M;
- B is the (unknown) magnetic field;
- ε is a dimensionless parameter reflecting the magnetic diffusion through the boundary of *M*.

Problem (Main fast dynamo problem)

Does there exist a divergence-free velocity field v in a bounded domain M tangent to the boundary, such that the energy of the magnetic field B(t) grows exponentially in time for some initial field B_0 in the presence of small diffusion ($\varepsilon > 0$)?

From flows to diffeomorphisms

- Dynamo problem is a Cauchy problem (for a Navier-Stokes type equation).
- 2 A case of special interest are stationary velocity fields in three-dimensional domains, diffeomorphic to \mathbb{R}^3 .

The problem has a discrete version.

Lemma

The exponent of the Laplacian is the Weierstrass transform.

$$(\exp(\varepsilon\Delta)B)(z) = (W_{\varepsilon}B)(z) \stackrel{\text{def}}{=} \int_{\mathbb{R}^d} \frac{1}{(\sqrt{2\pi}\varepsilon)^d} \exp\left(-\frac{|z-t|^2}{2\varepsilon^2}\right) B(t) \mathrm{d}t$$

The Lemma gives a natural discretization of the dynamo equation, where the action of piecewise diffeomorphisms is used instead of the transport by a flow

 $F_{\varepsilon}: B \mapsto (W_{\varepsilon}g_*)B, \qquad g \text{ is a piecewise diffeomorphism.}$

Problem (Discrete version)

Does there exist a volume preserving diffeomorphism $g: \overline{M} \to \overline{M}$, such that the energy of the magnetic field B grows exponentially with number of iterations of the map F_{ε} for some initial field B_0 in the presence of small diffusion ($\varepsilon > 0$)?

Dynamo Theorems

Theorem (The case $\varepsilon = 0$ is easy)

On an arbitrary n-dimensional manifold any divergence-free vector field with a stagnation point with a unique positive eigenvalue is a non-dissipative kinematic fast dynamo.

Theorem (Dissipative dynamos on surfaces)

Let $g: M \to M$ be an area-preserving diffeomorphism of the two-dimensional compact Riemannian manifold M. Then g is a dissipative fast dynamo if and only if the induced linear operator g_{*1} on the first homology group has an eigenvector with eigenvalue $|\lambda| > 1$. The dynamo increment is independent of ε :

 $\lim_{n\to\infty}\frac{1}{n}\ln\|B_n\|=\ln|\lambda|$

for almost any initial vector field B_0 . (Here $B_{n+1} = \exp(\varepsilon \Delta)g_*B_n$.)

Theorem (Antidynamo theorem)

A transitionally, helically, or axially symmetric magnetic field in \mathbb{R}^3 cannot be maintained by a dissipative dynamo action.

Integral operator viewpoint

In order to solve the problem, we should

(1) provide a manifold M;

2 specify an area-preserving diffeomorphism $g: \overline{M} \to \overline{M}$;

3 give an initial magnetic field B_0 on M.

In particular,

1 Anosov diffeomorphisms will do, but don't exist in \mathbb{R}^3

2 growth rate estimations is a question of independent interest

Is there any general theory to help us?

We have an integral operator

$$F_{\varepsilon} \colon B \mapsto \int_{M} \frac{1}{(\sqrt{2\pi}\varepsilon)^{d}} \exp\left(\frac{|g^{-1}x - y|^{d}}{2\varepsilon^{2}}\right) \mathrm{d}g^{-1}(g(x))B(y)\mathrm{d}y.$$

on bounded analytic fields on M, which is nuclear, if the kernel is \mathcal{L}_2 and has a weak singularity on diagonal. The kernel

$$G_{\varepsilon}(x,y) = \frac{1}{(\sqrt{2\pi}\varepsilon)^d} \exp\left(\frac{|g^{-1}x - y|^d}{2\varepsilon^2}\right) dg^{-1}(g(x))$$

Fredholm determinant and zeta function

Fredholm determinant

$$\det(1-zF_{\varepsilon}) = \exp\left(\sum_{k=1}^{\infty} -\frac{z^n}{n} \operatorname{Tr} F_{\varepsilon}^n\right)$$

The trace of the integral operator

$$\operatorname{Tr} \mathcal{F}_{\varepsilon}^{n} = \int_{\mathcal{M}} \operatorname{Tr} \prod_{j=1}^{n} \mathrm{d} g^{-1}(g(x_{j})) \operatorname{Tr} \prod_{j=1}^{n-1} w_{\varepsilon}(g^{-1}x_{j} - x_{j+1}) w_{\varepsilon}(g^{-1}x_{n} - x_{1}) \mathrm{d} x_{1} \dots \mathrm{d} x_{n}$$

The limit operator, corresponding to $\varepsilon = 0$ is acting on the space of bounded analytic vector fields on M and satisfies hypotheses of Ruelle – Grothendieck theory; we deduce

- **1** Fredholm determinant $det(1 zF_0)$ is an entire function;
- 2 there exist a power series expansion det $(1 zF_0) = 1 + \sum_{j=1}^{\infty} a_j z^n$;
- 3 the coefficients a_i can be calculated from periodic orbits of g;
- ④ zeros of the truncated expansion converge to the largest eigenvalue superexponentially fast.

