
FAST DYNAMO ON THE REAL LINE

O. KOZLOVSKI & P. VYTNOVA

Abstract. In this paper we show that a piecewise expanding map on the interval,

extended to the real line by a non-expanding map satisfying some mild hypthesis does

induce a fast dynamo action on the functions on the real line in the sense that there

exist a L1 function whose norm grows exponentially under induced action. This is

the first step towards a solution of the kinematic fast dynamo problem.

1. Introduction

In this work we establish the fast dynamo theorem for the induced action on vector

fields on the unstable manifold of the Poincaré map of the provisional flow. The unsta-

ble manifold is one dimensional and the settings are the following. Vector fields on a

one-dimensional real manifold may be identified with functions R→ R; and an induced

action on vector fields on R is given by a transfer operator (f∗v)(y) =
∑

x∈f−1(y)

df(x)v(x).

Theorem 1 (Fast dynamo on R). There exist a measure-preserving piecewise-C2 trans-

formation f : R → R and an essentially bounded, absolutely integrable vector field v

such that

lim
δ→0

lim
n→∞

1

n
ln
∥∥(exp(δ∆)f∗)

nv
∥∥
L1
> 0,

The map f may be realised as an induced action on the unstable manifold by the

Poincaré map of the provisional fluid flow.

After introducing necessary tools, we deduce Theorem 1 in the Section 3 from two

technical results: the noise Lemma 3.1 and the invariant cone Theorem 5. In the

Section 4 we fix technical notation; and the last two Sections 5 and 6 are dedicated to

the proof of Theorem 5.

2. Basic constructions

In this Section we introduce objects central for our investigations: small random

perturbations of a dynamical system and a norm in the space of vector fields. We also

specify the type of cones in the space vector fields we are interested in.
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2.1. Small random perturbations. We construct a random dynamical system using

skew-products. Let X be a real manifold and let f : X → X be a transformation. We

consider its extension

f̂ : X × Rn → X f̂(x, ξ)
def
= f(x) + ξ(1). (1)

Let Σ ⊂ `∞(Rn) be a shift-invariant subset of two-sided bounded sequences of vectors

in Rn. We introduce a skew product over the Bernoulli shift

σ × f̂ : Σ×X → Σ×X (σ × f̂)(ξ, z)
def
= (σ(ξ), f̂(z, ξ(1))). (2)

The induced transformation on fibers we denote by

fξ : X → X, fξ(z)
def
= f̂(z, ξ(1)). (3)

Its iterations are given by

fkξ (z)
def
= f̂(fk−1

ξ (z), ξ(k)). (4)

Remark 1. The following identities follow from the definition of the map fξ.

fkξ = fξ(k) ◦ fξ(k−1) ◦ . . . ◦ fξ(1); (5)

f−kξ = (fkξ )−1 = f−1
ξ(1) ◦ f

−1
ξ(2) ◦ . . . ◦ f

−1
ξ(k); (6)

fn−kξ = fnξ ◦ f−kξ = f−kξ ◦ f
n
ξ =

fn−kσn(ξ), if n < k;

fn−k
σk(ξ)

, if n > k.
(7)

Definition 1. We call the map fξ a random perturbation of the map f associated to

the sequence ξ∈Σ.

2.2. Norm in the space of vector fields. Piecewise constant vector fields are proved

to be very useful to us. We define a norm in the space of essentially bounded and

absolutely integrable vector fields Φ, using partitions.

Definition 2. A norm in the space of essentially bounded and absolutely integrable

functions, associated to a partition Ω =
∞⋃
j=1

Ωj of R is given by

‖f‖Ω = max
(∑
j∈Z

2−m

|Ωj|

∫
Ωj

|f(x)|dx, 2−m/2 sup |f |
)
. (8)

The first term we refer to as the weighted L1-norm and write

‖f‖Ω,L1 : =
∑
j∈Z

2−m

|Ωj|

∫
Ωj

|f(x)|dx,

it depends, of course, on the partition chosen.
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The subspace of Φ, consisting of piecewise constant vector fields associated to the

partition Ω we denote by ΦΩ. Observe that for any step function φ =
∑
j∈Z

cjχΩj ∈ ΦΩ

we have that

‖φ‖Ω = max
(

2−m
∑
j∈Z

|cj|, 2−m/2 sup |cj|
)
. (9)

2.3. Cones in vector fields on R. We reserve a notation for a cone of radius r with

the main axis χ[−1,1] in the space ΦΩ of piecewise constant functions, associated to a

partition Ω:

Cone (r,Ω)
def
=
{
η = dχ[−1,1] + ϕ | ϕ =

∑
j∈Z

cjχΩj ;
Nr∑
j=Nl

cj = 0; ‖ϕ‖Ω ≤ dr
}
. (10)

We extend the cone Cone (r,Ω) to include general functions from the main space:

Ĉone (r, ε,Ω)
def
=
{
f = η + g, | η ∈ Cone (r,Ω) , ‖g‖Ω ≤ ε‖η‖Ω

}
. (11)

We say that the cone Ĉone (r1, ε1,Ω
1) is smaller than the cone Ĉone (r2, ε2,Ω

2) and

write Ĉone (r1, ε1,Ω
1) � Ĉone (r2, ε2,Ω

2), if r1 > r2 and ε1 > ε2; we do not assume

here that Ĉone (r1, ε1,Ω
1) ∩ Ĉone (r2, ε2,Ω

2) 6= ∅.

3. Fast dynamo theorem in dimension one

In this Section we give a proof of our main result, Theorem 1. The argument has

three steps. The first step is the noise Lemma 3.1, which suggests to replace the

operator (exp(δ∆)f∗)
n in our considerations with the operator exp(δ∆)fnt∗ for some

sequence t. The second step is to choose a large m� 1 and to construct explicitly an

invariant cone for the operator exp( δ
2m

∆)fmt∗ exp( δ
2m

∆) with t ∈ `∞(R), ‖t‖ ≤ δ. The

third step is to deduce the fast dynamo theorem from the existence of an invariant

cone.

An instant proof of the noise Lemma 3.1 is given in this Subsection. The invariant

cone Theorem 5 for a specific map is proved in the Section 6 after the preparatory

Section 5.

We begin with a simple observation that the exponent of the Laplacian operator1, is

the convolution with the Gaussian kernel, in particular

exp(δ∆)v = wδ ∗ v, where wδ(x) =
1√
2πδ

exp
(
− x2

2δ2

)
.

1∆: v → d2v in the case of the real line
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The latter operator is also known as the Weiertstrass transform Wδ(v)
def
= (wδ ∗ v); this

notation we use throughout.

The following statement is generally known, but we give a proof for completeness.

Lemma 3.1 (Noise Lemma). For any map f : R→ R and for any function v we have

W δ
2
f∗(Wδf∗)

m−1v(x) =

∫
Rm−1

wδ(t1)wδ(t2) . . . wδ(tm−1)(W δ
2
fm0t∗v)(x)dt1dt2 . . . dtm−1,

(12)

where 0t = (0, t1, t2, . . . , tm−1) ∈ Rm.

Proof. Observe that f−1(x− t) = f−1
t (x), because ft(x) = f(x)+ t. By straightforward

calculation,

W δ
2
f∗(Wδf∗)

m−1v(x) = W δ
2
f∗(Wδf∗)

m−2Wδf∗v(x) =

= W δ
2
f∗(Wδf∗)

m−2

∫
R
wδ(t)(f∗v)(x− t)dt =

= W δ
2
f∗(Wδf∗)

m−2

∫
R
wδ(t1)(ft1∗v)(x)dt1 = . . . =

= W δ
2

∫
Rm−1

wδ(t1) . . . wδ(tm−1)(f∗ft1∗ . . . ftm−1∗v)(x)dt1 . . . dtm−1 =

=

∫
Rm−1

wδ(t1) . . . wδ(tm−1)(W δ
2
fm0t∗v)(x)dt1 . . . dtm−1.

�

Let s2 ≤ 2 ≤ s1, be two real numbers such that log s1
s2

= κ � 1; and let δ = 2−mα

be a small real number with 15
16
≤ α < 1. Consider the map

`(x) =


s1x+ s1 − 1, if − 1 < x < 2

s1
− 1;

s2x+ 1− s2, if 2
s1
− 1 < x < 1;

−x, otherwise;

(13)

and define its extension ̂̀: R2 → R by ̂̀(x, y) = `(x) + y. We then associate a small

perturbation `mξ to any sequence ξ ∈ `∞(R) and ‖ξ‖∞ ≤ δ.

The existence of an invariant cone for the operator W δ
2m
`mξ∗W δ

2m
is established in the

end of Section 6 in the following

Theorem 5. (Invariant cone.) For any sequence ξ ∈ `∞(R) with ‖ξ‖ ≤ δ there exists

an m � 1, a partition Ω(m), and four numbers r2(m) � r1(m); ε2(m) � ε1(m) � 1

— 4 —



O. KOZLOVSKI & P. VYTNOVA

such that

W δ
2m
`mξ∗W δ

2m
: Ĉone (r1, ε1,Ω)→ Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω) . (106)

∀f ∈ Ĉone (r1, ε1,Ω): ‖W δ
2m
`mξ∗W δ

2m
f‖Ω ≥ 2m−2‖f‖Ω. (107)

We choose δ = 2−mα, the partition Ωm =
⋃
j

[
2−mj, 2−m(j+1)

]
, and fix four dimension

parameters of two cones r1 =
δsm2

4mNδ
, r2 = δ

1
64 , ε1 = δ

1
32 and ε2 = δ

1
24 such that the

Theorem holds true.

Lemma 3.2. In the notations introduced above, for any f ∈ Ĉone (r1, ε1,Ωm)∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)(W δ
2m
`mt∗W δ

2m
f)dt1 . . . dtm−1 ∈ Ĉone

(
e2r2, e

2ε2,Ωm

)
.

(14)

Proof. By Theorem 5 we know that for any |t| ∈ [−δ, δ]m and any f ∈ Ĉone (r1, ε1,Ωm)

W δ
m
`mt∗W δ

2m
f = dχ[−1,1] + ψt + gt ∈ Ĉone (r2, ε2,Ωm) ,

where ψt ∈ ΦΩm , ‖ψt‖Ωm ≤ dr2 and ‖gt‖Ωm ≤ dε2. Observe that Ωm is independent on

t. Therefore,∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)χ[−1,1]dt1 . . . dtm−1 =

= χ[−1,1]

(∫ δ

−δ
w δ
m

(t)dt
)m−1

= χ[−1,1]

(
1− 2

m

)m−1

≥ e−2χ[−1,1], (15)

for m large enough. Since ψt ∈ ΦΩm for any t ∈ [−δ, δ]m,∫
[−δ,δ]m

w δ
m

(t1) . . . w δ
m

(tm−1)ψtdt1 . . . dtm−1 ∈ ΦΩm ,

and we calculate Ωm-norm.∥∥∥∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)ψtdt1 . . . dtm−1

∥∥∥
Ωm
≤

≤
∑
j∈Z

2−m

|Ωmj|

∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)
(∫

Ωmj

|ψt(x)|dx
)

dt1 . . . dtm−1 ≤

≤ sup
t
‖ψt‖Ωm ≤ dr2.

Similarly, ∥∥∥∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)gtdt1 . . . dtm−1

∥∥∥
Ωm
≤ dε2.
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Observe that∫ 1

−1

∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)ψt(x)dt1 . . . dtm−1dx =

=

∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)dt1 . . . dtm−1 ·
∫ 1

−1

ψt(x)dx = 0.

Summing up, for any f ∈ Ĉone (ε1, r1,Ωm)∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)W δ
2m
`mt∗W δ

2m
fdt1 . . . dtm−1 ∈ Ĉone

(
e2r2, e

2ε2,Ωm

)
.

�

Lemma 3.3. In the notations introduced above,

W δ
2m
`∗(Wδ`∗)

m−1W δ
2m

: Ĉone (r1, ε1,Ωm)→ Ĉone (r2, ε2,Ωm) ( Ĉone (r1, ε1,Ωm) ;

‖W δ
2m
`∗(Wδ`∗)

m−1W δ
2m
|
Ĉone(r1,ε1,Ωm)

‖ ≥ 2m−5

Proof. By Lemma 3.1 for any f ∈ Cone (r1,Ωm)

W δ
2m
`∗(W δ

m
`∗)

m−1W δ
2m
f =

=

∫
Rm−1

w δ
m

(t1) . . . w δ
m

(tm−1)(W δ
2m
`mt∗W δ

2m
f)dt1dt2 . . . dtm−1 =

=
(∫

Rm−1\[−δ,δ]m−1

+

∫
[−δ,δ]m−1

)m−1∏
j=1

w δ
m

(tj)(W δ
2m
`mt∗W δ

2m
f)dt. (16)

By Lemma 3.2 we know that for any f ∈ Ĉone (r1, ε1,Ωm)∫
[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)(W δ
2m
`mt∗W δ

2m
f)dt ∈ Ĉone

(
e2r2, e

2ε2,Ωm

)
.

We estimate the first term∥∥∥∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)(W δ
2m
`mt∗W δ

2m
f)dt

∥∥∥
Ωm
≤

≤
∑
j∈Z

2−m

|Ωm
3
j |

∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)
(∫

Ωm3
j

∣∣∣W δ
2m
`mt∗W δ

2m
f(x)

∣∣∣dx)dt ≤

≤ sup
t
‖W δ

2m
`mt∗W δ

2m
f‖Ωm

∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)dt.
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We shall find an upper bound for the integral:∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)dt ≤

≤ 2m
(∫ +∞

δ

w δ
m

(t)dt
)m

+ 2m

∫ +∞

δ

∫
[−δ,δ]m−1

w δ
m

(t1) . . . w δ
m

(tm−1)dt1 . . . dtm−1 ≤

≤ 2me−m
2

+ 2me−m.

We may also observe that for any f ∈ Ĉone (r1, ε1,Ωm),

sup
t
‖W δ

2m
`mt∗W δ

2m
f‖Ωm ≤

( Nδ

δsm2

)2

‖`mt∗f‖Ωm ≤

≤
( Nδ

δsm2

)2 2−m

inf |Ωmj|
‖`mt∗f‖L1 ≤

( Nδ

δsm2

)2

2m · s
m
1

sm2
‖f‖Ωm ≤

2msm1 N
2
δ

s3m
2 δ2

‖f‖Ωm .

We put the last two together and we see that

sup
t
‖W δ

2m
`mt∗W δ

2m
f‖Ωm

∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)dt ≤

≤
( Nδ

δsm2

)2

2m · s
m
1

sm2
‖f‖Ωm ≤

2msm1 N
2
δ

s3m
2 δ2

· 2me−m‖f‖Ωm .

We need to verify

2msm1 N
2
δ

s3m
2 δ2

· 2me−m � 2mε2, where ε2 = δ
1
24 .

It is equivalent to

s122(1+α−α logs1 2)

s3
2e

< 2−
α
24 ;

and holds true for κ = log s1
s2

sufficiently small.

For the second inequality we recall Corollary 1 of Theorem 5 again

∀f ∈ Cone (r1, ε1,Ωm) : ‖W δ
m
`mξ∗W δ

m
f‖Ωm ≥ 2m−2‖f‖Ωm .

Then∥∥∥∫
[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)(W δ
2m
`mt∗W δ

2m
f)dt

∥∥∥
Ωm
≥

≥ inf
t∈[−δ,δ]m

‖W δ
2m
`mt∗W δ

2m
f‖Ωm ·

∫
[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj) ≥ 2m−2e−2‖f‖Ωm . (17)

— 7 —
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Taking into account∥∥∥∫
Rm−1\[−δ,δ]m−1

m−1∏
j=1

w δ
m

(tj)(W δ
2m
`mt∗W δ

2m
f)dt

∥∥∥
Ωm
≤ 2mε2‖f‖Ωm ,

we get the result. �

Theorem 1.[Fast dynamo on R] There exist a measure-preserving piecewise-C2 trans-

formation f : R → R and an essentially bounded, absolutely integrable vector field v

such that

lim
δ→0

lim
n→∞

1

n
ln
∥∥(exp(δ∆)f∗)

nv
∥∥
L1
> 0,

The map f may be realised as an induced action of the Poincaré map of the provisional

fluid flow on the unstable manifold.

Proof. Let us choose f = `, where ` : R → R is given by (13). It follows by straight-

forward calculation that WδWδ = 2W2δ for any number δ > 0. The Theorem follows

from Lemma 3.3 with v = W δ
2m
χ[−1,1]. �

The remaining part of the paper is dedicated to the proof of existence of an invariant

cone for the operator W δ
2m
`mt∗W δ

2m
for arbitrary ‖t‖ ≤ δ. Therefore, we assume that a

large m� 1 is fixed.

4. Notation

In this Section we fix notation we use throught the proof of Invariant Cone Theo-

rem 5.

The following letters are reserved for constants: α, β, γ, γ1, κ, s1, s2. The admissible

range of values will be specified later.

Given a subset I ⊂ Rn we denote by |I| its Lebesgue measure. We say that two sets

I1 and I2 are δ-close and write |I1 − I2| < δ if I1 belongs to the δ-neighbourhood of

I2 or I2 belongs to the δ-neighbourhood of I1. Otherwise, we write |I1 − I2| > δ. The

indicator function of a set I we denote by χI .

Let δij be the Dirac delta function:

δij =

1, if i = j

0, otherwise.

The supremum norm of a sequence of real numbers ξ ∈ `∞(R) we denote by

‖ξ‖ = sup
k∈N
|ξk|. Whenever supremum or infimum are taken along the whole range

of values, we omit the range.

Let δ = 2−mα be a small real number with 15
16
< α < 1.

— 8 —
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We write x� y when x is exponentially small compared to y, namely, there exist a

small number 0 < ε < 1 such that x < 2−εmy.

Definition 3. We say that a collection of intervals Ω = {Ωj}j∈Z makes a partition of

the class G(m, δ, s1, s2), if
⋃

Ωj = R, Ωi ∩Ωj = ∅ if i 6= j, and the following conditions

hold true.

