FAST DYNAMO ON THE REAL LINE
0. KOZLOVSKI & P. VYTNOVA

ABSTRACT. In this paper we show that a piecewise expanding map on the interval,
extended to the real line by a non-expanding map satisfying some mild hypthesis does
induce a fast dynamo action on the functions on the real line in the sense that there
exist a £ function whose norm grows exponentially under induced action. This is

the first step towards a solution of the kinematic fast dynamo problem.

1. INTRODUCTION

In this work we establish the fast dynamo theorem for the induced action on vector
fields on the unstable manifold of the Poincaré map of the provisional flow. The unsta-
ble manifold is one dimensional and the settings are the following. Vector fields on a
one-dimensional real manifold may be identified with functions R — R; and an induced
action on vector fields on R is given by a transfer operator (f,v)(y) = >, df(z)v(x).

z€f~1(y)
Theorem 1 (Fast dynamo on R). There exist a measure-preserving piecewise-C* trans-
formation f: R — R and an essentially bounded, absolutely integrable vector field v
such that

. . 1 n
lim lim ElnH(exp((SA)f*) UHcl > 0,

§—0 n—o0
The map f may be realised as an induced action on the unstable manifold by the

Poincaré map of the provisional fluid flow.

After introducing necessary tools, we deduce Theorem 1 in the Section 3 from two
technical results: the noise Lemma 3.1 and the invariant cone Theorem 5. In the
Section 4 we fix technical notation; and the last two Sections 5 and 6 are dedicated to

the proof of Theorem 5.

2. BASIC CONSTRUCTIONS

In this Section we introduce objects central for our investigations: small random
perturbations of a dynamical system and a norm in the space of vector fields. We also

specify the type of cones in the space vector fields we are interested in.
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2.1. Small random perturbations. We construct a random dynamical system using
skew-products. Let X be a real manifold and let f: X — X be a transformation. We

consider its extension

f:i X xR" = X Fla, &) € fla) +€(1). (1)

Let ¥ C £oo(R™) be a shift-invariant subset of two-sided bounded sequences of vectors

in R™. We introduce a skew product over the Bernoulli shift

ox [iExX 5+ ExX (0 x N)&2) = (0. Fz6L). (@)
The induced transformation on fibers we denote by
fe: X = X, fe(2) = F(z, (1)), (3)
Its iterations are given by
def
FE2) < F(FE (), €(R)). (4)
Remark 1. The following identities follow from the definition of the map f.
f& = fewy © few-1y © - - - 0 fequ); (5)
fEh =T = faayo fag oo fawys (6)
o o . ki <k
fih=froft=ftofp =90 (7)
n—k :
ok (2) if n > k.

Definition 1. We call the map fe a random perturbation of the map f associated to

the sequence & €.

2.2. Norm in the space of vector fields. Piecewise constant vector fields are proved
to be very useful to us. We define a norm in the space of essentially bounded and

absolutely integrable vector fields ®, using partitions.

Definition 2. A norm in the space of essentially bounded and absolutely integrable
functions, associated to a partition Q = [J Q; of R is given by
j=1
Il = max(3 for [ 1r@ae 2 s 1) (®)

The first term we refer to as the weighted El-norm and write

1 llocs: = / f(@)lda,

jezr Q)

it depends, of course, on the partition chosen.

— 2
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The subspace of ®, consisting of piecewise constant vector fields associated to the
partition € we denote by ®q. Observe that for any step function ¢ = _ ¢;xq, € ®q
JEL
we have that

[¢lla = mas (27 3 lesl, 27/ supley]). 9)

JEL
2.3. Cones in vector fields on R. We reserve a notation for a cone of radius r with
the main axis x[—1 1 in the space ®q of piecewise constant functions, associated to a

partition €2:

Ny
def
Cone (r, @) ©{n = dx iy +¢ 1w =D eixai D¢ =0 gle <drf.  (10)

JE€Z J=Ni

We extend the cone Cone (r,€2) to include general functions from the main space:
=~ def
Cone (r,¢,8) = {f =n+g,|ne€ Cone(r,Q), |glla < 5||77||Q} (11)

We say that the cone Cone (11,21, Q) is smaller than the cone Cone (rs, £, 22) and
write C%Ee(rl,al,fll) < (%;e(rg,éz,QQ), if i > ry and £; > e9; we do not assume
here that Cone (r1,e1, QN Cone (r9,e9,0%) #£ 2.

3. FAST DYNAMO THEOREM IN DIMENSION ONE

In this Section we give a proof of our main result, Theorem 1. The argument has
three steps. The first step is the noise Lemma 3.1, which suggests to replace the
operator (exp(dA)fi)" in our considerations with the operator exp(dA)f/. for some
sequence t. The second step is to choose a large m > 1 and to construct explicitly an
invariant cone for the operator exp(;=A) fi* exp(52-A) with ¢ € ((R), ||t < 6. The
third step is to deduce the fast dynamo theorem from the existence of an invariant
cone.