Examples

We can use the method to analyse some models.

(1) stretch-fold map with shear. Let's identify \mathbb{R}^2 with $\mathbb C$ and consider

$$g(x,y) = \begin{cases} (2x,\frac{1}{2}y), & \text{if } 0 < x < \frac{1}{2}, \\ (2-2x,1-\frac{1}{2}y), & \text{if } \frac{1}{2} < x < 1; \end{cases} \qquad B \mapsto \exp(i\alpha y)g_*B;$$

(this model is very popular in physics literature); and get the eigenvalue $2\cos(\alpha/2)\exp(i\alpha/2)$.

2 CAT map on the two-dimensional torus with shear

$$B \mapsto \begin{pmatrix} \exp(2\pi i k_1 x) \\ \exp(2\pi i k_2 y) \end{pmatrix} \cdot g_* B$$

and get $\frac{3+\sqrt{5}}{2}$, the eigenvalue of the determinant of the CAT's map.

Alas, the convergence is not uniform and there is no justification for interchanging the limits $\varepsilon \to 0$ and $n \to \infty$ in the determinant approximation.

The *principal* reason is that multipliers of periodic orbits don't keep data about induced action on vector fields. *Technically*, smooth bounded vector fields in \mathbb{R}^3 don't form a Banach space, and we can't use zeta functions.

The provisional flow

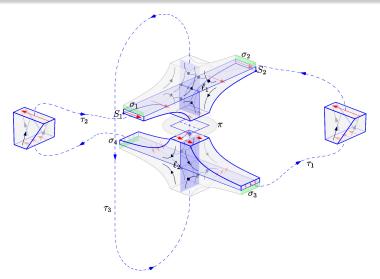


Figure: Dynamo manifold with the fluid flow (blue) and magnetic induction field (red). The labels S_1 and S_2 mark periodic saddle points. $\tau_{1,2,3,4}$ stand for manifolds equivalent to cylinders.

The integral operator

We consider a steady vector field and ignore the diffusion, in order to get an operator acting on Banach space.

$$\frac{\partial B}{\partial t} = (B \cdot \nabla)v - (v \cdot \nabla)B$$
$$\nabla \cdot v = \nabla \cdot B = 0.$$

Let ν^t be the fluid flow defined by ν , and let V(x, t) be the trajectory of x, that we consider as a map of the flow into itself.

$$B_{i}(z,t) = \sum_{j} \frac{\partial \nu_{i}^{t}}{\partial x_{j}} \Big|_{y} B_{j}(y,0) = \int_{M} \sum_{j} \delta(y - \nu^{-t}x) \frac{\partial \nu_{i}^{t}}{\partial x_{j}} \Big|_{y} B_{j}(y,0) dy$$

This is an integral operator with the kernel

$$G_{ij}(x, y, t) = \delta(y - \nu^{-t}x) \frac{\partial \nu_i^t}{\partial x_j}\Big|_y$$

- Using chaos theory of Cvitanovic, one can calculate the trace of G from periodic orbits of the flow v^t;
- In the case of real analytic hyperbolic flow, Fredholm determinant is an entire function;
- The leading eigenvalue can be calculated from the power series expansion.

Trace formula by Cvitanovic

By definition,

$$\operatorname{Tr} G(t) = \int_{M} G(x, x, t) dx = \int_{M} \delta(x - \nu^{-t} x) \frac{\partial \nu_{i}^{t}}{\partial x_{j}}$$

Let $\ell(\gamma)$ be the length of the periodic orbit γ ; and let P_{γ} be the differential of the Poincare map at the intersection with the periodic orbit. Then

$$\operatorname{Tr} G(t) = \sum_{\gamma} \ell(\gamma) \sum_{s=1}^{\infty} \frac{\operatorname{Tr} P_{\gamma}^{s}}{|\det(1 - P_{\gamma}^{-s})|} \delta(t - s\ell(\gamma))$$

Using limit cycles data, we can

calculate the leading eigenvalue of the Fredholm determinant using zeta function

References

- Arnold, V. I. and Khesin, B. A. Topological methods in hydrodynamics. Applied Mathematical Sciences, v. 125, Springer-Verlag, 1998.
- Aurell, E. and Gilbert, A. D. Fast dynamos and determinants of singular operators. Geophys. Astrophys. Fluid Dynam. 73, (1993), 5–32.
- Balmforth, N. J., Cvitanovic, P., Ierley, G. R., Spiegel, E. A., and Vattay, G. Advection of vector fields by chaotic flows. Stochastic Processes in Astrophysics, Annals New York Acad. Sci., vol. 706, (1993), 148–160.
- Vainshtein, S. I. and Zeldovich, Ya. B. Origin of magnetic fields in astrophysics. Soviet Phys. Usp. 15, (1972), 159–172.

Thank you!