(1) The interval [−1, 1] contains at least 2m−1 and at most 2m intervals of the

partition, and {±1} are the end points of some intervals of the partition.

(2) The length of intervals Ωj is bounded away from zero and from infinity

1

msm1
≤ |Ωj| ≤ 2

( 1

sm1
+

1

sm2

)
.

(3) Any interval I ⊂ R of the length |I| = δ contains not more than

Nδ = 2m+1δlogs1 2 = 2m(1−α logs1 2)+1

intervals of the partition.

(4) Any interval of the partition Ωj ⊂ R\ [−1−mδ, 1 +mδ] has length |Ωj| = 2−m.

We write G(m, δ, s1, s2) to indicate dependence on m, δ, s1, and s2; we will abuse

notations and omit m, δ, s1, or s2, when it leads to no confusion and the dependence

is of no importance.

We number intervals of a partition Ω in the natural order, starting from Ω0 3 0. We

set ΩNl to be the most left interval of Ω inside [−1, 1], and ΩNr to be the most right

interval of Ω inside [−1, 1].

Here we deal with essentially bounded absolutely integrable functions on the real

line. We refer to the space Φ
def
= L1(R) ∩ L∞(R) as the main space. “Any function”

refers to a function from the main space always.

Given a partition Ω = {Ωj}j∈Z of the class G, we denote the associated space of step

functions by ΦΩ and address the basis {χΩj}j∈Z as the canonical basis of ΦΩ.

Definition 4. We associate a weighted transfer operator f∗, acting on the main space,

to a map f on the real line by1

(f∗φ)(x) : =
∑

y∈f−1(x)

sgn df(y)φ(y). (18)

1Transfer operator is a bounded linear operator. In this case, it is chosen to be one dimensional

analogue of induced action on vector fields by area-preserving transformations. Transfer operators

with negative coefficients have been considered, for instance, in [15].

— 9 —
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5. Transfer operator as a dynamo operator

In this section we first show that any generalised toy dynamo operator has an invari-

ant cone. Afterwards, we prove that there exists a map ` : R → R such that for any

small perturbation `mξ with ‖ξ‖∞ ≤ δ we can find a linear operator A : Φ→ Φ and two

partitions Ω1 and Ω2 of R such thatA : ΦΩ1 → ΦΩ2 and ‖(`mξ∗−A)Wδ‖ ≤ 2−γm(‖`mξ∗‖+‖A‖)
for some γ > 0. Moreover, the matrix of A |ΦΩ1 satisfies conditions (D1)–(D4). In other

words, for any sequence ‖ξ‖∞ ≤ δ, the operator `mξ∗ may be approximated by a gener-

alised toy dynamo.

5.1. The model matrix. The plan is to choose suitable subspaces of Φ and approxi-

mate the operator `mξ∗ by a simple matrix. In this Subsection we describe the matrix we

would like to obtain and show that for any matrix A, satisfying these conditions, there

exists a pair of cones C1, C2 ⊂ Φ such that C2 � C1 and A(C1) ⊂ C2 (but C2 6⊂ C1).

Let A be a linear operator acting on the main space. Assume that there exists two

partitions Ω1, Ω2 of the class G such that A : ΦΩ1 → ΦΩ2 . Here and below we denote

by N1
l and N1

r the indices of the first and the last intervals of the partition Ω1 inside

[−1, 1], respectively; and let N2
l and N2

r be the indices of the first and the last intervals

of the partition Ω2 inside [−1, 1], respectively. In other words, the sets Ω2
i × Ω1

j with

N2
l ≤ i ≤ N2

r , and N1
l ≤ j ≤ N1

r make a partition of the unit square.

We define several sets of indices in order to describe the properties of the operator

A important to us. Let aij be coefficients of the matrix of A in the canonical bases of

the subspaces ΦΩ1 and ΦΩ2 .

Accelerator:

Ar : =
{
j ∈ {N1

l , . . . , N
1
r } | #{i ∈ {N2

l , . . . , N
2
r } | aij = 1} ≥ 2m −Nδ

}
. (19)

Inflow diffusion:

Din : =
{

(i, j) ∈ {N2
l , . . . , N

2
r } × {N1

l , . . . , N
1
r } | aij 6= 1

}
. (20)

Outflow diffusion:

Dout : = {N2
l −mNδ, . . . , N

2
r +mNδ} × {N1

l −mNδ, . . . , N
1
r +mNδ}−

− {N2
l , . . . , N

2
r } × {N1

l , . . . , N
1
r }. (21)

Indifferent subspace:

Sp: = Z2 \ {N2
l −mNδ, . . . , N

2
r +mNδ} × {N1

l −mNδ, . . . , N
1
r +mNδ}. (22)
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We are interested in linear operators A such that the following conditions hold true for

the matrix coefficients in the canonical bases.

(D1) max |aij|+ 1 ≤ m2
(
s1
s2

)m
;

(D2) #Din ≤ mδs2m
1 ;

(D3) for any pair (i, j) ∈ Sp we have aij = 0 whenever |i− j| > mNδ;

(D4) #Ar ≥ 2m−2.

Definition 5. We say that a linear operator A : L1(R) ∩ L∞(R)→ L1(R) ∩ L∞(R) is

a generalised toy dynamo if there exist two partitions Ω1 and Ω2 of the class G such

that A(ΦΩ1) ⊂ ΦΩ2 and the conditions (D1)–(D4) hold true in the settings introduced

above.

Remark 2. All theorems and the main result hold true for an operator A that satisfies

conditions (D1)–(D4) with right parts of the inequalities multiplied by polynomials

in m.

When we have several partitions, e.g. Ω1, Ω2, and Ω3 of the class G we refer to the

norms associated to the partitions by ‖ · ‖1, ‖ · ‖2, and ‖ · ‖3, respectively.

We will need the following fact.

Remark 3. For any s1 ≤ 2 ≤ s2, satisfying
(
log s1 − log s2

)
� 1, and δ = 2−αm there

exists a number 0 < γ1 = 2(1− α) < 1/4 such that

m2δ · s
3m
1

2msm2
< 2mγ1 . (23)

for m large enough.

Lemma 5.1. Let A : ΦΩ1 → ΦΩ2 be a generalised toy dynamo and let φ =
∑
j∈Z

cjχΩ1
j

be

a step function. Then

N2
r∑

i=N2
l

N1
r∑

j=N1
l

|cj| · |1− aij| ≤ 2m(3/2+γ1)‖φ‖1.

Proof. By straightforward calculation,

N2
r∑

i=N2
l

N1
r∑

j=N1
l

|cj| · |1− aij| =
∑

(i,j)∈Din

|cj| · |1− aij| ≤ sup |1− aij| ·#Din · sup |cj| ≤

≤ sm1
sm2
·m2δs2m

1 · 2m/2‖φ‖1 ≤ 2m(3/2+γ1)‖φ‖1.

�
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Definition 6. Let Ω1, Ω2 be two partitions of the class G(m). We define the kernel of

A∗χ[−1,1] : ΦΩ1 → ΦΩ2 to be the set

KerA∗χ[−1,1] : =
{
φ ∈ ΦΩ1 |

∫ 1

−1

Aφ(x)dx = 0
}

=

=
{
φ =

∑
j∈Z

cj|Ω1
j | :

N2
r∑

i=N2
l

∑
j∈Z

aijcj|Ω2
i | = 0

}
. (24)

Proposition 5.1. Let 2γ1 < s2 < 2. Then for any two partitions of the class G and

a generalised toy dynamo A : ΦΩ1 → ΦΩ2

ΦΩ1 = χ[−1,1] ⊕KerA∗χ[−1,1].

In other words, for any φ ∈ ΦΩ1 there exist ψ ∈ KerA∗χ[−1,1] and d ∈ R such that

φ = dχ[−1,1] + ψ. (25)

Proof. Let χ[−1,1] =
∑

j∈Z ujχΩ1
j
, where uj = 1 for N1

l ≤ j ≤ N1
r and uj = 0 otherwise.

Let φ =
∑

j∈Z cjχΩ1
j
∈ ΦΩ1 be a step function. We want to find a function ψ ∈ ΦΩ1

such that ψ ∈ KerA∗. By definition of the kernel 6, using (25) we write

∫ 1

−1

Aψ(x)dx =

∫ 1

−1

A(ϕ− dχ[−1,1])(x)dx =

∫ 1

−1

∑
i,j∈Z

aij(cj − duj)χΩ2
i
(x)dx =

=

N2
r∑

i=N2
l

∑
j∈Z

aij(cj − duj)|Ω2
i | = 0.

We want to solve the last equality for d. It is sufficient to show that for any generalised

toy dynamo A we have that

N2
r∑

i=N2
l

∑
j∈Z

ujaij|Ω2
i | 6= 0.

By straightforward calculation,

N2
r∑

i=N2
l

∑
j∈Z

ujaij|Ω2
i | =

N1
r∑

j=N1
l

N2
r∑

i=N2
l

aij|Ω2
i | = 2(N1

r −N1
l ) +

N1
r∑

j=N1
l

N2
r∑

i=N2
l

(aij − 1)|Ω2
i |.
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Using conditions (D1)–(D4), we estimate the last term as follows

N1
r∑

j=N1
l

N2
r∑

i=N2
l

(aij − 1)|Ω2
i | =

∑
Din

(aij − 1)|Ω2
i | ≤ #Din · sup |aij − 1| · sup |Ω2

i | ≤

≤ s2m
1 m2δ · s

m
1

sm2
· 2(s−m1 + s−m2 ).

We see that
N2
r∑

i=N2
l

∑
j∈Z

ujaij|Ωi| 6= 0 under condition that

s2m
1 m2δ · s

m
1

sm2
· 2(s−m1 + s−m2 ) < 2(N1

r −N1
l ). (26)

Recall that, since Ω1 is of the class G, we have N1
r−N1

l > 2m−1. We also know from (23)

that there exists γ1 < 1/4 such that

m2δ · s
3m
1

2msm2
< 2mγ1 .

Therefore (26) holds true under condition that 2γ1 < s2 < 2. �

Lemma 5.2. Let η = dχ[−1,1] + ψ ∈ ΦΩ be a step function such that ‖ψ‖ ≤ dr for

some r � 1. Then η ∈ Cone
(

2r
1−2r

,Ω
)
.

Proof. We would like to write ψ = βχ[−1,1] + ψ̃, where ψ̃ =
∑
j∈Z

c̃jχΩj and
Nr∑
j=Nl

c̃j = 0.

Let us assume that ψ =
∑
j∈Z

cjχΩj , then

Nr∑
j=Nl

cjχΩj = β
Nr∑
j=Nl

χΩj +
Nr∑
j=Nl

c̃jχΩj .

implies c̃j = cj − β and consequently
Nr∑
j=Nl

(cj − β) = 0. Thus we have an upper bound

for |β|:

|β| =
∣∣∣ 1

Nr −Nl

Nr∑
j=Nl

cj

∣∣∣ ≤ 1

2m−1

∑
j∈Z

|cj| = 2‖ψ‖ ≤ 2dr.

Therefore we deduce that

η = (d+ β)χ[−1,1] + ψ̃ ∈ C
( |β|
|d| − |β|

,Ω
)
⊂ C

( 2r

1− 2r
,Ω
)
.

�
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Definition 7. Given Ω1 and Ω2, two partitions of the class G, we define a linear

operator E : ΦΩ1 → ΦΩ2 by the matrix

Eij =

1, if N2
l ≤ i ≤ N2

r and N1
l ≤ j ≤ N1

r ,

δij, otherwise.
(27)

Remark 4. The operator E is a generalised toy dynamo.

Lemma 5.3. Consider a function ϕ ∈ Ker E∗χ[−1,1]. Then ‖Eϕ‖2 ≤ ‖ϕ‖1.

Proof. Let ϕ ∈ ΦΩ1 be a step function. We may write ϕ =
∑
j∈Z

cjχΩ1
j
, then

Eϕ =

N1
r∑

j=N1
l

cjχ[−1,1] +
(∑
j<N1

l

+
∑
j>N1

r

)
cjχΩ2

j
;

and the condition ϕ ∈ Ker E∗χ[−1,1] implies
N1
r∑

j=N1
l

cj = 0. Therefore

‖Eϕ‖2 =
∥∥∥(∑

j<N1
l

+
∑
j>N1

r

)
cjχΩ2

j

∥∥∥
2

=
(∑
j<N1

l

+
∑
j>N1

r

)
|cj| ≤ ‖ϕ‖1.

�

Proposition 5.2. Let s1 be small enough so that log2 s1 ≤ 64/63. Let Ω1 and Ω2 be

partitions of the class G. Consider a generalised toy dynamo operator A : ΦΩ1 → ΦΩ2.

Then for any φ ∈ ΦΩ1

‖(A− E)φ‖2 ≤ 2m(1/2+γ1)‖φ‖1,

where γ1 satisfies the inequality (23).

Proof. Let φ =
∑

j∈Z cjχΩ1
j
∈ ΦΩ1 be a step function with the unit norm

‖φ‖1 = max
(
2−m

∑
j∈Z

|cj|, 2−m/2, sup |cj|
)

= 1,

which implies
∑

j∈Z |cj| ≤ 2m and sup |cj| ≤ 2m/2. By straightforward calculation,

(A− E)φ =
∑
i∈Z

∑
j∈Z

cj(aij − Eij)χΩ2
i

=

=

N2
r∑

i=N2
l

N1
r∑

j=N1
l

cj(aij − 1)χΩ2
i

+
∑
Dout

cj(aij − δij)χΩ2
i

+
∑
Sp

cj(aij − δij)χΩ2
i
.
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Observe that

#Dout ≤
(
4m2N2

δ + 2mNδ(N
2
r −N2

l ) + 2mNδ(N
1
r −N1

l )
)

=

= 2mNδ(2mNδ +N2
r −N2

l +N1
r −N1

l ).

Therefore, using ‖φ‖1 ≤ 1, Lemma 5.1, definition of the set Dout, and condition (D3),

‖(A− E)φ‖L1,Ω2 ≤

≤ 2−m
( N2

r∑
i=N2

l

N1
r∑

j=N1
l

|cj| · |aij − 1|+
∑
Dout

|cj| · |aij − δij|+
∑
Sp

|cj| · |aij − δij|
)
≤

≤2−m
(
2m(3/2+γ1) + sup |cj| · sup |aij| ·#Dout +

∑
Z

|cj| ·mNδ · sup |aij|
)
≤

≤ 2m(1/2+γ1) + 2−m/2
sm1
sm2
· 2mNδ(2mNδ +N2

r −N2
l +N1

r −N1
l ) +mNδ

sm1
sm2
.

By straightforward calculation we see that for s1 small enough so that log2 s1 ≤ 64/63

sm1
sm2
·mNδ <

sm1
sm2
·m2m(1−α logs1 2) ≤ sm1

sm2
· δs

2m
1

2m
= 2mγ1 .

Therefore, under the same condition, since Nδ � 2m,

2−m/2 · s
m
1

sm2
·m2N2

δ < 2mγ1 ·mNδ · 2−m/2 < 2m(1/2+γ1).

Finally,

21−m/2mNδ ·
sm1
sm2
·
(
N2
r −N2

l +N1
r −N1

l

)
≤ sm1
sm2
· 2m/2 · 4mNδ < 2m(1/2+γ1).

Summing up,

‖(A− E)φ‖2 ≤ 3 · 2m(1/2+γ1).

Now, for the maximum norm, we have that

‖(A− E)φ‖∞ ≤ max
x∈R

∑
j∈Z

∑
i∈Z

|cj| · |aij − Eij|χΩ2
i
(x) ≤

∑
j∈Z

|cj|
sm1
sm2
≤ 2m

sm1
sm2
.

Thus 2−m/2‖(A− E)φ‖∞ ≤ 2m(1/2+γ1). �

Lemma 5.4. Let Ω1 and Ω2 be two partitions of the class G. Let E : ΦΩ1 → ΦΩ2 be

a linear operator with the matrix defined by (27) in the canonical basis. Then for any

function φ ∈ ΦΩ1

‖Eφ‖2 ≤ 2m‖φ‖1 and ‖Eχ[−1,1]‖2 ≥ 2m−2.
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Proof. Let φ =
∑

j∈Z cjχΩ1
j
∈ ΦΩ1 be a step function of the unit norm. Then, by

straightforward calculation,

Eφ =
∑
i∈Z

∑
j∈Z

cjEijχΩ2
i

=

N2
r∑

i=N2
l

N1
r∑

j=N1
l

cjχΩ2
i

+
∑

Dout∪Din

cjδijχΩi =

=

N1
r∑

j=N1
l

cjχ[−1,1] +
(∑
j<N1

l

+
∑
j>N1

r

)
cjχΩj ;

so the weighted L1-norm is

‖Eφ‖2,L1 = 2−m ·
∣∣∣ N1

r∑
j=N1

l

cj

∣∣∣ · (N2
r −N2

l ) + 2−m
(∑
j<N1

l

+
∑
j>N1

r

)
|cj| ≤ 2m + 1.

The upper estimate for the supremum norm is easy:

‖Eφ‖∞ = max
x∈R

( N1
r∑

j=N1
l

cjχ[−1,1](x) +
(∑
j<N1

l

+
∑
j>N1

r

)
cjχΩj(x)

)
≤ 2m.

Hence ‖Eφ‖2 ≤ 2m‖φ‖. Obviously,

‖Eχ[−1,1]‖2 ≥ ‖Eφ‖2,L1 = 2−m(N1
r −N1

l )(N2
r −N2

l ) ≥ 2m−2.