An instant proof of the noise Lemma 3.1 is given in this Subsection. The invariant
cone Theorem 5 for a specific map is proved in the Section 6 after the preparatory
Section 5.

We begin with a simple observation that the exponent of the Laplacian operator?!, is
the convolution with the Gaussian kernel, in particular

1 x?

\/%5 exp(—2—62)

exp(0A)v = ws x v, where ws(z) =

LIA: v — d2v in the case of the real line



FAST DYNAMO ON THE REAL LINE

The latter operator is also known as the Weiertstrass transform Ws(v) o (ws *v); this
notation we use throughout.

The following statement is generally known, but we give a proof for completeness.

Lemma 3.1 (Noise Lemma). For any map f: R — R and for any function v we have

W (Wsf " tota) = [

) w(;(tl)w(;(tg) c. w(;(tm,1>(W% foﬂz*v)(l’)dtldtg ce dtmfl,
Rm—

(12)
where 0t = (0,t1,t9, ..., ty_1) € R™.

Proof. Observe that f~'(z —t) = f;*(z), because f;(z) = f(z)+t. By straightforward

calculation,

Ws fo(Ws £ o(@) = W fu(Ws )" W fov(z) =

=W Wsf"? [ ws(t)(Fo)(e — it =

R

W LWt ? [ ws(t) (o) )it = ... =

R

2

=Ws; / U)(s(tl) e U}5(tm_1)(f*ft1* ce ftmfl*v)(x)dtl e dtm_l =
Rm—l
_ / ws(t1) - Wit ) (W S0} (@)t .. s,
Rmfl

[ |
Let s5 < 2 < 51, be two real numbers such that log Z_; =x < 1;and let § =27™¢

be a small real number with % < «a < 1. Consider the map

s1r+ sy — 1, if—1<x<%—1;
U(z) = < o+ 1 — 59, if%—1<x<1; (13)

-, otherwise;

and define its extension (: R2 — R by ((z,y) = {(z) +y. We then associate a small
perturbation (7 to any sequence § € (oo(R) and [|€]| < 0.

The existence of an invariant cone for the operator W s g w s is established in the
end of Section 6 in the following
Theorem 5. (Invariant cone.) For any sequence £ € (o (R) with [|£]] < § there exists
an m > 1, a partition Q(m), and four numbers ro(m) < r1(m); ea(m) K e1(m) < 1

— 4 —
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such that
Wé é W6 &)\ne(rl,el,Q) —>C/-OEG(T2,€27Q) C@(Tl,él,Q). (106)
vf € Cone (11,21, Q): [|W 5 €2W s flla > 272 fa. (107)
We choose § = 27™% the partition €2,, [ my 27 ]—l—l)} , and fix four dimension
J
parameters of two cones r; = jn—?\;é = 5%1 — 0% and g9 = 024 21 such that the

Theorem holds true.

Lemma 3.2. In the notations introduced above, for any f € Cone (r1,e1, Q)
/ Jws () w s () (W s GEW s )ty dbyo € Cone (€*ry, €25, ) -
o (14)
Proof. By Theorem 5 we know that for any [t| € [0, 0]™ and any f € Cone (r1,€1, Qm)
W 62W s [ = dx(o11) + ¥ + g0 € Cone (3, &2, Q).

where 1y € ®q_, ||¥i]lq,, < dre and ||gillq,, < dea. Observe that €2, is independent on
t. Therefore,

/ ws (tl) Ce wi(tm—l)X[—l,l]dtl Ce dtm_l =
[ 66]m 1 m m

4 m—1 2 m—1 g
= X[-1,1] (/ wi(t)dt> = X[-1,1] (1 — E> > e X1, (15)
76 m

for m large enough. Since ¢, € ®q  for any t € [—0d,0]™,
/ g(tl) g(tm_l)ﬁbtdtl . dtm_l € (I)Qm,
[ 5 5]7’7l m m
and we calculate 2,,,-norm.

H/ i : wi(tmfl)wtdtl . dtmfl
8,8]™ m Q

9—m
Ws
7 [Qjl S

<

m

(t1) .. %(tmq) (/Q |wt(:c)|d:1:) dt;...dt,_; <

mj

< sup [|[¢9ila,, < dra.
t

Similarly,
S d82 .

H/ 5 (t1) .. ws (ty—1)gedty ... dty—q
55]’!’” 1 "YL m

m

— 5 —
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Observe that

/ / i i( m— 1)%( )dtl ce dtm,1d$ =
[Cogm-1 ™ m
1
_ / wa(ty) . ws (b 1)t by / u(x)dz = 0.