�

Let us consider two cones Cone (1,Ω1) ⊂ ΦΩ1 and Cone
(
2(γ1−1/2)m,Ω2

)
⊂ ΦΩ2 in

correspondence with general definition p. 3:

Cone
(
1,Ω1

) def
=
{
φ = dχ[−1,1] + ψ | ψ =

∑
j∈Z

cjχΩ1
j
;

Nr∑
j=Nl

cj = 0; ‖ψ‖1 ≤ d
}

; (28)

Cone
(
2(γ1−1/2)m,Ω2

) def
={

φ = dχ[−1,1] + ψ | ψ =
∑
j∈Z

cjχΩ2
j
;
Nr∑
j=Nl

cj = 0; ‖ψ‖2 ≤ d2m(γ1−1/2)
}
. (29)

Theorem 2. Assume that m is large enough so that the inequality (23) holds true

for some 0 < γ1 < 1/4 and all sufficiently small κ. Additionally, assume that

log2 s1 ≤ 64/63. Let Ω1 and Ω2 be two partitions of the class G. Then for any gen-

eralised toy dynamo A : ΦΩ1 → ΦΩ2 we have A : Cone (1,Ω1) → Cone
(
2m(γ1−1/2),Ω2

)
;

Moreover, for any η ∈ Cone (1,Ω1) we have ‖Aη‖2 ≥ (N2
r −N1

l )‖η‖ ≥ 2m−1‖η‖.
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Proof. Let φ ∈ Cone (1,Ω1) be a step function, φ = dχ[−1,1] + ψ, where ψ =
∑
j∈Z

cjχΩ1
j
,

with ‖ψ‖1 ≤ d and
N1
r∑

j=N1
l

cj = 0. We may write

Aφ = (A− E)φ+ Eφ = dEχ[−1,1] + (A− E)φ+ Eψ.

Obviously, ‖φ‖1 ≤ 2d, thus by Proposition 5.2

‖(A− E)φ‖2 ≤ ‖A− E‖ · ‖φ‖1 ≤ d2m(1/2+γ1)+1.

By Lemma 5.3, ‖Eψ‖2 ≤ ‖ψ‖1 = d. Therefore ‖(A− E)φ + Eψ‖2 ≤ d2m(1/2+γ1)+1 + d,

so we conclude

Aφ = d̃χ[−1,1] + d(A− E)χ[−1,1] + (A− E)ψ + Eψ,

where d̃ ≥ d2m−2 and ‖d(A−E)χ[−1,1]+(A−E)ψ+Eψ‖2 ≤ d(2m(1/2+γ1)+1+1). Theorem

now follows from Lemma 5.2.

�

5.2. A dynamo map. Recall the map we considered is Section 3 Let s2 ≤ 2 ≤ s1, be

two real numbers such that log s1
s2

= κ � 1. and let δ = 2−mα be a small real number

with 15
16
≤ α < 1.

We extend an expanding map on the interval [−1, 1] to the line R2 as follows (13)

`(x) =


s1x+ s1 − 1, if − 1 < x < 2

s1
− 1;

s2x+ 1− s2, if 2
s1
− 1 < x < 1;

−x, otherwise.

(30)

and define its extension ̂̀: R2 → R by ̂̀(x, y) = `(x) + y. We associate a small

perturbation `ξ to any sequence ξ ∈ `∞(R) and ‖ξ‖∞ ≤ δ.

We associate a transfer operator to a map `mξ by

(`mξ∗φ)(x) : =
∑

y∈`−mξ (x)

sgn d`mξ (y)φ(y). (31)

The map ` outside the unit interval is not important to us and we chose a simple map

that changes direction of the vector field, to make it non-trivial. The exact form is not

relevant here.

First of all we show that with any sequence ξ we can associate a (canonical) partition

of the class G. Then we approximate the operator `mξ∗ by a generalised toy dynamo

(Theorem 3 on p. 31).
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5.3. Canonical partition for the perturbation `mξ . In this section we construct a

partition of the class G(m) associated to the sequence ξ. Later we will refer to it as

the canonical partition of the map `mξ .

Recall Definition 3 of the partition G:

Definition 3. We say that a collection of intervals Ω = {Ωj}j∈Z makes a partition of

the class G(m, δ, s1, s2), if
⋃

Ωj = R, Ωi ∩Ωj = ∅ if i 6= j, and the following conditions

hold true.

(1) The interval [−1, 1] contains at least 2m−1 and at most 2m intervals of the

partition, and {±1} are the end points of some intervals of the partition.

(2) The length of intervals Ωj is bounded away from zero and from infinity

1

msm1
≤ |Ωj| ≤ 2

( 1

sm1
+

1

sm2

)
.

(3) Any interval I ⊂ R of the length |I| = δ contains not more than

Nδ = 2m+1δlogs1 2 = 2m(1−α logs1 2)+1

intervals of the partition.

(4) Any interval of the partition Ωj ⊂ R\ [−1−mδ, 1 +mδ] has length |Ωj| = 2−m.

We fix s1 and s2 in the definition of the map ` (13) and a sequence ξ ∈ `∞(R) with

a norm ‖`‖ ≤ δ = 2−mα.

The map `ξ is piecewise linear and so any iteration is a such. Let

−∞ = a
(k)
0 < a

(k)
1 < . . . < a

(k)
Nk+1 = +∞ (32)

be all the points of discontinuity of the map `kξ . Define the corresponding partition

of the real line a(k) =
⋃Nk
j=0 a

(k)
j , where a

(k)
j = (a

(k)
j , a

(k)
j+1) are the partition intervals.

Observe that for any k we have that {±1} are the endpoints of some intervals of the

partition. Let a
(k)
lk

= −1 and a
(k)
rk = 1.

We shall modify the partition a(m) and obtain the canonical partition for the map `mξ .

Definition 8. We call a branch `nξ (a
(n)
j ) of the map `nξ main, if for any 0 < k < n we

have that `kξ (a
(n)
j ) ⊂ [−1, 1].

Definition 9. We call a main branch `kξ (a
(k)
j ) of the map `kξ long, if∣∣`kξ (a(k)

j ) ∩ [−1, 1]
∣∣ > 2

s2

.
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Lemma 5.5. The map `mξ has at most 2m(1−α1)+1 main branches that are not long,

where α1 <
α

log2 s1
is chosen such that sα1

1 < 2α.

Proof. Let a
(m)
j be a domain of a main branch which is not long, that is |`mξ (a

(m)
j )∩[−1, 1]|< 2

s2
.

Since `
(m)
ξ (a

(m)
j ) is an interval, a connected subset of R, we conclude |`mξ (aj

(m))+1| > 1− 1
s2

or |`mξ (aj+1
(m))− 1| > 1− 1

s2
. Without loss of generality we may assume that the first

holds true. By definition, a
(m)
j is a point of discontinuity. Therefore, for some k < m

we have that `kξ (a
(m)
j ) = −1+ξ(k); hence we deduce that `

(m)
ξ (a

(m)
j ) = `m−kξ (−1+ξ(k)).

So we conclude |`m−kξ (−1 + ξ(k)) + 1| > 1− 1
s2

, and, consequently, k < m(1− α1) + 1.

Indeed, if k > m(1− α1) + 1, then m− k < mα1 − 1, and it follows that

|`m−kξ (−1 + ξ(k)) + 1| < smα1−1
1 δ <

2

s1

= 2− 2

s2

.

Since the map `kξ has at most 2k main branches, we conclude that there are at most 2m(1−α1)+1

points a
(m)
j such that `kξ (a

(m)
j ) = −1 + ξ(k).

Summing up, the map `mξ has at most 2m(1−α1)+1 main branches that are not long.

�

Lemma 5.6. Let 1 ≤ k ≤ mα logs1 2 and let (a, b) be the domain of a main branch of

the map `kξ . Then

|`kξ (a) + 1| < δ
sk1 − 1

s1 − 1
<

2

s1

− δ;

|`kξ (b)− 1| < δ
sk2 − 1

s2 − 1
<

2

s1

− δ.

Proof. By induction in k. The case k = 1 is obvious. Recall that a(k) ⊂ a(k+1) and

a(k+1) \ a(k) = {`−kξ (−1), `−kξ (1), `−kξ (2/s1 − 1)}.

Therefore for x ∈ a(k) we have

`k+1
ξ (x) = `σk(ξ)`

k
ξ (x) = s1`

k
ξ (x) + s1 − 1− ξ(k + 1), if |`kξ (x) + 1| < 2/s1 − δ

`k+1
ξ (x) = `σk(ξ)`

k
ξ (x) = s2`

k
ξ (x)− s2 + 1− ξ(k + 1), if |`kξ (x)− 1| < 2/s1 − δ

In the first case we know that, by induction assumption,

|`k+1
ξ (x) + 1| ≤ s1|`kξ (x) + 1|+ |ξ(k + 1)|+ 1 ≤ sk+1

1 − 1

s1 − 1
δ.

In the second case,

|`k+1
ξ (x)− 1| ≤ s2|`kξ (x)− 1|+ |ξ(k + 1)|+ 1 ≤ sk+1

2 − 1

s2 − 1
δ.
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�

Corollary 1. Let 1 ≤ k ≤ mα logs1 2. Then for any domain (a, b) of a main branch

of the map `kξ we have that 2
s1
− 1 = 1− 2

s2
∈ `kξ (a, b).

Proof. By assumption, `kξ (a) < `kξ (b) and from Lemma 5.6 it follows that

`kξ (a) <
2

s1

− δ − 1 <
2

s1

− 1 < 1− 2

s2

+ δ < `kξ (b).

�

Corollary 2. Let 1 ≤ n ≤ mα logs1 2. Then any main branch of the map `nξ is δ-close

to one of the ends of the interval [−1, 1]: in other words, either 1 − δ ∈ `nξ (a, b) or

δ − 1 ∈ `nξ (a, b), or both.

Proof. By induction in n. The case n = 1 is obvious. Observe that (a, b) cannot be an

interval of continuity of the map `nξ for any k < n. Therefore `n−1
ξ is either continuous

at a, or at b, or at both end points. In any case (a, b) belongs to an interval of continuity

of `n−1
ξ satisfying conditions of Corollary 1 of Lemma 5.6. By definition of `ξ, we see

that either `n−1
ξ (a) = 2

s1
− 1 or `n−1

ξ (b) = 2
s1
− 1. Without loss of generality assume

that `n−1
ξ (b) = 2

s1
− 1. Then we see that `nξ (a, b) ⊃ (ξ(n), 1 + ξ(n)) 3 1− δ. Similarly,

`n−1
ξ (a) = 2

s1
− 1 implies that `nξ (a, b) ⊃ (−1 + ξ(n), ξ(n)) 3 δ − 1. �

Lemma 5.7. The map `kξ for any 1 ≤ k ≤ mα logs1 2 has exactly 2k long branches.

Proof. By induction in k. The case k = 1 is trivial. It follows from Lemma 5.6 and

Corollary 1 of Lemma 5.6 that any long branch of the map `kξ contains at least two

long branches of the map `k−1
ξ . �

Corollary 1. The map `mξ has at least 2m−2 long branches, provided 2α logs1 2 > 1.

Proof. If 2α logs1 2 > 1, then m − mα logs1 2 < mα logs1 2 and therefore the map

P
m−mα logs1 2
η has at least 2m−mα logs1 2 long branches for any η ∈ `∞(R) with ‖η‖ ≤ δ.

Let η = σmα logs1 2ξ. Then we can decompose `mξ = `
m(1−α logs1 2)
η `

mα logs1 2

ξ . According to

Lemma 5.7 the map `
mα logs1 2

ξ has at 2mα logs1 2 long branches. By definition of a long

branch, its image is at least 2
s2

long; using Corollaries 1 and 2 of Lemma 5.6, we deduce

that for any domain (a, b) of a long branch we have that either (−1+δ,−1+ 2
s2

) ⊂ `
m logs1 2

ξ (a, b)

or (1 − 2
s2

; 1 − δ) ⊂ `
m logs1 2

ξ (a, b). Moreover, any of two intervals (−1, 2
s1
− 1) and

( 2
s1
− 1, 1) contains exactly 2m(1−α logs1 2)−1 long branches of the map `

m(1−α logs1 2)

ξ .
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We can find an upper bound for the length of a domain of a long branch of the map

`
m(1−α logs1 2)
η : it easy to show by induction in number of iterations that any long branch

(a, b) has a domain of the length at least

|b− a| = (2− sm(1−α) logs1 2

1 δ)s
−m(1−α logs1 2)

1 = 2s
−m(1−α logs1 2)

1 − δ ≥ s
−m(1−α logs1 2)

1

Therefore any of the intervals (−1 + δ, 2
s1
− 1) and ( 2

s1
− 1, 1− δ) contains at least

2m(1−α logs1 2)−1 − sm(1−α logs1 2)

1 δ = 2m(1−α logs1 2)−1 − 2m(log2 s1−2α) ≥ 2m(1−α logs1 2)−1 − 2

long branches of the map `
m(1−α logs1 2)

ξ .

Therefore, the composition has at least 2mα logs1 2(2m(1−α logs1 2)−1− 2) long branches,

which comes as 2m−1 − 2mα logs1 2 > 2m−2, as promised. �

Canonical partition construction. Let us consider the set of end points of domains of

long branches

Dl : =
{
x | x is an endpoint of a domain of a long branch of the map `mξ

}
∪{±1} =

= {−1 = d1 < d2 < . . . < dN = 1},

and define a partition Ω =
N⋃
j=1

Ωj of the interval [−1, 1] by Ωj = (dj, dj+1); j = 1, . . . , N .

Let us denote by Uε(Ωj) a neighbourhood of Ωj of the size ε.

We shall set ε = (2sm1 )−1. If for some Ωj = (dj, dj+1), containing a long branch

of the map `mξ , there exist points of discontinuity of the map `mξ in a neighbourhood

Uε(Ωj) ∩ [−1, 1], then we extend the interval Ωj to include all these points.

Let Ω′j = (d′j, d
′
j+1), j = 1, . . . , N be a new collection of intervals. If there exist

two intervals (d′j, d
′
j+1) and (d′j+2, d

′
j+3) containing long branches of the map `mξ , and

such that dj+2− dj+1 < (msm1 )−1, then we replace the interval (dj, dj+1) in Ω′ with the

interval (dj, dj+2).

Now the length of any interval of the partition Ω′, containing a long branch, is

not more than 2(s−m1 + s−m2 ). Assume that there exist two intervals (d′j, d
′
j+1) and

(d′j+2, d
′
j+3) containing long branches of the map `mξ , such that d′j+2 − d′j+1 > s−m2 ,

then we split the interval (d′j+1, d
′
j+2) into intervals of the size s−m2 , allowing one of

them to be longer, or smaller, if necessary. More precisely, let Ω′j = (d′j, d
′
j+1) be

an interval of Ω′ that doesn’t contain a long branch. Let n :=
[
sm2 (d′j+1 − d′j)

]
be

the number of “whole” intervals of the length s−m2 that could fit inside (d′j, d
′
j+1). If

(d′j+1 − d′j) − nsm2 < s−m1 , we split the interval (d′j, d
′
j+1) into n intervals; adding the

intervals (d′j + ks−m2 , d′j + (k + 1)s−m2 ), 0 ≤ k < n to the partition Ω′. Otherwise, we
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split the interval (d′j, d
′
j+1) into n + 1 intervals, adding (d′j + ks−m2 , d′j + (k + 1)s−m2 ),

0 ≤ k ≤ n to Ω′.

The intervals (a
(m)
0 ,−1) and (1, a

(m)
Nm

), do not contain any long branches, and we define

the partition there as described above. Finally, we define the partition on (−∞, a(m)
1 )

and (a
(m)
Nm
,+∞) splitting them into equal intervals of the length 2−m.

We have obtained a partition of the real line, that satisfies Conditions (D2) and (D4)

of Definition 3. We have to check other conditions of Definition 3.

Lemma 5.8. The partition constructed satisfies Condition (D3). Any interval I ⊂ R
of the length δ contains at most Nδ < 2m(1−α logs1 2)+1 intervals of the partition.

Proof. The statement holds true for any interval I ⊂ R \ [a
(m)
1 , a

(m)
Nm

] of the length δ.

Assume that I ⊂ [a
(m)
1 , a

(m)
Nm

], and |I| = δ. Then there are two possibilities:

(1) the interval I contains a long branch;

(2) the interval I doesn’t contain a long branch.

Consider the first case. Observe that for any k0 ≤ m and for any interval I0 ⊂ [−1, 1]

of the length |I0| < s−k0
1 such that `kξ (I0) ⊂ [−1, 1] for all k < k0, the map `k0

ξ is

one-to-one on I0. (Easy to check by induction). Since for any long branch a
(m)
j we have

1− 2
s1
∈ `ξ(a(m)

j ), we conclude that k0 : = [− log2 δ logs1 2] = [αm logs1 2] and then we

see that the map `k0
ξ is one-to-one on any interval I0 of the length less than δ such that

`kξ (I0) ⊂ [−1, 1] for all k < k0. Thus any interval of the length δ contains at most 2m−k0

long branches of the map `mξ . Consequently, any interval I with |I| ≤ δ contains at

most 2m−k0 < Nδ intervals of the partition with a long branch inside.

Assume now that the interval I of the length |I| = δ contains some intervals of

the partition that do not contain a long branch inside. Let I0 ⊂ I be a maximal

by inclusion subinterval not containing a long branch. Then by construction of the

partition, it contains at most one interval of the partition Ω of the length less than s−m2 .

Since the interval I contains at most 2m−k0 long branches, it may contain not more

than 2m−k0 + 2 intervals I0 without a long branch inside. Therefore, the interval I

contains not more than δsm2 + 2m−k0+1 < Nδ intervals of the partition.

In the second case, an argument similar to the one above shows that an interval

I of the length |I| = δ and without a long branch inside contains not more than

δsm2 + 1 < Nδ intervals of the partition.

�
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Lemma 5.9. The partition constructed satisfies Condition (D1) of Definition 3. The

interval [−1, 1] contains at least 2m−1 and at most 2m − 2mα logs1 2 +mδsm1 intervals of

the partition.

Proof. By Corollary 1 of Lemma 5.7, the map `mξ has at least 2m−2 long branches,

provided s1 is chosen such that 2α logs1 2 > 1. Every long branch belongs to exactly one

of intervals of the partition, and the escaping set of measure mδ contains at most mδsm1

intervals. �

Summing up, we conclude that the construction leads to a partition of the class G,

as desired.

We shall refer to the resulting partition Ω as the canonical partition of the map `mξ .