Summing up, for any f € Cone (e1,71, Q)

/ w (tl) LW ( m— 1)W 3 g?;LW fdtl dtm,1 € (%;e (627’2, 6282,Qm) .
(6,6t

S S
m m

Lemma 3.3. In the notations introduced above,

W s C(Wsla)™ W s : Come (ry, &1, 2) = Cone (13, €2, Q) & Come (11, €1, )
W s €. (Wst.)™

1 -5
"W s eam 122"

Proof. By Lemma 3.1 for any f € Cone (11, Q)

- / ws (1) s (b 1) (W s C0W & F)dtrdty . dbyy =
Rm_l m m 2m 2m

:</Rm1\[_676]m1 /[W )l:[ 5 (t)(W s 62W s f)dE. (16)

By Lemma 3.2 we know that for any f € Cone (r1,e1, Q)

/ H ws ( Wa ﬁ’g*LW f)thCone(erg,eaz,Q ).
[=6,0]m 52

m

We estimate the first term

H/ H ws () (W s (2W 5 f dtH
Rm=1\[=4,0]m=1 m
-1

wa (1) /
Z || /]Rm—l\[—é,é]m—l S g,

JEZ j=1

3

W s (W s f() ‘dm) a7 <

2m

< sngW;nf?lWQ«;anﬂm/ w (t;)dt.

S
Rmfl\[_&(ﬂmfl . m

— 06 —
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We shall find an upper bound for the integral:

m—1
/ w
Rm—l\ 56]771 1~

J=1

+00 +00
S om (/ w s dt + 2m/ / i(tl) g( m—l)dtl .. -dtm—l S
1 [—6,6]m—1 m m

3\01

3

< gme—m? + 2me™ ™.
We may also observe that for any f € Cone (r1,e1, ),

Ns
up W o L2 s Tl < (555) 162 I, <

N5 2-m N5 2 st omgm N2
< o < ) om ., °1 “ °21-°% )
< ( w) a1 e < (5) 2 il hon < =t o,
We put the last two together and we see that

m—1
supHng"lW&fHQm/ wa (t
t am U 2m Rm—1\[—§,6]m—1 E m
Ns \2 81 2m s N2 _
< 2m . —_— - 2 m .
< (5g) 2" gl < = - 2me ™ o,

We need to verify
2mgm N2
—837;525 -2me™ ™ K 2™ey, where g9 = 521
2
It is equivalent to
5122(1+a—alogsl 2)

3 < 2_2%;
s5€

and holds true for » = log 2t sufﬁaently small.

For the second inequahty we recall Corollary 1 of Theorem 5 again

Vf € Cone (r1,e1, Q) : ||Ws€ Ws fl

an = 2" flla

m —

‘nL

Then
H/ Hwi LW T =
[—5,6]m m

m—1
> inf ||W.s 07W :
- te[l—r(liﬁ]m H % b %fHQm /[‘_6’6]'”11 H

j=1

(t;) = 2" % | flla,- (17)

3\%

— 7 —
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Taking into account

m—1

H/ ws (1) (We W T <27 flla,
Rm—1\[=§,5]m—1 m

j=1
we get the result. |
Theorem 1.[Fast dynamo on R] There exist a measure-preserving piecewise-C? trans-
formation f: R — R and an essentially bounded, absolutely integrable vector field v
such that

lim lim —lnH exp(dA) f. UHL > 0,

6—0n—o0

The map f may be realised as an induced action of the Poincaré map of the provisional
fluid flow on the unstable manifold.
Proof. Let us choose f = ¢, where £: R — R is given by (13). It follows by straight-
forward calculation that WsWs = 2Wys for any number 6 > 0. The Theorem follows
from Lemma 3.3 with v = W%X[,l,l]. |
The remaining part of the paper is dedicated to the proof of existence of an invariant
cone for the operator W s oW i for arbitrary ||¢|| < 6. Therefore, we assume that a
large m > 1 is fixed.

4. NOTATION

In this Section we fix notation we use throught the proof of Invariant Cone Theo-
rem 9.

The following letters are reserved for constants: «, £, 7, 71, s, s1, So. The admissible
range of values will be specified later.

Given a subset I C R™ we denote by |I] its Lebesgue measure. We say that two sets
Iy and Iy are é-close and write |I; — I3 < § if I; belongs to the §-neighbourhood of
I or Iy belongs to the d-neighbourhood of ;. Otherwise, we write |I; — 5| > §. The
indicator function of a set I we denote by x;.

Let 9;; be the Dirac delta function:

by = 1, ifi=y
0, otherwise.
The supremum norm of a sequence of real numbers £ € /((R) we denote by

Il = sup |&k|. Whenever supremum or infimum are taken along the whole range
keN

of values, we omit the range.

Let 6 = 2™ be a small real number with % <a<l.

— 8 —
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We write © < y when x is exponentially small compared to y, namely, there exist a

small number 0 < € < 1 such that x < 27°™y.

Definition 3. We say that a collection of intervals @ = {€,};cz makes a partition of
the class G(m, 6, 81, 89), if JQ; =R, 0;NQ; = @ if i # j, and the following conditions
hold true.
(1) The interval [—1,1] contains at least 2! and at most 2™ intervals of the
partition, and {1} are the end points of some intervals of the partition.

(2) The length of intervals €2; is bounded away from zero and from infinity

<l <2+ ).

m m
msy st sy

(3) Any interval I C R of the length |I| = ¢ contains not more than

N; = 2m+1510g51 2 _ 2m(17alog31 2)+1

intervals of the partition.
(4) Any interval of the partition Q; C R\ [-1 —md, 1 +md] has length [Q;| =27,

We write G(m, d, s1, $2) to indicate dependence on m, §, s1, and sy; we will abuse
notations and omit m, 9, s1, or Sso, when it leads to no confusion and the dependence
is of no importance.

We number intervals of a partition €2 in the natural order, starting from €2y > 0. We
set Qy, to be the most left interval of 2 inside [—1, 1], and Q, to be the most right
interval of €2 inside [—1, 1].

Here we deal with essentially bounded absolutely integrable functions on the real
line. We refer to the space & L1(R) N L(R) as the main space. “Any function”
refers to a function from the main space always.

Given a partition Q = {€;},cz of the class G, we denote the associated space of step

functions by ®q and address the basis {xq, }jez as the canonical basis of ®q,.

Definition 4. We associate a weighted transfer operator f., acting on the main space,

to a map f on the real line by!
(fed)(@): = > sendf(y)o(y). (18)
yef~1(z)

ITransfer operator is a bounded linear operator. In this case, it is chosen to be one dimensional
analogue of induced action on vector fields by area-preserving transformations. Transfer operators

with negative coefficients have been considered, for instance, in [15].

— 09 —
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5. TRANSFER OPERATOR AS A DYNAMO OPERATOR

In this section we first show that any generalised toy dynamo operator has an invari-
ant cone. Afterwards, we prove that there exists a map ¢£: R — R such that for any
small perturbation ¢* with [|{]|oc < we can find a linear operator A: ® — ® and two
partitions Q" and Q? of R such that A: ®g1 — g and ||(£—A)Ws]|| < 277 ([[L2||+]|.All)
for some v > 0. Moreover, the matrix of A [, satisfies conditions (D1)—(D4). In other
words, for any sequence [|{||c < 0, the operator /7, may be approximated by a gener-

alised toy dynamo.

5.1. The model matrix. The plan is to choose suitable subspaces of ® and approxi-
mate the operator (¢, by a simple matrix. In this Subsection we describe the matrix we
would like to obtain and show that for any matrix A, satisfying these conditions, there
exists a pair of cones C;, Cy C ® such that Cy < Cy and A(C}) C Cs (but Cy ¢ CY).

Let A be a linear operator acting on the main space. Assume that there exists two
partitions Q!, Q2 of the class G such that A: ®g1 — ®g2. Here and below we denote
by N} and N} the indices of the first and the last intervals of the partition Q! inside
[—1,1], respectively; and let N? and N? be the indices of the first and the last intervals
of the partition Q* inside [—1,1], respectively. In other words, the sets QF x Q; with
N? <i < N? and N} <j < N! make a partition of the unit square.

We define several sets of indices in order to describe the properties of the operator
A important to us. Let a;; be coefficients of the matrix of A4 in the canonical bases of
the subspaces g1 and Pge.

Accelerator:
Ar: ={je{N},....N} | #{i € {N,...,N} | a;j = 1} > 2™ — Ns}. (19)
Inflow diffusion:
Din: = {(i,4) € {N},... N} x {N}',...,N}'} | ay; # 1}. (20)
Outflow diffusion:
Doy: = {N/ —mNs, ..., N7 +mNs} x {N! = mNs,..., N} +mNs}—
—{NZ,...,N*} x {N},...,N}'}. (21)
Indifferent subspace:

Sp: =Z*\{N} —mN5,...,N? + mN;} x {N}; = mN;,..., N} + mNs}. (22)
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We are interested in linear operators A such that the following conditions hold true for
the matrix coefficients in the canonical bases.

(D1) max|a;| +1 < m? (z—;)m,

(D2) #Dyy < mdsi™;

(D3) for any pair (i,7) € Sp we have a;; = 0 whenever |i — j| > mNj;

(D4) #Ar > 2m=2,

Definition 5. We say that a linear operator A: £1(R) N L(R) — £1(R) N L (R) is
a generalised toy dynamo if there exist two partitions Q' and Q2 of the class G such
that A(®q1) C g2 and the conditions (D1)—-(D4) hold true in the settings introduced

above.

Remark 2. All theorems and the main result hold true for an operator A that satisfies
conditions (D1)—(D4) with right parts of the inequalities multiplied by polynomials

n m.

When we have several partitions, e.g. Q' Q2 and Q3 of the class G we refer to the
norms associated to the partitions by || - ||1, || - |2, and || - ||3, respectively.

We will need the following fact.

Remark 3. For any s; < 2 < s9, satisfying (log s1 — log 32) < 1, and 0 = 27" there
exists a number 0 < 7y, = 2(1 — a) < 1/4 such that

S3m
m?6 - 21— < 2mm, (23)
msgn

for m large enough.