Lemma 5.10. Any interval of a canonical partition Ω has at most two main branches

of the map `mξ .

Proof. If an interval Ωj of the partition contains more than one main branch, one of the

main branches is not long. Let it be a
(m)
k . Then by Definition 9

∣∣`mξ (a
(m)
k )∩[−1, 1]

∣∣ < 2
s2

.

Now we repeat the calculation of Lemma 5.5. The end points of the interval a
(m)
k

are the points of discontinuity of the map `mξ . Then there exists two numbers n1 < m

and n2 < m such that `n1
ξ (a

(m)
k ) = −1 + ξ(n1) and `n2

ξ (a
(m)
k+1) = 1− ξ(n2). Therefore,

|`mξ (a
(m)
k ) + 1| = |`m−n1

σn1ξ (−1 + ξ(n1)) + 1| ≤ sm−n1
1 δ;

|`mξ (a
(m)
k+1)− 1| = |`m−n2

σn2ξ (1− ξ(n2))− 1| ≤ sm−n2
2 δ.

Since by assumption
∣∣`mξ (a

(m)
k )

∣∣ < 2
s2

, we deduce 2− δ(sm−n2
2 + sm−n1

1 ) ≤ 2
s2

. The latter

is equivalent to δ(sm−n2
2 + sm−n1

1 ) ≥ 2
s1

, which implies that either δsm−n2
2 ≥ 1

s1
, or

δsm−n1
1 ≥ 1

s1
, or both. Hence we get an upper bound on n1 or n2, respectively:

n1,2 < m0 : = m
(

1− α

log2 s1

)
+ 10.

Therefore one of the end points of a
(m)
k is an end point of the main branch of the

map `nξ with n < m0. Observe that all main branches of the map `mξ are long. Any

interval of the length s−m0
1 contains at not more than one main branch of the map

`m0
ξ . Therefore the distance between short main branches of the map `mξ is at least

s−m0
1 � 2(s−m1 + s−m2 ) = sup |Ωj|, and any interval of the partition contains not more

than one short main branch of the map `mξ . Therefore, any interval of the partition

contains at most two main branches. �
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5.4. Approximating `mξ∗ by a generalised toy dynamo operator. Here we prove

the main result of this Section, Theorem 3, which establishes the existence of a gener-

alised toy dynamo operator, a close approximation of `mξ∗ for arbitrary ‖ξ‖∞ ≤ δ.

Construction. Let a partition Ω2 of the class G be given. Let `mξ be as above, and

let a(m) be a partition of the real line by its points of discontinuity and let Ω1 be the

canonical partition of the map `mξ . Introduce the joint partition: a(m) ∪ Ω1 = {dj}j∈Z.

We assume the natural numbering: [d0; d1] 3 0 and dj < dj+1 for any j ∈ Z. Define

the image of the joint partition by{
b±j : = lim

y→dj±0
`mξ (y)

}
j∈Z.

Then on the interval (dj, dj+1) the map `mξ is given by

`mξ (x) : =
b−j+1 − b+

j

dj+1 − dj
x+

b+
j dj+1 − b−j+1dj

dj+1 − dj
, dj < x < dj+1.

We define an approximating map ̂̀mξ to be

̂̀m
ξ (x) : =

bb−j+1c − db+
j e

dj+1 − dj
x+
db+
j edj+1 − bb−j+1cdj

dj+1 − dj
, dj < x < dj+1;

where bxc stands for the closest to x point of the partition Ω2, which is smaller than x;

and dxe stands for the closest to x point of the partition Ω2, which is larger than x. In

particular, branches of the map ̂̀mξ are not longer than branches of the map `mξ .

We define an operator T : ΦΩ1 → ΦΩ2 by

(T φ)(x) : =
∑

y∈̂̀−mξ (x)

sgn d̂̀mξ (y)φ(y). (33)

Lemma 5.11. The operator T is a linear operator between two subspaces of step func-

tions associated to the partitions Ω1 and Ω2 (see p. 2 for definition): T : ΦΩ1 → ΦΩ2.

Proof. Linearity is obvious. It is sufficient to show that for any interval Ω1
j ∈ Ω1 of the

first partition,

(T χΩ1
j
)(x) : =

∑
y∈̂̀−mξ (x)

sgn d̂̀mξ (y)χΩ1
j
(y) ∈ ΦΩ2 .

By definition of ̂̀mξ , we see lim
y→dj−0

̂̀m
ξ (y) = [b−j ] and lim

y→dj+0

̂̀m
ξ (y) = [b+

j ], therefore

all points of Ω2
k ⊂ Ω2 have the same number of preimages with respect to `mξ for

any interval Ω2
k. Moreover, ̂̀−mξ (Ω2

k) does not contain any point of Ω1 inside, as it is

piecewise monotone on a subpartition Ω1 ∪ a(m). �
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Definition 10. We introduce the k-escaping set

Ek : = {x ∈ [−1, 1] | ∃n < k `nξ (x) 6∈ [−1, 1]}. (34)

Lemma 5.12. In the canonical bases of ΦΩ1 and ΦΩ2

sup
y∈Ω2

i

#{x ∈ Ω1
j | `mξ (x) = y} ≤ m2 s

m
1

sm2
.

Proof. Observe that the map is one-to-one on any interval I ⊂ [−1, 1] \ Em of the

length |I| ≤ 2s−m1 .

Given an element Ω1
j , consider a maximal by inclusion interval I ⊂ Em ∩ Ω1

j , such

that |I| ≤ s−m1 . We shall show that

max
y∈R

#
{
x ∈ I | `mξ (x) = y} ≤ 3ms3

1. (35)

There are two possibilities:

(1) the map `mξ is continuous on I ⊂ Em ∩ Ω1
j ;

(2) the map `mξ is not continuous on I ⊂ Em ∩ Ω1
j .

In the first case the map `ξ|I is a bijection and (35) holds true.

Now consider the second case: the map `mξ is not continuous on I ⊂ Em ∩ Ω1
j . We

may find the smallest k0 such that `k0
ξ (I) 6⊂ [−1, 1]. Then

`k0
ξ (I) ∩ [−1, 1] ⊂ (−1,−1 + sk0−m

1 ) t (1− sk0−m
1 , 1).

Let m0
def
= 1+mα

log2 s1
− 2. It follows by induction in k that for any k0 ≤ k < m0 the

image `kξ (I) ∩ [−1, 1] may be covered by two disjoint intervals in particular,

`kξ (I) ∩ [−1, 1] ⊂ (−1,−1 + δ1
k + sk−m1 ) t (1 + δ2

k − sk−m1 , 1),

where δ1
k =

k∑
j=k0

sk−j1 ξj and δ2
k =

k∑
j=k0

sk−j2 ξj with |δ1,2
k | ≤ sk−k0+1

1 δ, and −1 + 2
s1
6∈ `kξ (I)

for all k0 ≤ k < m0. In particular, for any x1, x2 ∈ I such that `k0
ξ (x1)∈(−1,−1+sk0−m

1 )

and `k0
ξ (x2) ∈ (1− sk0−m

1 , 1) we have for all k < m0:∣∣`kξ (x1)− `kξ (x2)
∣∣ ≥ (1 + δ2

k − sk−m1 )− (−1 + δ1
k + sk−m1 ) = 2− 2sk−m1 + (δ2

k − δ1
k) ≥ 1.

The map `m0−k0

σk0ξ
is a bijection on any of the intervals (−1,−1+sk0−m

1 ) and (1−sk0−m
1 , 1).

Therefore, we deduce that the map `m0
ξ is a bijection on I. It follows that the

image `m0
ξ (I) consists of not more than 3m0 intervals each of which is not longer

than sm0−m
1 . Let η = σm0ξ and consider the map `m−m0

η . We claim that it is a bijection

on any interval I ⊂ R of the length |I| ≤ sm0−m−3
1 . Indeed, if `m−m0

η is continuous on I,
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then it is a bijection. Assume that for some k0 ≤ m−m0 the map `k0
η is not continuous

on I. Then

`k0
η (I) ∩ [−1, 1] ⊂ (−1;−1 + sm0+k0−m−3

1 + δ) t (1− sm0+k0−m−3
1 − δ; 1),

and for any k0 < k ≤ m−m0

`kη ∩ [−1, 1] ⊂ (−1;−1 + sk+1
1 δ + sm0+k−m−3

1 ) t (1− sk+1
1 − sm0+k−m−3

1 ; 1).

By straightforward calculation we see that provided s1 ≤ 22α

sm0+k−m−3
1 + sk+1

1 δ ≤ 1

s1

.

Therefore for any interval I of the length |I| ≤ sm0−m−3
1 and for any two points x1, x2∈I

with x1 6= x2 we have that `kη(x1) 6= `kη(x2) for all 1 ≤ k ≤ m −m0. We see that the

image `m0
ξ may be covered by not more than 3m0s

3
1 intervals of the length sm0−m−3

1 .

Hence we conclude that for any interval |I| ≤ s−m1

sup
y∈R

#
{
x ∈ I | `mξ (x) = y

}
≤ 3m0s

3
1 < 3ms3

1 + 3.

Since by Lemma 5.10 any interval of the partition contains at most two main branches,

the set Ω ∩ Em is a union of not more than two intervals, which may be covered by

2 + 2
sm1
sm2

disjoint intervals of the length s−m1 . Therefore

max
y∈R

#
{
x ∈ Ω1

i | `mξ (x) = y} ≤ 3ms3
1

(s1

s2

)m
< m2

(s1

s2

)m
.

�

Corollary 1. In the canonical bases of ΦΩ1 and ΦΩ2 the matrix of the operator T
satisfies condition (D1):

max |τij|+ 1 ≤ m2
(s1

s2

)m
.

Proof. Recall the definition of the operator T :

(T φ)(x) : =
∑

y∈̂̀−mξ (x)

sgn d̂̀mξ (y)φ(y). (33)

Then for φ = χΩ1
j

we have

(T φ)(x) : =
∑
i∈Z

τijχΩ2
i
(x) =

∑
i∈Z

∑
y∈̂̀−mξ (x)

sgn d̂̀mξ (y)χΩ1
j
(y)χΩ2

i
(x) =

=
∑
i∈Z

∑
y∈̂̀−mξ (x)∩Ω1

j

sgn d̂̀mξ (y)χΩ2
i
(x); (36)
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therefore

τij =
∑

y∈̂̀−mξ (Ω2
i )∩Ω1

j

sgn d̂̀mξ (y).

The definition of the map ̂̀ξ guarantees that τij are well-defined; in particular

|τij| ≤ #{x ∈ Ω1
j | ̂̀mξ (x) = y ∈ Ω2

i },

and the right hand side is independent on the choice of y. Obviously,

sup
x

#{x ∈ Ω1
j | ̂̀mξ (x) = y ∈ Ω2

i } ≤ sup
x

#{x ∈ Ω1
j | `mξ (x) = y ∈ Ω2

i },

�

Corollary 2. We have the following upper bound for a total number of preimages of

a point x ∈ R :

sup
x∈R

{
y ∈ R | `mξ (y) = x

}
≤ 2m2

(2s1

s2

)m
; (37)

sup
x∈R

{
y ∈ R | ̂̀mξ (y) = x

}
≤ 2m2

(2s1

s2

)m
. (38)

Proof. By definition of a partition of the class G, the interval [−1, 1] contains not more

than 2m intervals of the partition; and intervals [−1−mδ;−1] and [1; 1 +mδ] contain

not more than mNδ intervals of the partition each. Finally, both maps are bijections

on the complement to [−1−mδ, 1 +mδ]. �

Lemma 5.13. Let Ω1 be the canonical partition of the map `mξ . Let Ω2 be another

partition of the class G. Then

#
{

(i, j) ∈ � | Ω2
i ⊂ [−1, 1] ∩ `mξ (Ω1

j ∩ Em)
}
≤ m2δs2m

1

Proof. We shall prove that∑
Din

2

|Ω2
i | ≤

∑
a
(m)
j ⊂Em

|`mξ (a
(m)
j )| ≤ sm1 δ;

then the Lemma will from from the lower bound on the size of the elements of partition.

Indeed, by induction one can show that∑
a
(k)
j ⊂Ek

|`kξ (a
(k)
j )| ≤ sk1 − 2k

s1 − 2
δ.
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The case k = 1 is trivial. Then we proceed∑
a
(k)
j ⊂Ek

|`kξ (a
(k)
j )| ≤

∑
a
(k−1)
j ⊂Ek−1

|`kξ (a
(k−1)
j )|+

∑
a
(k)
j ⊂Ek\Ek−1

|`kξ (a
(k)
j )| ≤

≤ s1δ ·
sk−1

1 − 2k−1

s1 − 2
+ 2kδ =

sk1 − 2k

s1 − 2
δ.

�

Corollary 1. Let Ω1 be the canonical partition of the map `mξ . Let Ω2 be another

partition of the class G; and let ̂̀mξ be a map defined as above on p. 24. Then

#{(i, j) ∈ � | Ω2
i ⊂ [−1, 1] ∩ ̂̀mξ (Ω1

j ∩ Em)} ≤ m2δs2m
1

Proof. The inequality for the map ̂̀mξ follows from the fact that images of all branches

under adjusted map ̂̀mξ are shorter than the images of the same branches under the

original map `mξ . �

Proposition 5.3. In the canonical bases of ΦΩ1 and ΦΩ2 the operator T defined by (33)

is a generalised toy dynamo.

Proof. We have checked the condition (D1) already. We should verify the following

conditions.

(D2) #Din ≤ 3m2δs2m
1 ;

(D3) for any pair (i, j) ∈ Sp we have that τij = 0 whenever |i− j| > mNδ;

(D4) #Ar ≥ 2m−2.

where

Ar: =
{
j ∈ {N1

l . . . N
1
r } | #{i ∈ {N2

l . . . N
2
r } | τij = 1} ≥ 2m −Nδ

}
;

Din : =
{

(i, j) ∈ {N2
l . . . N

2
r } × {N1

l . . . N
1
r } | τij 6= 1

}
.

To verify the condition (D2): #Din ≤ 3s2m
1 m2δ we shall show that

∑
Din
|Ω2

i | ≤ 3sm1 mδ

and then taking into account |Ω2
i | ≥

s−m1

m
we get the result. Let Em be the m-escaping

set as defined by (34) above.

We introduce three subsets of the set Din.

Din
1 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] \ ̂̀mξ (Ω1
j \ Em)}

— complement to the images of the main branches;

Din
2 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] ∩ ̂̀mξ (Ω1
j ∩ Em)}
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— image of the points that were mapped outside [−1, 1] and back;

Din
3 : = {(i, j) ∈ Din | Ω2

i ⊂ [−1, 1] ∩ ̂̀mξ (Ω1
j \ Em)}

— image of the points that were inside [−1, 1] in first m iterations.

We claim that Din = Din
1∪Din

2∪Din
3: indeed, for any pair of indices (i, j) ∈ Din we

have that Ω1
j ∩ Em 6= ∅. We shall show that

∑
Din

1 |Ω2
i | ≤ sm1 mδ,

∑
Din

2 |Ω2
i | ≤ sm1 mδ,

and #Din
3 ≤ s2m

1 m2δ.

We start with Din
1 and recall the original partition a(m) by the points of discontinuity

of the map `mξ . Let J(Din
1) be the union of intervals with indices corresponding to Din

1:

J(Din
1) : =

⋃
j : (i,j)∈Din

1

(Ω1
j \ Em).

We may write then

∑
Din

1

|Ω2
i | ≤ 2·#{a(m)

j ⊂ J(Din
1)}−

∑
a
(m)
j ⊂J(Din

1)

|̂̀mξ (a
(m)
j )| ≤ 2m+1−

∑
a
(m)
j ⊂[−1,1]\Em

|̂̀mξ (a
(m)
j )|;

and we shall show by induction in k that

2k+1 −
∑

a
(k)
j ⊂[−1,1]\Ek

|`kξ (a
(k)
j )| < sk1 · k2−kα, where ‖ξ‖∞ ≤ 2−kα.

The case k = 1 is trivial. Let b(k) be the canonical partition of the map `k0. This

partition has 2k elements in [−1, 1]. There exists a correspondence between the sets of

indices τ : {i ∈ Z | a(k)
i ⊂ (−1, 1)} → {−2k, . . . , 2k−1} that satisfies d`kξ |a(k)

j
= d`k0 |b(k)

τ(j)

and τ(j1) 6= τ(j2) for all j1 6= j2. In particular, sgn d̂̀kξ |a(k)
j

= sgn d̂̀k0 |b(k)
τ(j)

.

We split the intervals a
(k)
j into two groups:

Bk
1 : = {j ∈ {−2k, . . . , 2k − 1} | j = τ(i) for some i ∈ Z};

Bk
2 : = {−2k, . . . , 2k − 1} \Bk

1 .
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We also see that `k0(b
(k)
j ) = [−1, 1] for any interval of the partition b(k).

2k+1 −
∑

a
(k)
j ⊂[−1,1]\Ek

|`kξ (a
(k)
j )| =

(∑
j∈Bk1

+
∑
j∈Bk2

)
|`k0(b

(k)
τ(j))| −

∑
a
(k)
j ⊂[−1,1]\Ek

|`kξ (a
(k)
j )| =

=
∑
j∈Bk1

|`k0(b
(k)
j ) \ `kξ (akj )|+

∑
j∈Bk2

|`k0(b
(k)
j )| ≤

≤ s1

∑
j∈Bk−1

1

|`k−1
0 (b

(k−1)
j ) \ `k−1

ξ (ak−1
τ(j))|+ 2kδ + 2

∑
j∈Bk−1

2

|`k−1
0 (b

(k−1)
j )| ≤

≤ s1

(
2k−1 −

∑
Bk−1

1

|`k−1
ξ (ak−1

τ(j))|
)

+ 2kδ ≤

≤ sk1(k − 1)δ + 2kδ ≤ sk1kδ.

Therefore we deduce that

2m+1 −
∑

a
(k)
j ⊂[−1,1]\Ek

|`kξ (a
(k)
j )| < sm1 ·m2−mα, where ‖ξ‖∞ ≤ 2−kα.

Since there are not more than 2m main branches, and the length of intervals of the

partition Ω2 is bounded |Ω2
i | ≤ 2(s−m2 + s−m1 ), we get

2m+1 −
∑

a
(k)
j ⊂[−1,1]\Ek

|̂̀kξ (a(k)
j )| < sm1 ·m2−mα + 2m(s−m2 + s−m1 ) ≤ 2mδsm1 ;

provided s2 < 2 < s1 are chosen such that s1s2 > 21+α, which is possible.

The inequality for the set Din
2 follows from 1 of Lemma 5.13.

Finally, for the set Din
3 we observe that (i, j) ∈ Din

3 if and only if there exist two

main branches a
(m)
j1
, a

(m)
j2
⊂ Ω1

j such that for any k < m we have ̂̀kξ (a(m)
j1

) ⊂ [−1, 1] and̂̀k
ξ (a

(m)
j2

) ⊂ [−1, 1], and ̂̀mξ (a
(m)
j1

) ∩ ̂̀mξ (a
(m)
j2

) ∩ Ω2
i 6= ∅. Since both a

(m)
j1

and a
(m)
j2

are

belong to the same element of the partition we conclude that either |`mξ (a
(m)
j1

)| ≤ 2
s2

or |`mξ (a
(m)
j2

)| ≤ 2
s2

. By Lemma 5.5 there are at most 2m(1−α1) main branches with this

property. Without loss of generality we assume the latter. Then by definition of ̂̀mξ we

have |̂̀mξ (a
(m)
j2

)| ≤ 2
s2

+ 2(s−m2 + s−m1 ). Hence #Din
3 ≤ 2m(1−α1) 2Nδ

δ
. It follows that

#Din = #Din
1 + #Din

2 + #Din
3 ≤ 2s2m

1 mδ + 2m(1−α) 2Nδ

δ
≤ 3s2m

1 mδ,

as required.

The condition (D3) follows from the fact that the map ̂̀mξ is linear and on the

compliment R\[−1−mδ, 1+mδ] (in other words, the complement consists of two pieces

of continuity), and, moreover, it is given by ̂̀mξ (x) = x + b on these set. Therefore,
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τij = 0 whenever |i − j| > b ·Nδδ
−1. Obviously, |b| ≤ mδ, so we get τij = 0 whenever

|i− j| > mNδ.

�

Now it only remains to show that the generalised toy dynamo, constructed from the

map ̂̀mξ , is a good approximation to the operator `mξ∗.

Theorem 3. Let Ω2 be a partition of the class G. Consider a sequence ξ ∈ `∞(R)

with ‖ξ‖∞ ≤ 2−mα and let Ω1 be the canonical partition of the map `mξ . Then for the

operator T = ̂̀m
ξ∗ : Φ → Φ defined by (33) and for any essentially bounded integrable

function g ∈ L1(R) we have

‖(`mξ∗ − T )Wδg‖2 ≤
( s3

1

21/2+αs2

)m
·m‖g‖1.

Proof. Let ‖g‖Ω1 = 1 and let f = Wδg. Then ‖f‖∞ ≤ ‖g‖∞ ≤ 2m/2, since

‖g‖1 = max
(

2−m
∑
j∈Z

1

|Ω1
j |

∫
Ω1
j

|g(x)|dx, 2−m/2 sup
x∈R
|g(x)|

)
≤ 1.

By definition, we write

T f(x) =
∑

y∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(y)f(y); (39)

`mξ∗f(x) =
∑

y∈`−mξ (x)

sgn
(
`mξ
)′

(y)f(y). (40)

We begin with weighted L1-norm.

‖`mξ∗f − ̂̀mξ∗f‖2 =
∑
j∈Z

2−m

|Ω2
j |

∫
Ω2
j

∣∣T f(x)− `mξ∗f(x)
∣∣dx ≤

≤
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣T f(x)− `mξ∗f(x)
∣∣dx+ (41)

+
(s1

2

)m(∫ −1

−1−mδ
+

∫ 1+mδ

1

)∣∣T f(x)− `mξ∗f(x)
∣∣dx+ (42)

+ 2−m
N2
r∑

j=N2
l

1

|Ω2
j |

∫
Ω2
j

∣∣T f(x)− `mξ∗f(x)
∣∣dx. (43)

We estimate all three terms separately. By the very definition, on the infinite intervals

(1+mδ,+∞) and (−∞,−1−mδ) the map `mξ is given by `mξ (x) = (−1)m
(
x+

m∑
j=1

ξ(j)
)
.
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Therefore, the map ̂̀mξ is one to one on each of the intervals (−∞,−1 − mδ) and

(1 + δ,+∞); moreover,

`−mξ ((−∞,−1−mδ) ∪ (1 +mδ,+∞)) ⊂ (−∞,−1) ∪ (1,+∞).

Observe that for the last point aN ∈ R of the last point of discontinuity of the map `mξ

we have, using Lemma 6.3:

∫ +∞

aN

|f(x)|dx =

∫ +∞

aN

|(Wδg)(x)|dx =
+∞∑
j=N2

2−m

|Ω2
j |

∫
Ω2
j

|Wδg(x)|dx ≤ ‖Wδg‖1 ≤
mNδ

sm2 δ
.

The first difference we estimate by the sum of absolute values.∫ +∞

1+mδ

∣∣∣ ∑
y∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)

sgn
(
`mξ
)′

(y)f(y)
∣∣∣dx =

=

∫ +∞

1+mδ

∣∣∣f(̂̀−mξ (x))− f(`−mξ (x))
∣∣∣dx ≤ 2

(∫ −1

−∞
+

∫ +∞

1

)
|f(x)|dx =

= 2
(∫ a1

−∞
+

∫ −1

a1

+

∫ aN

1

+

∫ +∞

aN

)
|f(x)|dx,

where a1 and aN are the first and the last points of discontinuity of the map `mξ .

Summing up,∫ +∞

1+mδ

|`mξ∗f(x)−T f(x)|dx ≤ 4mδ sup |f |+ 4‖f‖1 ≤ 4
(
mδ2m/2 +

mNδ

sm2 δ

)
‖g‖1 ≤ 8

mNδ

sm2 δ
.

(44)

Similarly, ∫ −1−mδ

−∞
|`mξ∗f(x)− T f(x)|dx ≤ 8

mNδ

sm2 δ
. (45)

Summing up (44) and (45), and taking into account that ‖f‖1 = 1, we get an upper

bound for the first term (41):

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|`mξ∗f(x)− T f(x)|dx ≤ 16

mNδ

sm2 δ
. (46)

Now we use a rough upper bound to estimate the second term. Since by Corollary 2

of Lemma 5.12 any point has at most 2m2
(

2s1
s2

)m
preimages with respect to ̂̀mξ or `mξ ;
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and taking into account ‖f‖∞ ≤ 2m/2.∫ 1+mδ

1

|(`mξ∗ − T )f(x)|dx ≤
∫ 1+mδ

1

|`mξ∗f(x)|+ |T f(x)|dx ≤

≤ sup
x

(
|`mξ∗f(x)|+ |T f(x)|

)
mδ ≤

(s1

s2

)m
m32m+1δ‖f‖∞ ≤

≤ m2m(3/2−α)
(s1

s2

)m
.

Therefore we get an upper bound for the second term (42):(s1

2

)m(∫ 1+mδ

1

+

∫ −1

−1−mδ

)∣∣(`mξ∗ − T )f(x)
∣∣dx ≤ m2m(1/2−α)

(s2
1

s2

)m
. (47)

The third term (43) is a little more complicated. We split the sum into two terms:

long branches and all other intervals. Let a(m) be a partition of R by the points of

discontinuity (cf. (32)) and let a
(m)
n = (a

(m)
n , a

(m)
n+1) be its intervals. Let anl = (−1, a

(m)
nl+1)

and anr = (a
(m)
nr−1, 1) be the most left and the most right intervals of the partition

inside the interval [−1, 1]. Let Em be the m-escaping set as defined by (34) above. By

definition of `ξ∗ and T ,

2−m
N2
r∑

i=N2
l

1

|Ω2
i |

∫
Ω2
i

|`mξ∗f(x)− T f(x)|dx =

=

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣∣ ∑
y∈`−mξ (x)

sgn
(
`mξ
)′

(y)f(y)−
∑

ŷ∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(ŷ)f(ŷ)

∣∣∣dx.
Let us introduce two functions

h(j, x) : Z× R→ R; h(j, x) =
∑

y∈`−mξ (x)

sgn
(
`mξ
)′

(y)χ
a
(m)
j

(y)f(y);

and

ĥ(j, x) : Z× R→ R; ĥ(j, x) =
∑

ŷ∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(ŷ)χ

a
(m)
j

(ŷ)f(ŷ).

Then we see that ∑
j∈Z

h(j, x) =
∑

y∈`−mξ (x)

sgn
(
`mξ
)′

(y)f(y);
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and ∑
j∈Z

ĥ(j, x) =
∑

ŷ∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(ŷ)f(ŷ);

both sums are well-defined, because they have finite number of non-zero terms, since

by Corollary 2 of Lemma 5.12 the total number of preimages of a point is not more

than m32m+1sm1 s
−m
2 . Therefore we may write

2−m
N2
r∑

i=N2
l

1

|Ω2
i |

∫
Ω2
i

|`mξ∗f(x)− T f(x)|dx =

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣∣∑
j∈Z

(
h(j, x)− ĥ(j, x)

)∣∣∣dx =

=
( ∑
j<n

(m)
l

+

n
(m)
r∑

j=n
(m)
l

+
∑

j>n
(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣∣h(j, x)− ĥ(j, x)
∣∣∣dx =

=
( ∑
j<n

(m)
l

+
∑

a
(m)
j ⊂Em

+
∑

a
(m)
j 6⊂Em

+
∑

j>n
(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣∣h(j, x)− ĥ(j, x)
∣∣∣dx. (48)

First we estimate the finite sums:

( ∑
j<n

(m)
l

+
∑

j>n
(m)
r

) N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣∣h(j, x)− ĥ(j, x)
∣∣∣dx ≤

≤
( N1

l∑
k=N1

l −mNδ

+

N1
r+mNδ∑
k=N1

r

) ∑
a
(m)
j ⊂Ω1

k

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣h(j, x)
∣∣+
∣∣ĥ(j, x)

∣∣dx ≤
≤ 2mNδ · sup |τij| · sup |f | ≤ 2mNδ

(s1

s2

)m
‖g‖∞ ≤ 2m

( s3
1

21/2+αs2

)m
; (49)

for all s1 ≥ 2.

Observe that for any domain of a main branch a
(m)
j 6⊂ Em and y, ŷ ∈ a

(m)
j , such that

`mξ (y) = ̂̀m
ξ (ŷ) we have that sgn(`mξ )′(y) = sgn(̂̀mξ )′(ŷ) = 1 and (`mξ )′(y) > sm2 . As

before, let a
(m)
j = (a

(m)
j , a

(m)
j+1). Then

|ŷ − y| ≤ 1

inf |(`mξ )′|
max

(̂̀m
ξ (a

(m)
j )− `mξ (a

(m)
j ), `mξ (a

(m)
j+1)− ̂̀mξ (a

(m)
j+1)

)
≤ 1

s2m
2

.

Hence for any f ∈ Wδ(L1(R)) we see that

|f(ŷ)− f(y)| ≤ 1

s2m
2

sup(Wδg)′ ≤ ‖g‖∞
s2m

2 δ
≤ 2m/2

δs2m
2

.
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Summing up, since the total number of main branches is not more than 2m, we get for

the first term of (48):

∑
a
(m)
j 6⊂Em

N2
r∑

i=N2
l

2−m

|Ω2
i |

∫
Ω2
i

∣∣h(j, x)− ĥ(j, x)
∣∣dx ≤ 2−m

inf |Ω2
i |

∫ 1

−1

23m/2

δs2m
2

dx ≤ 2
(s121/2+α

s2
2

)m
.

(50)

To estimate the last term, we introduce two sets of indices

D
def
=
{

(s, t) ∈ � | Ω2
s ⊂ [−1, 1] ∩ `mξ (Ω1

t ∩ Em)
}

;

D̂
def
=
{

(s, t) ∈ � | Ω2
s ⊂ [−1, 1] ∩ ̂̀mξ (Ω1

t ∩ Em)
}
.

By Lemma 5.13 and its Corollary 1, we see #D ≤ m2δs2m
1 and #D̂ ≤ m2δs2m

1 . Observe

that

⋃
i,j

{
(a

(m)
j × Ω2

i ) | a
(m)
j ⊂ Em, Ω2

i ⊂ ̂̀mξ (a
(m)
j ∩ [−1, 1])

}
⊂

{
(Ω1

t × Ω2
s) | (s, t) ∈ �, Ω2

s ⊂ [−1, 1] ∩ ̂̀mξ (Ω1
t ∩ Em)

}
.

along with

⋃
i,j

{
(a

(m)
j × Ω2

i ) | a
(m)
j ⊂ Em, Ω2

i ⊂ `mξ (a
(m)
j ∩ [−1, 1])

}
⊂

{
(Ω1

t × Ω2
s) | (s, t) ∈ �, Ω2

s ⊂ [−1, 1] ∩ `mξ (Ω1
t ∩ Em)

}
.

. Hence we calculate an upper bound for the second term of (48):

2−m
∑

a
(m)
j ⊂Em

N2
r∑

i=N2
l

1

|Ω2
i |

∫
Ω2
i

∣∣h(j, x)− ĥ(j, x)
∣∣dx ≤

≤ 2−m sup |f |
∑

a
(m)
j ⊂Em

N2
r∑

i=N2
l

1

|Ω2
i |

∫
Ω2
i

( ∑
y∈`−mξ (x)

χ
a
(m)
j

(y) +
∑

ŷ∈̂̀−mξ (x)

χ
a
(m)
j

(ŷ)
)

dx ≤

≤ 2−m sup |g|
∑

(i,j)∈D∪D̂

1

|Ω2
i |

∫
Ω2
i

|τij|dx ≤ 2−m sup |g| · sup |τij| ·#(D ∪ D̂) ≤

≤ 1

2m
· ‖g‖∞ ·

(s1

s2

)m
·m2δs2m

1 ≤ m2 ·
( s3

1

21/2+αs2

)m
. (51)
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Now we collect the four estimates (46), (47), (49), (50), and (51) together and get for

any function g with ‖g‖1 = 1:

‖`mξ∗Wδg − ̂̀mξ∗Wδg‖L1,Ω2 ≤

≤ 16
mNδ

sm2 δ
+m

(2(1/2−α)s2
1

s2

)m
+ 2
(s121/2+α

s2
2

)m
+ 2m2

( s3
1

21/2+αs2

)m
≤

≤ 3m2
( s3

1

21/2+αs2

)m
. (52)

for m large enough and s2 < 2 < s1 chosen such that s1s
2
2 ≥ 21/2+2α.

Now we turn our attention to the supremum norm. We may write

sup
x

∣∣`mξ∗f(x)− ̂̀mξ∗f(x)
∣∣ = sup

x

∣∣∣ ∑
y∈̂̀−mξ (x)

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)

sgn
(
`mξ
)′

(y)f(y)
∣∣∣ ≤

≤ sup
x

∣∣∣∑
i∈Z

( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣ ≤

≤ sup
x

∣∣∣(N1
l −mNδ∑
−∞

+
+∞∑

N1
l −mNδ

)( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣+

+ sup
x

∣∣∣N1
r+mNδ∑

N1
l −mNδ

( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣. (53)

Observe that

sup
x

∣∣∣N1
r+mNδ∑

N1
l −mNδ

( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣ ≤

≤ 2 sup
x

N1
r+mNδ∑

N1
l −mNδ

#{y ∈ `−mξ (x) ∩ Ω1
i } sup

Ωi

|f(y)| ≤ 2 sup
x

N1
r+mNδ∑

N1
l −mNδ

|τij| sup
Ωi

|f(y)| ≤

≤ sup |τij|
N1
r+mNδ∑

N1
l −mNδ

sup
Ω1
i

|f(y)|. (54)
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Our goal is to estimate the last sum from above via weighted L1-norm. Recall that

f = Wδg. By definition of the weighted L1 norm, we see

‖Wδg‖1 ≥
N1
r+mNδ∑

N1
l −mNδ

2−m

|Ω1
i |

∫
Ω1
i

|Wδg| =

= 2−m
N1
r+mNδ∑

N1
l −mNδ

( 1

|Ω1
i |

∫
Ω1
i

|Wδg| − sup
Ω1
i

|Wδg|
)

+

N1
r+mNδ∑

N1
l −mNδ

2−m sup
Ω1
i

|Wδg|;

in particular,

2−m
N1
r+mNδ∑

N1
l −mNδ

sup
Ω1
i

|Wδg| ≤ ‖Wδg‖1 + 2−m
N1
r+mNδ∑

N1
l −mNδ

(
sup
Ω1
i

|Wδg| −
1

|Ω1
i |

∫
Ω1
i

|Wδg|
)
. (55)

We know that for any bounded, continuous, absolutely integrable, and piecewise

differentiable function f : R→ R and any finite interval I∣∣∣sup
I
f − 1

|I|

∫
I

f
∣∣∣ ≤ ∫

I

|f ′|.

Therefore

N1
r+mNδ∑

N1
l −mNδ

∣∣∣sup
Ω1
i

|Wδg| −
1

|Ω1
i |

∫
Ω1
i

|Wδg|
∣∣∣ ≤ N1

r+mNδ∑
N1
l −mNδ

∫
Ω1
i

∣∣∣ d

dx

∣∣Wδg(x)
∣∣∣∣∣dx <

<

∫ 2

−2

∣∣∣ d

dx

∣∣Wδg(x)
∣∣∣∣∣ ≤ ∫

R

∣∣∣ d

dx

∫
R
wδ(x−t)|g(t)|dt

∣∣∣dx ≤ ∫
R

∫
R

∣∣∣dwδ(x− t)
dx

∣∣∣·|g(t)|dtdx =

=

∫
R
|g(t)|

∫
R

∣∣∣dwδ(x− t)
dx

∣∣∣dxdt ≤ 1√
2πδ

∑
j∈Z

∫
Ω1
j

|g(t)|dt ≤ 2m

δ
sup |Ω1

j | · ‖g‖L1,Ω1 .