Lemma 5.1. Let A: &1 — P2 be a generalised toy dynamo and let ¢ = > CiXal be
JEL
a step function. Then
N2 N}

r

D gl 11— ay| < 2mGEE g,

i=N? j=N}
Proof. By straightforward calculation,

N?

N,
Do el —agl= > lejl - 11— a] < sup 1 — ay| - #Di - sup e <
i:NZQ jZNll (iaj)EDin
m
<5 s gl < 2],
2
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Definition 6. Let Q') 92 be two partitions of the class G(m). We define the kernel of
A X1, Por = P2 to be the set

1
Ker A" (110 = {¢ € Do | / Ag(z)dx = O} =
~1
N}
= {¢ =D ol YD ayel0f] = 0}- (24)
JEL i=N? JEL

Proposition 5.1. Let 2" < sy < 2. Then for any two partitions of the class G and
a generalised toy dynamo A: ®q1 — P2

Por = X1, D Ker A"y 1,1
In other words, for any ¢ € ®o1 there exist ¢ € Ker A*x(_1,1) and d € R such that

¢ = dx[-11] + ¢ (25)

Proof. Let xj—1,1] = ZjeZ UjXo, where u; = 1 for N} < j < N! and u; = 0 otherwise.
Let ¢ = ZjeZ CiXal € ®q1 be a step function. We want to find a function ¢ € ®q
such that 1) € Ker A*. By definition of the kernel 6, using (25) we write

/A@/} dm—/ Ap — dx—1,1)( dx—/ Zaw — duj)xoz(z)dr =

szZ

= Z Za,] — duy;) )| = 0.

i= N2]€Z

We want to solve the last equality for d. It is sufficient to show that for any generalised

toy dynamo A we have that
N?
0> ujaylQ] £ 0.
i=N? JEZ

By straightforward calculation,

N} N}
Z Zujaw|ﬂ2| = Z Zaw|92| —2(N! = N} Z Z a; — 1)|Q2].

i= NQJEZ j= Niz N2 —le N2
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Using conditions (D1)—(D4), we estimate the last term as follows

Z Z ag — D[QF] =Y (ay; — DIF| < #Dsn - sup fag; — 1] - sup [2F] <

Jj= le N2 Din

< 52 m26 - S—lm 2(s7" 4 s5™).
2
N}
We see that Y > w;a;;|€;| # 0 under condition that
i=NZj€L
$2mm25 - 2L o(sm 4 s3™) < 2(NE — N}, (26)
s

2

Recall that, since Q' is of the class G, we have N!— N} > 2™~ We also know from (23)
that there exists y; < 1/4 such that

S3m
m2(5 . ﬁ < 2mn
2msy

Therefore (26) holds true under condition that 27 < sy < 2. |

Lemma 5.2. Let n = dx_11 + ¥ € ®q be a step function such that ||| < dr for

somer < 1. Thenn € Cone( 2’; Q)

Proof. We would like to write ¥ = Bx[-1,1) + ¥, where 1 = > CjXa, and Z ¢; =0.

JEL J=N;
Let us assume that ¢ = ) ¢jxq,, then
jez
N, N, N,
Z cixe; =P Z Xo; T Z CiXa,-
J=Ni J=Ni J=N;

Ny
implies ¢; = ¢; — § and consequently > (¢; — ) = 0. Thus we have an upper bound

J=N
for |B:

N

L > LS e =2 < 20

J=N| JEZ

Therefore we deduce that

77:<d+ﬁ>X[_171]+{/;€ O(|d||5||/3| ) CO<13TQ Q)
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Definition 7. Given Q! and 2, two partitions of the class G, we define a linear

operator £: o1 — Pq2 by the matrix

1, ifoSiSNfanlelgjgN},
) otherwise.

iJ
Remark 4. The operator £ is a generalised toy dynamo.

Lemma 5.3. Consider a function ¢ € Ker E*x(-1,1). Then ||Ep|2 < le]]:.

Proof. Let ¢ € ®g1 be a step function. We may write ¢ = > CiXal; then

JEZ
N}
Ep=3 e+ (X + D )envas
j=N} J<N}  j>N}

Nl

T

and the condition ¢ € Ker £*x[_1,1) implies Y ¢; = 0. Therefore

€l = || (D2 + 3 Jemxez |, = (32 + 2 )lesl < el

j<N}  j>N} J<N}  j>N}

Proposition 5.2. Let s; be small enough so that log, s; < 64/63. Let Q' and Q? be
partitions of the class G. Consider a generalised toy dynamo operator A: ®g1 — Pg2.
Then for any ¢ € P

I(A = E)@ll2 < 2m0/2 g,

where 1 satisfies the inequality (23).