(56)

Hence, substituting (56) to (55), and using Lemma 6.3

N1
r+mNδ∑

N1
l −mNδ

sup
Ω1
i

|Wδg| ≤ 2m‖Wδg‖1 +
2m sup |Ω1

i |
δ

‖g‖1 ≤
(2mNδ

sm2 δ
+

2m

sm2 δ

)
‖g‖1 ≤

≤ 2m+1Nδ

sm2 δ
‖g‖1. (57)
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Finally, taking into account ‖g‖Ω1 = 1, we substitute (57) to (54) and get for the

second term of (53)

2−m/2 sup
x

∣∣∣N1
r+mNδ∑

N1
l −mNδ

( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣ ≤

≤ sup |τij|
2m/2+1Nδ

sm2 δ
≤ 2m2Nδ

δ

(21/2s1

s2
2

)m
. (58)

Let us define A(x)
def
= (x − s−m2 , x + s−m2 ). We have the following upper bound for

the first sum in (53):

sup
x

∣∣∣(N1
l −mNδ∑
−∞

+
+∞∑

N1
l −mNδ

)( ∑
y∈̂̀−mξ (x)∩Ω1

i

sgn
(̂̀m
ξ

)′
(y)f(y)−

∑
y∈`−mξ (x)∩Ω1

i

sgn
(
`mξ
)′

(y)f(y)
)∣∣∣ ≤

≤ sup
x∈R

sup
y1,y2∈A(x)

|f(y1)− f(y2)| ≤ sup
|y1−y2|≤2s−m2

|f(y1)− f(y2)| ≤ sup |f |
2δsm2

≤ 2m/2

2δsm2
. (59)

Summing up (58) and (59), we get in (53)

2−m/2 sup
x

∣∣`mξ∗f(x)− ̂̀mξ∗f(x)
∣∣ ≤ 2m2Nδ

δ

(21/2s1

s2
2

)m
+

1

2δsm2
≤ 3m

( s3
1

21/2+αs2

)m
, (60)

(by straightforward calculation).

�

6. Invariant cone in Φ.

In this section we construct an invariant cone in the space of essentially bounded and

absolutely integrable functions Φ for the operator W δ
2m
`mξ∗W δ

2m
, which is independent

of the choice of ‖ξ‖ ≤ δ. We exploit the properties of the Weierstrass transform that

we prove below.

6.1. Discretization and the Weierstrass transform toolbox. Here we prove a few

estimates showing that the image of the Weierstrass transform with Gaussian kernel

of a large variance compared to the size of elements of a partition may be very well

approximated by a step function on the partition.
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Definition 11. Given a partition Ω of the class G we define a linear discretization

operator DΩ:

DΩ : L1(R) ∩ L∞(R)→ ΦΩ ∩ L1(R) ∩ L∞(R);

DΩ : f 7→
∑
j∈Z

djχΩj , dj =
1

2

(
max

Ωj
f(x) + min

Ωj
f(x)

)
. (61)

Definition 12. The Weierstrass transform Wδ is a convolution with the Gaussian

kernel with variance δ2

Wδ : f 7→ wδ ∗ f, where wδ(x) =
1√
2πδ

e−
x2

2δ2 . (62)

Lemma 6.1. Let f : R→ R be a differentiable function. Then

‖f −DΩf‖Ω,L1 ≤ 2−m−1

∫
R

∣∣∣df(x)

dx

∣∣∣dx. (63)

Proof. Indeed, by straightforward calculation,

‖f −DΩf‖Ω,L1 =
∑
k∈Z

2−m

|Ωk|

∫
Ωk

|f(x)−DΩf(x)|dx ≤

≤
∑
k∈Z

2−m

|Ωk|

∫
Ωk

|max
Ωk

f(x)−min
Ωk

f(x)|dx =

≤ 2−m
∑
k∈Z

|max
Ωk

f(x)−min
Ωk

f(x)| ≤ 2−m
∑
k∈Z

∫
Ωk

∣∣∣df(x)

dx

∣∣∣dx =

= 2−m
∫
R

∣∣∣df(x)

dx

∣∣∣dx.
�

Lemma 6.2. Let Ω1 and Ω2 be two partitions of the class G(m, δ, s1, s2). Let DΩ1 be

a discretization operator and let Wδ be the Weierstrass transform defined above. Then

for any bounded integrable function f

‖DΩ1Wδf −Wδf‖1 ≤
max(sup |Ω1

j |, sup |Ω2
j |)

δ
‖f‖2 ≤

1

sm2 δ
‖f‖2.

Remark 5. The dispersion δ in the Gaussian kernel is the same δ as in the definition

of a partition of the class G.
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Proof. We begin with estimation of the L∞-norm. Let DΩ1Wδf =
∑

j∈Z djχΩ1
j
. Then

‖DΩ1Wδf −Wδf‖∞ = sup
x∈R

∣∣∣∫
R
wδ(x− t)f(t)dt−

∑
j∈Z

djχΩ1
j
(x)
∣∣∣ =

=
1

2
sup
k∈Z

∣∣∣max
Ω1
k

∫
R
wδ(x− t)f(t)dt−min

Ω1
k

∫
R
wδ(x− t)f(t)dt

∣∣∣ ≤
≤ 1

2
sup
k∈Z

(
|Ω1

k| ·max
Ω1
k

∣∣∣ d

dx

∫
R
wδ(x− t)f(t)dt

∣∣∣) ≤
≤ sup |Ω1

k| sup
x∈R

∣∣∣∫
R

d

dx
wδ(x− t)f(t)dt

∣∣∣ ≤
≤ sup |Ω1

k| sup |f(x)| sup
x∈R

1√
2πδ

(
e−

(x−t)2

2δ2

∣∣∣x
t=−∞

−e−
(x−t)2

2δ2

∣∣∣t=+∞

x

)
≤

≤ sup
|Ω1

k|
δ
‖f‖∞.

Now we proceed to the weighted L1-norm. Using Lemma 6.1 we get

‖DΩ1Wδf −Wδf‖1 ≤ 2−m−1

∫
R

∣∣∣ d

dx
Wδf(x)

∣∣∣dx =

= 2−m−1

∫
R

∣∣∣ d

dx

∫
R
wδ(x− t)f(t)dt

∣∣∣dx ≤ 2−m
∫
R

∫
R

∣∣∣dwδ(x− t)
dx

∣∣∣ · |f(t)|dtdx =

= 2−m−1

∫
R
|f(t)|

∫
R

∣∣∣dwδ(x− t)
dx

∣∣∣dxdt =
2−m√
2πδ

∑
j∈Z

∫
Ωj

|f(t)|dt ≤
sup |Ω2

j |
δ
‖f‖Ω2 .

�

Lemma 6.3. Let Ω1 and Ω2 be two partitions of the class G(δ, s1, s2). Then an upper

bound of the norm of the Weierstrass transform is given by

‖Wδf‖2 ≤ 2m · sup |Ω1
j | ·

Nδ

δ
‖f‖1 ≤

mNδ

sm2 δ
‖f‖1. (64)

Proof. We estimate the norm of the operator Wδ on step functions first. Let φ ∈ ΦΩ1

be a step function on Ω1. Assume that φ =
∑
j∈Z

cjχΩ1
j

and ‖φ‖Ω1 = 1, that is

max
(

2−m
∑
j∈Z

|cj|, 2−m/2 sup |cj|
)

= 1;

which implies ∑
j∈Z

|cj| ≤ 2m, sup |cj| ≤ 2m/2.

Then

Wδφ(x) =
∑
j∈Z

∫
Ω2
j

cjwδ(x− t)dt.
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So we calculate

‖Wδφ‖Ω2,L1
=
∑
k∈Z

2−m

|Ω2
k|

∫
Ω2
k

∣∣∣∑
j∈Z

cj

∫
Ω1
j

wδ(x− t)dt
∣∣∣dx ≤

≤
∑
k∈Z

∑
j∈Z

|cj|
2m|Ω2

k|

∫
Ω2
k

∫
Ω1
j

wδ(x− t)dtdx =

=
∑
j∈Z

|cj|
2m

∫
Ω1
j

∑
k∈Z

1

|Ω2
k|

∫
Ω2
k

wδ(x− t)dxdt =

=
∑
j∈Z

|cj|
2m

∫
Ω1
j

( ∑
|Ω2
k−Ω1

j |>mδ

+
∑

|Ω2
k−Ω1

j |<mδ

) 1

|Ω2
k|

∫
Ω2
k

wδ(x− t)dxdt.

We know that
1

|Ω2
k|

∫
Ω2
k

wδ(x− t)dx <
1

δ
.

We also observe that for any t ∈ Ω1
j∑

|Ω2
k−Ω1

j |>mδ

1

|Ω2
k|

∫
Ω2
k

wδ(x−t)dx ≤
1

inf |Ω2
k|

(∫ −t−mδ
−∞

wδ(x−t)+
∫ +∞

t+mδ

wδ(x−t)dx
)

dx ≤ e−m

inf |Ω2
k|
.

Therefore, taking into account that 2−m
∑

j∈Z |cj| ≤ 1,

‖Wδφ‖Ω2,L1
≤
∑
k∈Z

∑
j∈Z

|cj|
2m

( e−m

inf |Ω2
k|

+
mNδ

δ

)
|Ω1

j | ≤ sup |Ω1
j |
( e−m

inf |Ω2
k|

+
mNδ

δ

)
.

Now we consider arbitrary function f ∈ L1(R) ∩ L∞(R) with ‖f‖1 = 1. Then

‖Wδf‖Ω2,L1
=
∑
k∈Z

2−m

|Ω2
k|

∫
Ω2
k

∣∣∣∑
j∈Z

∫
Ω1
j

wδ(x− t)f(t)dt
∣∣∣dx ≤

≤ 2−m
∑
j∈Z

∫
Ω1
j

|f(t)|
∑
k∈Z

1

|Ω2
k|

∫
Ω2
k

wδ(x− t)dxdt =

= 2−m
∑
j∈Z

∫
Ω1
j

|f(t)|
( ∑
|Ω2
k−Ω1

j |>mδ

+
∑

|Ω2
k−Ω1

j |<mδ

) 1

|Ω2
k|

∫
Ω2
k

wδ(x− t)dxdt ≤

≤ 2−m
∑
j∈Z

∫
Ω1
j

|f(t)|
( e−m

inf |Ω2
k|

+
3mNδ

δ

)
dt ≤

≤ sup |Ω1
j |
( e−m

inf |Ω2
k|

+
3mNδ

δ

)
.

In the last inequality we take into account that

‖f‖Ω1,L1
= 2−m

∑
j∈Z

1

|Ω1
j |

∫
Ω1
j

|f(t)|dt ≤ 1.
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Now we recall that inf |Ω1
j | ≥ s−m1 /m and therefore, for s1 < e

e−m

inf |Ω2
k|

=
(s1

e

)m
� 1,

while
Nδ

δ
= 2m(1−α logs1 2+α) > 2m.

Therefore we conclude

‖Wδf‖Ω2,L1
≤ 2 sup |Ω1

j | ·
3mNδ

δ
.

The upper bound of the supremum norm is easy.

‖Wδf‖∞ = sup
x∈R

∣∣∣∫
R
wδ(x− t)f(t)dt

∣∣∣ ≤ sup
x∈R
|f(x)|.

�

Lemma 6.4. Let Ω be a partition of the class G(s1, s2, δ,m) where the parameters s1

and δ = 2−mα satisfy the inequality log2 s1 < 2α then

‖Wδχ[−1,1] − χ[−1,1]‖Ω ≤ 2−m/2. (65)

Proof. Obviously, sup |Wδχ[−1,1](x) − χ[−1,1](x)| ≤ 1. Now we have to find an upper

bound for ‖Wδχ[−1,1] − χ[−1,1]‖Ω,L1 .

‖Wδχ[−1,1] − χ[−1,1]‖Ω,L1 =
∑
j∈Z

2−m

|Ωj|

∫
Ωj

∣∣∣∫
R
wδ(x− t)χ[−1,1](t)dt− χ[−1,1](x)

∣∣∣dx =

We split the sum into two parts: over the intervals inside [−1, 1] and the rest

=
Nr∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−
∫ 1

−1

wδ(x− t)dt
)

dx+
(∑
j>Nr

+
∑
j<Nl

)2−m

|Ωj|

∫
Ωj

∫ 1

−1

wδ(x− t)dtdx.

(66)

We begin with the first term of (66), that is the sum of the intervals of partition inside

the interval [−1, 1].

Nr∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx =

=
(Nl+mNδ∑

j=Nl

+

Nr−mNδ∑
j=Nl+mNδ

+
Nr∑

j=Nr−mNδ

)2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx. (67)

— 42 —



O. KOZLOVSKI & P. VYTNOVA

We estimate each term separately. The first term of (67) has only mNδ elements:

Nl+mNδ∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−
∫ 1

−1

wδ(x− t)dt
)

dx ≤
Nl+mNδ∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−
∫ 1

−1

wδ(t+1)dt
)

dx ≤

≤ m2−mNδ

(
1−

∫ 2

0

wδ(t)dt
)
.

We have the following upper bound for the second term of (67), since for |t| < 1−mδ
the integral

∫ 1

−1
wδ(x− t)dx is close to 1:

Nr−mNδ∑
j=Nl+mNδ

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx ≤

≤
Nr−mNδ∑
j=Nl+mNδ

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(1−mδ − t)dt
)

dx ≤

≤ 2−m(Nr −Nl − 2mNδ)
(

1−
∫ 2−mδ

−mδ
wδ(t)dt

)
.

The third term of (67) has only mNδ elements, so we write

Nr∑
j=Nr−mNδ

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx ≤

≤
Nr∑

j=Nr−mNδ

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(1− t)dt
)

dx ≤ mNδ2
−m
(

1−
∫ 2

0

wδ(t)dt
)
.

Putting all three inequalities together, we get the following upper bound for the first

term of (66):

Nr∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx ≤

≤ 2Nδ

2m
·
(1

2
+ δ
)

+
(

1− Nδ

2m−1

)(
1−

∫ 2−mδ

−mδ
wδ(t)dt

)
≤

≤ 2Nδ

2m
·
(1

2
+ δ
)

+
(

1− Nδ

2m

)(∫ −mδ
−∞

wδ(t)dt+

∫ +∞

2−mδ
wδ(t)dt

)
≤

≤ 2Nδ

2m
·
(1

2
+ δ
)

+
(

1− Nδ

2m

)(e−m + e−1/δ

√
π

)
≤ 2Nδ

2m
.
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Recall that Nδ ≤ 2m(1−α logs1 2) by definition of the partition of the class G. Therefore

we complete the estimation of the first term of (66) :

Nr∑
j=Nl

2−m

|Ωj|

∫
Ωj

(
1−

∫ 1

−1

wδ(x− t)dt
)

dx ≤ 2−mα logs1 2 ≤ 2−m/2. (68)

Now we proceed to the upper bound for the second term of (66).(∑
j>Nr

+
∑
j<Nl

)2−m

|Ωj|

∫
Ωj

∫ 1

−1

wδ(x− t)dtdx ≤

≤ 2−m

inf |Ωj|

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)∫ 1

−1

wδ(x−t)dtdx+
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∫ 1

−1

wδ(x−t)dtdx ≤

≤ mδ

2m inf |Ωj|

∫ 2

0

wδ(t)dt+

∫ 1

−1

∫ +∞

1+mδ

wδ(x+ t)dxdt+

∫ 1

−1

∫ +∞

1+mδ

wδ(x− t)dxdt ≤

≤ 2mδ

2m inf |Ωj|

(1

2
− δ
)

+

∫ 1

−1

∫ +∞

1+mδ

wδ(t− 1)dtdx+

∫ 1

−1

∫ +∞

1+mδ

wδ(t− 1)dtdx ≤

≤ 2mδ

2m inf |Ωj|
+ 2e−m.

We observe that

2mδ

2m inf |Ωj|
+ 2e−m =

2msm1
2m(1+α)

+ e−m ≤ 2−m/2−1,

under condition that s1 < 21/2+α. Therefore, we get the following upper bound for the

second term of (66)(∑
j>Nr

+
∑
j<Nl

)2−m

|Ωj|

∫
Ωj

∫ 1

−1

wδ(x− t)dtdx ≤ 2−m/2−1. (69)

Summing up (68) with (69), we get (65). �

Proposition 6.1. Let Ω1 and Ω2 be two partitions of the class G(δ). Let ε1 = 2m(γ−1/2).

Let φ ∈ Cone (ε1,Ω
1) be a step function. (See p. 3 for a general definition of cones).

Then

‖DΩ2Wδφ‖2 >
1

4
‖φ‖1. (70)

Proof. By Lemma 6.3 above, for any φ ∈ Cone (ε1,Ω
1),

‖Wδφ‖2 ≤
mNδ

sm2 δ
‖φ‖1.

By Lemma 6.2,

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖∞ ≤ 2. (71)
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We can find an upper bound for the weighted L1-norm using Lemma 6.1,

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖Ω2,L1
≤ 2−m−1

∫
R

∣∣∣ d

dx
Wδχ[−1,1](x)

∣∣∣dx =

= 2−m−1

∫
R

∣∣∣∫ 1

−1

d

dx
wδ(x− t)dt

∣∣∣dx = 2−m−1

∫
R
|wδ(x+ 1)− wδ(x− 1)|dx ≤ 2−m.

(72)

Therefore

‖DΩ2Wδχ[−1,1] −Wδχ[−1,1]‖2 ≤ 21−m/2. (73)

Using Lemma 6.4,

‖Wδχ[−1,1]‖Ω1 ≥ ‖χ[−1,1]‖2 − ‖Wδχ[−1,1] − χ[−1,1]‖2 ≥ 1− 2−m/2.