Proof. Let ¢ = jez CiXal € ®o1 be a step function with the unit norm

||¢“1 - maX(Q_mZ ’Cj|7 2_m/2>suP |Cj|) =1,

jEz

which implies 3 [¢;| < 2™ and sup |¢;| < 2m/2 By straightforward calculation,

(A=E)d =D ¢jlay — Eij)xe> =

i€z jez
N2 N}

=3 D eilay = Dxaz + > ¢ilay — 8i)xaz + Y ¢i(ai; — 6i5)xoz.
i=N? j=N} Dout Sp
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Observe that
#Dou < (4m>NZ + 2mN;(N? — NP) + 2mNs(N;} — N})) =
= 2mN;(2mNs + N2 — N + N — N},
Therefore, using ||¢||; < 1, Lemma 5.1, definition of the set Doy, and condition (D3),

(A= E)dlle, 0 <

N2 N}
<2(30 3 lesl-lay =1+ Y lesl - Jas - Ol + 2Ll -l = ) <

i:Nl2 jZNll Dout

§2’m(2m(3/2+“) + sup |¢;| - sup |aij| - #Dow + Z |cj| - mNs - sup |a;;]) <
Z

< m/24m) 4 9=m/25L 9 N (9m Ny + N2 — N2+ N} — N}) + mNs 2L
85 82

By straightforward calculation we see that for s; small enough so that log, s; < 64/63

2m
s1" s1" _ st ds
“LomNs < 2L pom(imeless 2) < TL —Tln = 2",
S5 Sy syt 2

Therefore, under the same condition, since Ng < 2™,

o-m/2 51 m2NZ < 2™ Ny - 272 < gml/24m),
sy’
Finally,
27PNy - k- (N2 = NP+ N} = NJ) < 25272 dmiNy < 270240,
2 2

Summing up,

(A= &) < 3-2ml/2m),

Now, for the maximum norm, we have that

H(A—S)qéHooSmgﬁ(ZZ!cj!-!a@-j—Eij!xQz <Z\CJ\ L <ol et
r 82

JEZL i€l JEZ

Thus 27™/2||(A — £)¢||ee < 2m1/27), u

Lemma 5.4. Let Q' and Q? be two partitions of the class G. Let £: g1 — P2 be
a linear operator with the matriz defined by (27) in the canonical basis. Then for any

function ¢ €

€SIl < 27[I6lls  and  [Ex1alla > 2772
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Proof. Let ¢ = ZjeZ CiXal € ®n1 be a step function of the unit norm. Then, by

straightforward calculation,

N2 N}
Ep = E E CjEz‘jXQg: E E CiXa2 + E Cj0ijXo;, =
1€EZ ]EZ 'L:]\fl2 j:Nll DoutUDin
N}
= CiX[-1,1] T ( E + § :)CjXﬂj?
j=N} J<N}  j>N}

so the weighted £;-norm is

N}
1E0llae, =27 | D" i - (N2 = N + 27 (D + 3 )l 27 4 1,

J=N}! j<N}  j>N}

The upper estimate for the supremum norm is easy:

N
1€ = ngﬁ( Z X -1(2) + (Z + Z >CjXQj(IE)> <2m.
j=N} j<N}  j>N}

Hence ||E¢||2 < 2™||¢||. Obviously,
IEX -1yl = 1€8ll2.c, = 27™(N; = N (N = Nf) > 2772,

|
Let us consider two cones Cone (1,Q') C ®q1 and Cone (2171/2m O} C g2 in

correspondence with general definition p. 3:

Ny
Cone (1,9) E {6 =dyau +v [0 =D epxap D6 =0 vl <df;  (28)

JEL J=Ni

Cone (2(71*1/2)m7 Qg) déf

Ny
{¢ =dx g+ =) exaz )¢ =0 [¢]l2 < d2m”1‘1/2>}- (29)

JEL J=Ni
Theorem 2. Assume that m is large enough so that the inequality (23) holds true
for some 0 < v < 1/4 and all sufficiently small ». Additionally, assume that
log, s1 < 64/63. Let Q' and Q2 be two partitions of the class G. Then for any gen-
eralised toy dynamo A: ®gi — B2 we have A: Cone (1,Q1) — Cone (2mn=1/2) %)

Moreover, for any n € Cone (1,Q') we have ||An|ls > (N? — N |In|l = 2™ ]
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Proof. Let ¢ € Cone (1,Q') be a step function, ¢ = dx(_1,1) + ¢, where ¢p = Y CiXal
=
N} .
with ||¢|; <dand ) ¢; =0. We may write
j:Nll

Ap = (A= E)p+E¢ =dEx i1+ (A—E)p + E.
Obviously, ||¢||; < 2d, thus by Proposition 5.2
(A= E)oll2 < A= gl < d2mt/zn+,

By Lemma 5.3, ||E¢|l2 < ||¢]l1 = d. Therefore ||[(A — )¢ + E||y < d2mI/2Hm+1 4 g,

so we conclude
A¢ = dxr) + d(A— E)xeiy + (A= E)b + £,

where d > d272 and ||d(A—E)x 11+ (A—E)+EY|» < d(2m(/2+W+1 1), Theorem
now follows from Lemma 5.2.

5.2. A dynamo map. Recall the map we considered is Section 3 Let s, < 2 < 51, be
two real numbers such that log z—; = x < 1. and let § = 27™* be a small real number
with 12 < o < 1.

We extend an expanding map on the interval [—1, 1] to the line R? as follows (13)

s1r+ s — 1, if—1<x<%—1;
U(z) = < sox 4+ 1 — 59, if%—1<w<1; (30)

-, otherwise.

and define its extension (: R2 — R by Z(:E,y) = ((x) +y. We associate a small
perturbation /¢ to any sequence & € (o (R) and [|{]||o < 0.

We associate a transfer operator to a map £¢" by

(o) (x): = D sendlf(y)sy). (31)
yel; " (x)
The map ¢ outside the unit interval is not important to us and we chose a simple map
that changes direction of the vector field, to make it non-trivial. The exact form is not
relevant here.
First of all we show that with any sequence & we can associate a (canonical) partition
of the class G. Then we approximate the operator (¢, by a generalised toy dynamo
(Theorem 3 on p. 31).
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5.3. Canonical partition for the perturbation (. In this section we construct a
partition of the class G(m) associated to the sequence £. Later we will refer to it as
the canonical partition of the map (7"
Recall Definition 3 of the partition G:

Definition 3. We say that a collection of intervals Q = {€;};cz makes a partition of
the class G(m, 6, s1,82), if U =R, Q;NQ; = @ if i # j, and the following conditions
hold true.

(1) The interval [—1,1] contains at least 2™' and at most 2™ intervals of the

partition, and {£1} are the end points of some intervals of the partition.

(2) The length of intervals €2; is bounded away from zero and from infinity

<94 < 2(% + i)

m m
msy s7 sy

(3) Any interval I C R of the length |I| = ¢ contains not more than

N5 — 2771—&—1510gSl 2 _ 2m(1—o¢10gSl 2)+1

intervals of the partition.
(4) Any interval of the partition ; C R\ [-1 —md, 1 +md| has length |Q;| =27,

We fix s; and s, in the definition of the map ¢ (13) and a sequence £ € (o (R) with
a norm ||{| < 4§ =277

The map ¢ is piecewise linear and so any iteration is a such. Let

—co=aP <a? <. < a%clzﬂ = 400 (32)

be all the points of discontinuity of the map 6’5. Define the corresponding partition

of the real line a®) = Uj-vz’“o ag»k), where ug-k) = (ag-k),agi)l) are the partition intervals.
Observe that for any & we have that {£1} are the endpoints of some intervals of the

partition. Let al(f) = —1 and ag:) =1

We shall modify the partition a®™ and obtain the canonical partition for the map g

Definition 8. We call a branch 62(a§n)) of the map (¢ main, if for any 0 < k < n we
have that @'g(ag-n)) c[-1,1].

Definition 9. We call a main branch E'g(a§k)) of the map E’g‘ long, if

@) A -1, 1] > 2
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Lemma 5.5. The map {¢* has at most om—a)+ ymain branches that are not long,

(07
logs s1

where oy < is chosen such that si* < 2%.

Proof. Let ag-m) be a domain of a main branch which is not long, that is |€?(a§m))ﬂ[—1, <2
Since ﬁém) (ag»m)) is an interval, a connected subset of R, we conclude [¢7*(a;™)+1] > 1-L

or \E?(aj+1(m)) —1]>1- é Without loss of generality we may assume that the first

holds true. By definition, agm) is a point of discontinuity. Therefore, for some k < m

we have that Klg(ag-m)) = —1+4£&(k); hence we deduce that fém)(ag-m)) = (=14 £(K)).
So we conclude |€?‘k(—1 +&(k)+ 1 >1— i, and, consequently, £k < m(1 —ay) + 1.
Indeed, if & > m(1 — a;) + 1, then m — k < may — 1, and it follows that

2 2
1+ E(R) + 1 <sP7ld< —=2-—.
S1 So

Since the map ﬁ'g has at most 2* main branches, we conclude that there are at most 2m(1—e1)+1

points a!™ such that é’g(agm)) =—1+&(k).

J

Summing up, the map £* has at most om(1—a1)+1

main branches that are not long.
|

Lemma 5.6. Let 1 < k < malog,, 2 and let (a,b) be the domain of a main branch of
the map E’g. Then

- 2
k 1 51 s
@)+ 1 <85 < = =5
k1 2
) — 1] < 622 — —0.
) -1 <20 <2

Proof. By induction in k. The case k = 1 is obvious. Recall that a®*) c a**1) and
a DN\ @™ = {0R(=1), (M (1), 6 (2/s1 = D)}
Therefore for x € a®) we have
E’g“(a:) = loreyle () = silg(x) + 51 — 1= &(k+ 1), if [6Z(x) + 1] <2/s1— 6
Elgﬂ(x) = Lo lE(x) = solf(x) — so+ 1= E(k+ 1), if [€(z) — 1] <2/s1 =0

In the first case we know that, by induction assumption,
k+1 1

05 () + 1) < sl (@) + 1] + 6k + 1) +1 < —=5
-
In the second case,
k+1
—1
04 (@) = 1] < ol i) = 1 +[§(k + D] +1 < 22—,
-
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Corollary 1. Let 1 < k < malog, 2. Then for any domain (a,b) of a main branch
of the map € we have that % —-1=1- % € (g(a,b).