Consider a step function η = dχ[−1,1]+ψ ∈ Cone (ε1,Ω
1), with ‖ψ‖1 ≤ d. By Lemma 6.2

‖Wδψ −DΩ2Wδψ‖2 ≤
1

sm2 δ
‖ψ‖1 ≤ d

2m(γ1−1/2)

sm2 δ
; (74)

and by Lemma 6.3

‖Wδψ‖2 ≤
mNδ

sm2 δ
‖ψ‖1 ≤ d

Nδ2
m(γ1−1/2)

sm2 δ
; (75)

summing up the last two (74) and (75) together

‖DΩ2Wδψ‖2 ≤ d2m(γ1−1/2)Nδ + 1

sm2 δ
.

We have the following upper bound for the error of approximation for a function from

the cone Cone (ε1,Ω
2), using the inequality (72), (73), and (74),

‖Wδφ−DΩ2Wδφ‖2 ≤ d‖Wδχ[−1,1] −DΩ2Wδχ[−1,1]‖2 + ‖Wδψ −DΩ2Wδψ‖2 ≤

≤ d
(

21−m/2 +
2m(γ1−1/2)

sm2 δ

)
. (76)

We may also write using and Lemma 6.4 and (75)

‖Wδφ‖2 = ‖dWδχ[−1,1] +Wδψ‖2 ≥ d‖Wδχ[−1,1]‖2 − ‖Wδψ‖2 ≥

≥ d
(
‖χ[−1,1]‖2 − ‖Wδχ[−1,1] − χ[−1,1]‖2

)
−‖Wδψ‖2 ≥

≥ d
(1

2
− 2−m/2 − Nδ2

m(γ1−1/2)

sm2 δ

)
. (77)
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Hence we deduce from (76) and (77)

‖DΩ2Wδφ‖2 ≥ ‖Wδφ‖2 − ‖Wδφ−DΩ2Wδφ‖2 ≥

≥ d
(1

2
− 2−m/2 − 21−m/2 − 2m(γ1−1/2) (Nδ + 1)

sm2 δ

)
.

We can simplify and write, dividing by d,

‖DΩ2Wδφ‖2 >
1

4
‖φ‖1.

�

6.2. Constructing an invariant cone. We shall construct an invariant cone around

the cones for the discretized operator T . First we extend the cones from ΦΩi to Φ and

obtain a pair of cones for WδT ; which depend on the choice of the first partition and

hence on the sequence ξ. Then we get rid of this dependence using estimeates from

the previous Subsection.

Proposition 6.2. Let Ω1, Ω2, Ω3 be partitions of the class G(δ). Let T : ΦΩ1 → ΦΩ2

be a generalised toy dynamo. There exists a number 15
16
< α < 1 such that for δ = 2−mα

we may choose γ2
def
= γ1 + α(1 − logs1 2) < 1/2, and then for any η ∈ Cone (1,Ω1) we

have

DΩ3WδT : Cone
(
1,Ω1

)
→ Cone

(
2m(γ2+1/2)

sm2
,Ω3

)
(78)

‖DΩ3WδT η‖3 ≥ 2m−3‖η‖1 (79)

(See p. 3 for definition of the cone).

Proof. We define an operator E : ΦΩ1 → ΦΩ2 as before in (27). According to Theorem 2

p. 16, we know that T : Cone (1,Ω1)→ Cone
(
2m(γ1−1/2),Ω2

)
. Consider a step function

η = dχ[−1,1] +ψ ∈ Cone (1,Ω1). Then T η = d(N1
r −N1

l )χ[−1,1] +ψ1, where the norm is

bounded ‖ψ1‖2 = ‖Eψ + (T − E)η‖2 ≤ d2m(1/2+γ1). We may write

DΩ3WδT η = DΩ3Wδ(d(N1
r −N1

l )χ[−1,1] + ψ1).

Using Lemmas 6.2 and 6.3

‖DΩ3Wδψ1‖3 ≤ ‖Wδψ1‖3 + ‖DΩ3Wδψ1 −Wδψ1‖3 ≤
mNδ + 1

sm2 δ
‖ψ1‖2 ≤

≤ d2m(1/2+γ1)mNδ + 1

sm2 δ
. (80)
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So we conclude using Lemma 6.4 that

‖DΩ3Wδχ[−1,1] − χ[−1,1]‖3 ≤

≤ ‖DΩ3Wδχ[−1,1] −Wδχ[−1,1]‖3 + ‖Wδχ[−1,1] − χ[−1,1]‖3 ≤ 3 · 2−m/2 (81)

Then we may write

DΩ3Wδ(d(N1
r −N1

l )χ[−1,1]) = d(N1
r −N1

l )χ[−1,1] + ψ2,

where ψ2 ∈ ΦΩ3 and (81)

‖ψ2‖3 ≤ d(N1
r −N1

l )‖DΩ3Wδχ[−1,1] − χ[−1,1]‖3 ≤ d(N1
r −N1

l )21−m/2.

Hence

DΩ3WδT η = DΩ3Wδ(d(N1
r −N1

l )χ[−1,1] + ψ1) = DΩ3Wδψ1 + d(N1
r −N1

l )χ[−1,1] + ψ2,

where using (80)

‖DΩ3Wδψ1 + ψ2‖3

d(N1
r −N1

l )
≤ ‖ψ2‖3 + ‖DΩ3Wδψ1‖3

d(N1
r −N1

l )
≤ 21−m/2 +

2(γ1+1/2)m

N1
r −N1

l

· mNδ + 1

sm2 δ
≤

≤ 21−m/2 +
2(γ1−1/2)m+3Nδ

sm2 δ
.

Substituting δ = 2−αm and Nδ = 2m(1−α logs1 2), we set γ2 : = γ1 + α(1 − logs1 2) and

get

D3WδT η = d̃χ[−1,1] + ψ3, where ‖ψ3‖ ≤ d̃ · 2m(γ2+1/2)

sm2
.

�

Definition 13. We extend the operator E defined between two spaces of step functions

by (27) to bounded integrable functions. Given a partition Ω1 of the class G we consider

a map g0 : R→ R by

g0(x) =

1 + 2x−2b
a−b , if a < x < b for some interval (a, b) = Ω1

j ⊂ [−1, 1]

x, otherwise.
(82)

and introduce a linear operator E : L1(R)→ L∞(R) defined by:

(Ef)(x) =
∑

y∈g−1
0 (x)

f(y). (83)
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Lemma 6.5. For any bounded integrable function f∫
R
|`mξ∗f(x)|dx =

∫
R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1.

Where 0 < γ1 ≤ 1/8 is chosen such that

mδ · s
3m
1

2msm2
< 2mγ1 .

Remark 6. The statement of Lemma 6.5 and the argument below hold true for the

map ̂̀mξ as well.

Proof. Let a(m) : = {−∞ = a
(m)
0 < a

(m)
1 < . . . < a

(m)
N+1 = +∞} be a set of points of

discontinuity of the map `mξ∗, and let a
(m)
j = (a

(m)
j , a

(m)
j+1) be intervals of the partition.

We can

Let us introduce a set of indices of long branches

I
(m)
l

def
=
{

1 ≤ j ≤ N | a(m)
j is a domain of a long branch of the map `mξ

}
.

split the integral into two∫
R
|`mξ∗f(x)|dx =

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|`mξ∗f(x)|dx+

∫ 1+mδ

−1−mδ
|`mξ∗f(x)|dx.

To estimate the first term we recall that `mξ∗(x) = (−1)mx +
m∑
j=1

ξ(j) for x < a
(m)
0 and

x > a
(m)
N . Since ‖ξ‖∞ < δ, we see that

∣∣ m∑
j=1

ξ(j)
∣∣ < mδ and write

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)
|`mξ∗f(x)|dx =

(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣ ∑
y∈`−mξ (x)

sgn(`mξ )′(y)f(y)
∣∣∣dx =

=
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣(−1)mf
(
(−1)m(x−

m∑
j=1

ξ(j))
)∣∣∣dx =

=
(∫ −1−mδ

−∞
+

∫ +∞

1+mδ

)∣∣∣f((−1)m(x−
m∑
j=1

ξ(j))
)∣∣∣dx ≤

≤
(∫ −1

−∞
+

∫ +∞

1

)
|f(x)|dx =

(∫ −1

−∞
+

∫ +∞

1

)
|Ef(x)|dx.
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Consider the second term.∫ 1+mδ

−1−mδ

∣∣`mξ∗f(x)
∣∣dx =

∫ 1+mδ

−1−mδ

∣∣∣ ∑
y∈`−mξ (x)

sgn(`mξ )′(y)f(y)
∣∣∣dx =

=

∫ 1+mδ

−1−mδ

∣∣∣ N∑
j=1

sgn(`mξ )′(`−mξ (x) ∩ a
(m)
j )f(`−mξ (x) ∩ a

(m)
j )

∣∣∣dx =

=

∫ 1+mδ

−1−mδ

∣∣∣( ∑
j∈I(m)

l

+
∑
j /∈I(m)

l

)
sgn(`mξ )′(`−mξ (x) ∩ a

(m)
j )f(`−mξ (x) ∩ a

(m)
j )

∣∣∣dx ≤
≤
∫ 1+mδ

−1−mδ

∣∣∣ ∑
j∈I(m)

l

f(`−mξ (x) ∩ a
(m)
j )

∣∣∣dx+

+

∫ 1+mδ

−1−mδ

∣∣∣ ∑
j /∈I(m)

l

sgn(`mξ )′(`−mξ (x) ∩ a
(m)
j )f(`−mξ (x) ∩ a

(m)
j )

∣∣∣dx ≤
≤
∑
j∈I(m)

l

∫
a
(m)
j

|f(y)|d(`mξ (y)) +
∑
j /∈I(m)

l

∫
a
(m)
j

|f(y)|d(`mξ (y)) sgn(`mξ )′(y) ≤

≤
∑
j∈I(m)

l

∫
a
(m)
j

|f(y)|
|`mξ (a

(m)
j )|

|a(m)
j |

dy +
∑
j /∈I(m)

l

∫
a
(m)
j

|f(y)|
|`mξ (a

(m)
j )|

|a(m)
j |

dy ≤

≤
N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|
|g0(Ω1

j)|
|Ω1

j |
dy + sup |f(x)|

∑
j∈I(m)

l

|`mξ (a
(m)
j )| ≤

≤
N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|
|g0(Ω1

j)|
|Ω1

j |
dy + sup |f(x)| · sup |τij| · sup |Ω2

j | ·#(Din).

Observe that

N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|d(g0(y)) =

N1
r∑

j=N1
l

∫ 1

−1

|f(g−1
0 (x) ∩ Ω1

j)|dx =

∫ 1

−1

|Ef(x)|dx.

So we may proceed

∫ 1+mδ

−1−mδ

∣∣`mξ∗f(x)
∣∣dx ≤ 2

∫ 1

−1

|Ef(y)|dy + sup |f(x)| · sup |τij| · sup |Ω2
j | ·#(Din) ≤

≤ 2

∫
R
|Ef(x)|dx+ 2m/2‖f‖1 ·m2

(s1

s2

)m
· 3m2δs2m

1 .
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Recall that mδ · s3m1
2msm2

< 2mγ1 so we may conclude

∫ 1+mδ

−1−mδ

∣∣`mξ∗f(x)
∣∣dx ≤ 2

∫
R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1.

�

Lemma 6.6. Let Ω1, Ω2, and Ω3 be partitions of the class G. Let T be a linear operator

on the main space such that T : ΦΩ1 → ΦΩ1 is generalised toy dynamo. Assume that

∫
R
|T f(x)|dx ≤

∫
R
|Ef(x)|dx+

2m(3/2+γ1)

sm2
‖f‖1;

where 0 < γ1 ≤ 1/8 is chosen such that mδ · s3m1
2msm2

< 2mγ1. Then for any essentially

bounded and absolutely integrable function f

‖WδT f‖3 ≤ 5m
Nδ

δ
‖f‖1. (84)

Proof. We shall show that there exists a polynomial Q̃ such that

‖WδEf‖3 ≤
Nδ

δ
Q̃(m)‖f‖1,

and the Lemma will follow. By direct calculation, substituting Nδ = 2m(1−α logs1 2) and

δ = 2−αm we see that

2m(3/2+γ1)

sm2
≤ Nδ

δ
,

under condition that 21/2+γ1+α(logs1 2−1) ≤ s2, i.e. for s2 < 2 sufficiently large, or, in

other words, for κ = log s1
s2

small enough.

By definition of the norm we calculate,

2m‖f‖1 ≥
∑
j∈Z

∫
Ω1
j

|f(y)|
|Ω1

j |
dy =

N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|
|Ω1

j |
dy+

+
( N1

l∑
j=N1

l −mNδ

+

N1
r+mNδ∑
j=N1

r

)∫
Ω1
j

|f(y)|
|Ω1

j |
dy +

( ∑
j<N1

l −mNδ

+
∑

j>N1
r+mNδ

)∫
Ω1
j

|f(y)|
|Ω1

j |
dy. (85)

— 50 —



O. KOZLOVSKI & P. VYTNOVA

We estimate each of three terms separately. For the first term we have the following

lower bound, using |Ω1
j | · dg0(y) = 2 for any y ∈ Ω1

j ⊂ [−1, 1].

N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|
|Ω1

j |
dy =

N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|dg0(y)

2
dy =

1

2

N1
r∑

j=N1
l

∫
Ω1
j

|f(y)|dg0(y) =

=
1

2

N1
r∑

j=N1
l

∫ 1

−1

|f(g−1
0 (x) ∩ Ω1

j)|dx ≥
1

2

∫ 1

−1

|(Ef)(x)dx.

Thus for any function f ∫ 1

−1

|Ef(x)|dx ≤ 2m+1‖f‖1. (86)

Consider the second term of (85) now:

( N1
l∑

j=N1
l −mNδ

+

N1
r+mNδ∑
j=N1

r

)∫
Ω1
j

|f(y)|
|Ω1

j |
dy ≥ 1

sup |Ω1
j |

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|f(y)|dy ≥

≥ 1

sup |Ω1
j |

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|(Ef)(y)|dy

Thus

(∫ −1

−1−mδ
+

∫ 1+mδ

1

)
|(Ef)(y)|dy ≤ 2m · sup |Ω1

j | · ‖f‖1. (87)

We have for the remaining term of (85)

( ∑
j<N1

l −mNδ

+
∑

j>N1
r+mNδ

)∫
Ω1
j

|f(y)|
|Ω1

j |
dy = 2m

(∫ +∞

1+mδ

+

∫ −1−mδ

−∞

)
|Ef(y)|dy. (88)

Summing up the three inequalities (86), (87) and (88) together, we get

∫
R
|Ef(y)|dy ≤ 2m+2‖f‖1. (89)
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Taking the last inequality (89) into account, we estimate the norm

‖WδEf‖3 = 2−m
∑
j∈Z

1

|Ω3
j |

∫
Ω3
j

∣∣∣∫
R
wδ(x− t)(Ef)(t)dt

∣∣∣dx ≤
≤ 2−m

∑
j∈Z

1

|Ω3
j |

∫
Ω3
j

∫
R
wδ(x− t)|Ef(t)|dtdx =

= 2−m
∑
j∈Z

1

|Ω3
j |

∫
Ω3
j

∑
k∈Z

∫
Ω1
k

wδ(x− t)|Ef(t)|dtdx =

= 2−m
∑
k∈Z

∫
Ω1
k

|Ef(t)|
( ∑
|Ω3
j−Ω1

k|>mδ

+
∑

|Ω3
j−Ω1

k|<mδ

) 1

|Ω3
j |

∫
Ω3
j

wδ(x− t)dxdt ≤

≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ

δ

)∫
R
|Ef(t)|dt ≤

≤ 4mNδ

δ
‖f‖1.

Taking into account ∫
R
|T f(t)|dt ≤

∫
R
|Ef(t)|dt+

2m(3/2+γ1)

sm2
‖f‖1,

we calculate in a similar way

‖WδT f‖3 ≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ

δ

)∫
R
|T f(t)|dt ≤

≤ 2−m
( e−m

inf |Ω3
j |

+
mNδ

δ

)(∫
R
|Ef(t)|dt+

2m(3/2+γ1)

sm2
‖f‖1

)
≤

≤ Nδ

δ
·
(

4m+
2m(1/2+γ1)

sm2

)
‖f‖1

< 5m
Nδ

δ
‖f‖,

for 0 < γ1 < 1/8 and m large enough. �

Recall general definition of cones associated to a partition Ω (p. 3):

Cone (r,Ω) =
{
η = dχ[−1,1] + ϕ | ϕ =

∑
j∈Z

cjχΩj ;
Nr∑
j=Nl

cj = 0; ‖ϕ‖Ω ≤ dr
}
. (10);

Ĉone (r, ε,Ω)
def
=
{
f = η + g, η ∈ Cone (r,Ω) , ‖g‖Ω ≤ ε‖η‖Ω

}
(11).

Theorem 4. Let Wδ be the Weierstrass transform defined by (62). Let Ω1, Ω2, and Ω3

be three partitions of the class G. Let a linear operator T : L1(R) → L∞(R) be such

that T (ΦΩ1) ⊂ ΦΩ2 is a generalised toy dynamo. Then for any m sufficiently large and
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κ = log s1
s2

sufficiently small there exists 3
4
< α < 1, r2(m) � 1, ε2(m) � ε1(m) � 1

such that WδT (Ĉone (1, ε1,Ω
1)) ⊂ Ĉone (r2, ε2,Ω

3) with δ = 2−mα. Moreover, the norm

of any function f ∈ Ĉone (1, ε1,Ω
1) grows exponentially fast ‖WδT f‖3 ≥ 2m−5‖f‖1.

Proof. By Theorem 2 on p. 16 we know that T (Cone (1,Ω1)) ⊂ Cone
(
2m(γ1−1/2),Ω2

)
.

Consider a function η = dχ[−1,1] + ψ ∈ Cone (1,Ω1), such that
∫ 1

−1
Eψ = 0. By

Proposition 5.2, for any step function ϕ ∈ ΦΩ1 we have ‖(T − E)ϕ‖2 ≤ 2m(1/2+γ1)‖ϕ‖1.

Using Lemma 5.3, we calculate

‖T η‖2 ≥ d‖T χ[−1,1]‖2−‖T ψ‖2 ≥ d‖Eχ[−1,1] +(T −E)χ[−1,1]‖2−‖(T −E)ψ+Eψ‖2 ≥

≥ d(N1
r −N1

l )− 2d(2m(1/2+γ1) + 1) >
d

2
(N1

r −N1
l ) ≥ d2m−3 (90)

Consider a function f = η + g ∈ Ĉone (1, ε1,Ω
1), where η ∈ Cone (1,Ω1) as above is a

piecewise constant part; and ‖g‖1 < dε1. We may write WδT f = WδT η +WδT g.

We shall show that for δ = 2−mα large enough compared to the size of particles of

the partition, WδT f may be approximated by a step function from ΦΩ3 . We write each

term as a sum of a step function with remainder, and estimate the Ω3 norm of every

term. Let

WδT η = φ1 + g1, where φ1 = DΩ3WδT η, and g1 = WδT η −DΩ3WδT η; (91)

WδT g = φ2 + g2, where φ2 = DΩ3WδT g, and g2 = WδT g −DΩ3WδT g. (92)

Using Lemma 6.2 and Proposition 5.2 we estimate the Ω3 norm of the first remainder

term ‖g1‖.

‖g1‖3 = ‖WδT η −DΩ3WδT η‖3 ≤
‖T η‖2

sm2 δ
≤ 2d(N1

r −N1
l )

sm2 δ
≤ d2m

sm2 δ
, (93)

since

‖T η‖2 = ‖(T − E)η‖2 + ‖Eη‖2 ≤ d2m(1/2+γ1) + d(N1
r −N1

l ) ≤ 2d(N1
r −N1

l ).

We also know that ‖T g‖2 ≤ sm1 ‖g‖1, therefore we have the following upper bound for

the second remainder term ‖g2‖3:

‖g2‖3 = ‖WδT g −DΩ3WδT g‖3 =
‖T g‖2

sm2 δ
≤ dsm1 ε1

sm2 δ
. (94)

Since T η ∈ Cone
(
2(γ1−1/2),Ω2

)
we may apply Proposition 6.1 to estimate ‖φ1‖3, us-

ing (90)

‖φ1‖3 = ‖DΩ3WδT η‖3 ≥
1

4
‖T η‖2 ≥ d2m−5.
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Finally, for ‖φ2‖3 we get, using Lemma 6.6

‖φ2‖3 = ‖DΩ3WδT g‖3 ≤ ‖WδT g‖3 + ‖WδT g −DΩ3WδT g‖3 ≤

≤ 5m
Nδ

δ
‖g‖1 + ‖g2‖ ≤ d

ε1

δ

(
5mNδ +

sm1
sm2

)
. (95)

We would like to find a number 0 < r2(m)� 1 such that for some d0

φ1 + φ2 = d0χ[−1,1] + ψ with ‖ψ‖3 ≤ d0r2; (96)

and two numbers 0 < ε2(m)� ε1(m) < 1 such that the following inequality holds true

‖g1 + g2‖3 ≤ d0ε2. (97)

We apply Proposition 6.2 p. 46 to the function η ∈ Cone (1,Ω1), and get

φ1 = DΩ3WδT η = d̃χ[−1,1] + ψ1 where ‖ψ1‖3 ≤ d̃
2m(γ2+1/2)

sm2
and 2m−5d < d̃ < 2md.

(98)

with γ2 : = γ1 + α(1− logs1 2). Using the inequalities (95) and (98) above we write

‖ψ‖3 = ‖φ2 + ψ1‖3 ≤ d
ε1

δ

(
Nδ +

sm1
sm2

)
+ d2m(γ2+3/2) 1

sm2
. (99)

Therefore the condition (96) on r2 holds true if

ε1

δ

(
Nδ +

sm1
sm2

)
< r22m−3; (100)

2m(γ2+3/2)

sm2
< r22m−3. (101)

We can find a lower bound on d0 from (96), using upper bound for ‖ψ‖3 from (99)

‖d0χ[−1,1]‖3 = ‖φ1 + φ2 − ψ‖3 = ‖d̃χ[−1,1] + ψ1 + φ2 − ψ‖3 ≥

≥ ‖d̃χ[−1,1]‖3 − ‖ψ1 + φ2‖3 − ‖ψ‖3 ≥ d2m−4 − 2‖ψ‖3 ≥

≥ d2m−4 − dr22m−1 ≥ d2m−2, (102)

for all r2 < 1/2.

We can find an upper bound for ‖g1 + g2‖ summing up (93) with (94). Then the

second inequality (97) on ε2 will follow from

2m

δsm2
+
ε1s

m
1

δsm2
≤ 2m−2ε2. (103)
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We claim that the three inequalities (100), (101), (103), and conditions of Theorem 2 on

p. 16 hold true with α = 15
16

, γ1 = 1
8
, r2 = δ

1
64 , and ε1 = r2

2, ε2 = r4
2, if κ = log s1

s2
≤ 1

25

is small enough. In particular, we get

WδT (Cone
(
1, r2

2,Ω
1
)
) ⊂ Cone

(
r2, r

4
2,Ω

3
)
,

for r2 = δ
1
64 . The condition on the norm ‖WδT f‖3 ≥ 2m−5‖f‖1 follows from (93), (94),

(99) and (102). �

Corollary 1. Under the hypotheses and in the notations of Theorem 4 on p. 52, we

have for r2 = δ
1
64 :

W δ
m
T : Cone

(
1, r2

2,Ω
1
)
→ Cone

(
r2, r

4
2,Ω

3
)

; (104)

∀f ∈ Cone
(
1, r2

2,Ω
1
)

: ‖W δ
m
T f‖3 ≥ 2m−5‖f‖1. (105)

Proof. The theorem follows from Propositions 6.1 and 6.2 and Lemma 6.6. If we replace

δ in the Gaussian kernel by δ
m

, we shall multiply the upper bounds in the inequalities

by polynomials. Since the estimates are based on comparison powers of 2, the results

still hold true. �

Theorem 5. Let Wδ be the Weierstrass transform defined by (62). Consider a sequence

ξ ∈ `∞(R) with ‖ξ‖ ≤ δ and a partition Ω of the class G. Then there exist four numbers

r2(m)� r1(m) and ε2(m)� ε1(m)� 1 such that

Wδ`
m
ξ∗Wδ : Ĉone (r1, ε1,Ω)→ Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω) . (106)

∀f ∈ Cone (r1, ε1,Ω) : ‖Wδ`
m
ξ∗Wδf‖Ω ≥ 2m−2‖f‖Ω. (107)

Proof. Let Ω1 be the canonical partition of the perturbation `mξ . First of all, we shall

find a number r1 such that for any η ∈ Cone (r1,Ω) we have DΩ1Wδη ∈ Cone (1,Ω1).

Since η ∈ Cone (r1,Ω), we may write η = dχ[−1,1] + ψ, where ψ =
∑
j∈Z

cjχΩj ,

Nr∑
j=Nl

cj = 0; and ‖ψ‖Ω1 ≤ dr1. Then

DΩ1Wδη = dDΩ1Wδχ[−1,1] +DΩ1Wδψ.

Using Lemmas 6.2 and 6.3 we get

‖DΩ1Wδψ‖1 ≤ ‖Wδψ‖1 + ‖DΩ1Wδψ −Wδψ‖1 ≤ dr1
mNδ + 1

sm2 δ
≤ dr1

2mNδ

δsm2

and for the supremum norm we have ‖DΩ1Wδψ‖∞ ≤ ‖ψ‖∞. Summing up,

‖DΩ1Wδψ‖1 ≤ dr1
2mNδ

δsm2
. (108)

— 55 —



FAST DYNAMO ON THE REAL LINE

Using Lemma 6.4, we calculate

‖DΩ1Wδχ[−1,1] − χ[−1,1]‖1 ≤

≤ ‖DΩ1Wδχ[−1,1] −Wδχ[−1,1]‖1 + ‖Wδχ[−1,1] − χ[−1,1]‖1 ≤ 21−m/2; (109)

which implies dDΩ1Wδχ[−1,1] = dχ[−1,1] +ψ1, where ψ1 ∈ ΦΩ1 , ‖ψ1‖1 ≤ d21−m/2. Hence

DΩ1Wδη = dχ[−1,1] +DΩ1Wδψ + ψ1, where

‖DΩ1Wδψ + ψ1‖1 ≤ dr1
2mNδ

δsm2
+ d21−m/2.

By Lemma 5.2 p. 13, in order to guarantee DΩ1Wδη ∈ Cone (1,Ω1), it is sufficient to

choose r1 � 1 such that
2mNδ

δsm2
<

1

r1

;

Let us set

r1
def
=

δsm2
4mNδ

. (110)

We can also notice using Lemma 6.2, that

‖(DΩ1Wδ −Wδ)η‖1 ≤
1

sm2 δ
dr1 =

d

4mNδ

. (111)

Taking into account that DΩ1Wδη ∈ Cone (1,Ω1) and (111) we conclude

DΩ1Wδη + (DΩ1Wδ −Wδ)η ∈ Ĉone

(
1,

1

4mNδ

,Ω1

)
. (112)

Let T : ΦΩ1 → ΦΩ2 be a generalised toy dynamo, approximating the operator `mξ∗,

constructed as described in Theorem 3 on p. 31. By straightforward calculation we see

that the cone Ĉone
(

1, 1
4mNδ

,Ω1
)

satisfies the assumptions of Theorem 4 on p. 52 for

any 15
16
< α < 1:

1

4mNδ

≤ 2m(α logs1 2−1) < 2m(α−1) < 2−
mα
32 = δ

1
32 .

Therefore, by Theorem 4,

WδT (DΩ1Wδη + (DΩ1Wδ −Wδ)η) ∈ Ĉone
(
δ

1
64 , δ

1
16 ,Ω

)
.

We may write for any partition Ω3 of the class G and for any f ∈ Ĉone (r1, ε1,Ω
1)

Wδ`
m
ξ∗Wδf = Wδ`

m
ξ∗Wδ(η + g) = WδT DΩ1Wδη +WδT (Wδ −DΩ1Wδ)η+

+DΩ3Wδ`
m
ξ∗Wδg +Wδ(`

m
ξ∗ − T )Wδη + (Id−DΩ3)Wδ`

m
ξ∗Wδg. (113)
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We are interested in the coefficient in front of the term χ[−1,1], which corresponds to

the “cone axis”. Let E : ΦΩ1 → ΦΩ2 be a linear operator defined by (27), p. 14. Then

WδT DΩ1Wδη = WδT (dχ[−1,1] +ψ1) = Wδ(T −E)(dχ[−1,1] +ψ1)+WδE(dχ[−1,1] +ψ1) =

= Wδ(T − E)(dχ[−1,1] + ψ1) +WδEψ1 + d(N1
r −N1

l )(Wδχ[−1,1] − χ[−1,1])+

+ d(N1
r −N1

l )χ[−1,1] = d(N1
r −N1

l )χ[−1,1] + ψ2; (114)

where

ψ2 = Wδ(T − E)(dχ[−1,1] + ψ1) +WδEψ1 + d(N1
r −N1

l )(Wδχ[−1,1] − χ[−1,1]),

and its norm may be bounded using Lemmas 5.2 p. 13, 5.3 p. 14, 6.3 p. 40, 6.4 p. 42,

and Proposition 5.2 p. 14:

‖ψ2‖3 ≤ ‖Wδ(T −E)(dχ[−1,1]+ψ1)‖3+‖WδEψ1‖3+‖d(N1
r−N1

l )(Wδχ[−1,1]−χ[−1,1])‖3 ≤

≤ d2m(1/2+γ1)mNδ

δsm2
+ 2

mNδ

δsm2
+ d2m−121−m/2 ≤ dδ

1
16 2m−3; (115)

for a suitable choice of s2 < 2 < s1 and γ1 = 1
8
.

By Theorem 3 p. 31 we get, using Lemma 6.3

‖Wδ(`
m
ξ∗ − T )Wδη‖3 ≤

mNδ

sm2 δ
· ‖(`mξ∗ − T )Wδη‖2 ≤

≤ m2Nδ

sm2 δ
·
( s3

1

21/2+αs2

)m
‖η‖1 ≤ dm2Nδ

( s3
1

21/2s2
2

)m
. (116)

Using Lemmas 6.2 and 6.3 we obtain, taking into account that ‖g‖Ω ≤ dε1,

‖(Id−DΩ3)Wδ`
m
ξ∗Wδg‖3 ≤

‖`mξ∗Wδg‖3

sm2 δ
≤ dε1

sm2 δ
·m2

(2s1

s2

)m
· mNδ

sm2 δ
≤ 2dε1

m3Nδ

δ2

(2s1

s3
2

)m
.

(117)

Combining (116) and (117), we have the following upper bound for the sum of the last

two terms in (113)

‖Wδ(`
m
ξ∗ − T )Wδη‖+ ‖(Id−DΩ3)Wδ`

m
ξ∗Wδg‖ ≤

≤ dm2Nδ

( s3
1

21/2s2
2

)m
+ dε1

m3Nδ

δ2

(2s1

s3
2

)m
. (118)
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Applying Lemma 6.3 and Theorem 3 p. 31 again, we get

‖Wδ(`
m
ξ∗ − T )Wδg‖3 ≤

mNδ

sm2 δ
‖(`mξ∗ − T )Wδg‖3 ≤

m2Nδ

sm2 δ
· s3m

1

2m(1/2+α)sm2
‖g‖3 ≤

≤ dε1Nδm
2
( s3

1

21/2s2
2

)m
.

By Lemma 6.6, taking into account Lemma 6.3,

‖WδTWδg‖ ≤ 5m
Nδ

δ
‖Wδg‖ ≤ 5dε1m

2 N2
δ

sm2 δ
2
.

Hence summing up the last three inequalities we obtain:

‖DΩ3Wδ`
m
ξ∗Wδg‖3 ≤ ‖(Id−DΩ3)Wδ`

m
ξ∗Wδg‖3 + ‖Wδ(`

m
ξ∗ − T )Wδg‖3 + ‖WδTWδg‖3 ≤

≤ dε1
m3Nδ

δ2

(2s1

s3
2

)m
+ dε1Nδm

2
( s3

1

21/2s2
2

)m
+ 5dε1m

2 N2
δ

sm2 δ
2
≤

≤ dε1m
3Nδ

δ2
· s

m
1

s2m
2

(2m

sm2
+ δ2 s

2m
1

2m/2
+Nδ

sm2
sm1

)
.

We see that for κ = log s1
s2

sufficiently small and α is as chosen above,

δ2
( s2

1

21/2

)m
� 1 and Nδ

(s2

s1

)m
� 1.

Therefore, we may write

‖DΩ3Wδ`
m
ξ∗Wδg‖3 ≤ dε1m

3 N2
δ

δ2sm2
. (119)

Therefore we deduce from (114), (119), and (118) that in order to get the inclusion

Wδ`
m
ξ∗Wδf ∈ Cone (r2, ε2,Ω) we need to make sure that for some 1 � ε1 > ε2 the

following inequalities holds true:

2dr2(N1
r −N1

l )� dε1m
3 N2

δ

δ2sm2
; (120)

2dε2(N1
r −N1

l )� dm2Nδ

( s3
1

21/2s2
2

)m
+ dε1

m3Nδ

δ2

(2s1

s3
2

)m
. (121)

We know that N1
r −N1

l ≥ 2m−1, therefore we may choose ε1 = δ
1
32 and get in the first

inequality

r2 ≥ δ
1
32

m2N2
δ

4δ22msm2
= δ

1
32
m22m2(1−α logs1 2)

4sm2 · 2−2αm · 2m
= δ

1
32
m2

4
· 2m(1+2α(1−logs1 2))

sm2
.

It holds true, if we set r2 = δ
1
64 , as in Theorem 4 on p. 52. Comparing it with the value

of r1 =
δsm2

4mNδ
, we see that r2 < r1 provided log2 s2 + α logs1 2 > α63

64
+ 1.
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It remains to check for the second inequality that

ε2 ≥ m2Nδ

( s3
1

23/2s2
2

)m
+ δ

1
32
m2Nδ

4δ2

(s1

s3
2

)m
. (122)

We see immediately that we may choose s1 and s1 such that 1
25
> log s1

s2
> 1

2r2
and then

m2Nδ

( s3
1

23/2s2
2

)m
= m2

( s3
1

s2
2 · 21/2+α logs1 2

)m
≤ δ

1
32
m2Nδ

4δ2

(s1

s3
2

)m
≤ m2δ

1
32

(s121+α

s3
2

)m
� δ

1
24 .

Hence we conclude that for r1 =
δsm2

4mNδ
, r2 = δ

1
64 , ε1 = δ

1
32 and ε2 = δ

1
24 we have

Wδ`
m
ξ∗Wδ : Ĉone

(
r1, ε1,Ω

1
)
→ Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω) . (106)

The second inequality on the norm

‖Wδ`
m
ξ∗Wδ |Ĉone(r1,ε1,Ω)

‖Ω ≥ 2m−2

follows from (120), (121) and (114) immediately. �

Corollary 1. Under the hypotheses and in the notations of Theorem 5 p. 55, let us

choose four constants r1 =
δsm2

4mNδ
, r2 = δ

1
64 , ε1 = δ

1
32 and ε2 = δ

1
24 . Then we have

W δ
m
`mξ∗W δ

m
: Ĉone (r1, ε1,Ω)→ Ĉone (r2, ε2,Ω) ⊂ Ĉone (r1, ε1,Ω)

∀f ∈ Cone (r1, ε1,Ω) : ‖W δ
m
`mξ∗W δ

m
f‖Ω ≥ 2m−2‖f‖Ω.

The constructive proof of the existence of an invariant cone is complete. Fast Dy-

namo Theorem 1 now follows as described in the Section 3.
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