Proof. By assumption, £¢(a) < £§(b) and from Lemma 5.6 it follows that
2 2 2

S1 S1 S2

Corollary 2. Let 1 <n <malog, 2. Then any main branch of the map (¢ is d-close
to one of the ends of the interval [=1,1]: in other words, either 1 — 4§ € (¢(a,b) or
0 — 1€ l¢(a,b), or both.

Proof. By induction in n. The case n = 1 is obvious. Observe that (a,b) cannot be an
interval of continuity of the map (¢ for any k& < n. Therefore ﬁ’g’l is either continuous
at a, or at b, or at both end points. In any case (a,b) belongs to an interval of continuity
of 62’1 satisfying conditions of Corollary 1 of Lemma 5.6. By definition of /¢, we see
that either f"_l( ) = Sl —1or E”_l(b) = % — 1. Without loss of generality assume
that /¢~'(b) = 2 — 1. Then we see that £f(a,b) D ({(n),1 4 &(n)) 3 1 — 4. Similarly,
Kg_l(a) = 3 — 1 implies that (¢ (a,b) D (=1 +&(n),&(n)) 30 — 1. [ |

Lemma 5.7. The map €’g for any 1 <k < malog,, 2 has exactly 2% long branches.

Proof. By induction in k. The case k = 1 is trivial. It follows from Lemma 5.6 and
Corollary 1 of Lemma 5.6 that any long branch of the map é’g contains at least two

long branches of the map ﬁlg’l. |
Corollary 1. The map (" has at least 2m=2 long branches, provided 2alog, 2> 1.

Proof. 1f 2alog, 2 > 1, then m — malog,, 2 < malog, 2 and therefore the map
P;nimalogsl ? has at least 2 merlo8s, 2 long branches for any n € ((R) with ||| < 6.
Let n = ¢™*!°8:12¢. Then we can decompose 0 = le(l_abgsl 2)€2m 08012, According to

malog,, 2

Lemma 5.7 the map £, has at 2™“!€s12 Jong branches. By definition of a long

branch, its image is at least long, using Corollaries 1 and 2 of Lemma 5.6, we deduce

that for any domain (a, b) of a long branch we have that either (—14-0, —14+2) C £, al 2(a, b)
log,, 2 * ‘
or (1 — l' 1-9) C EZL *1%(q,b). Moreover, any of two intervals (—1, % — 1) and

m(l—alog,, 2)

(; -1, 1) contains exactly 2m17198: 2=1 150 branches of the map Ce
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We can find an upper bound for the length of a domain of a long branch of the map
m(l—alog,. 2)
0y !

(a,b) has a domain of the length at least

. it easy to show by induction in number of iterations that any long branch

—m(l—alog,,

—m(l—alog,. 2)
- 281 1

m(l—a) 1Og51 2(5)81—771(1—0110gSl 2) 2) _5 Z sy

|b—a|l=(2—s

Therefore any of the intervals (—1 + 4, % —1)and (£ — 1,1 — §) contains at least

S1

m(l-alog,, 2)

2m(1—o¢10gSl 2)-1 Sy

5 = 2m(1—ozlogSl 2)-1 2m(log2 51—20) > Qm(l—alog51 2)-1 2

m(l—alo,
long branches of the map £, (1madoss, 2).

Therefore, the composition has at least 27108 2(27”(1_0‘10&1 H-1_ 2) long branches,
which comes ag 2771 — 2m1%8:, 2 5 9m=2 45 nromised. ]
Canonical partition construction. Let us consider the set of end points of domains of

long branches

Dy: = {x |z is an endpoint of a domain of a long branch of the map £} U{£1} =
={-l=di<dy<...<dy=1},

N

and define a partition Q = |J €, of the interval [—1, 1] by Q; = (dj,dj11);7=1,...,N.

j=1
Let us denote by U.(£2;) a neighbourhood of €; of the size €.

We shall set e = (2s7")"!. If for some Q; = (d;,d;;+1), containing a long branch
of the map 7", there exist points of discontinuity of the map £¢" in a neighbourhood
U.(92;) N [—1,1], then we extend the interval ; to include all these points.

Let Q) = (d},d;,), j = 1,..., N be a new collection of intervals. If there exist
two intervals (d},d;,,) and (d},,,d}, ) containing long branches of the map /", and
such that d; 12 —dj41 < (ms?")™!, then we replace the interval (d;,d;41) in € with the
interval (dj, dj;2).

Now the length of any interval of the partition ', containing a long branch, is
not more than 2(s;™ + s,™). Assume that there exist two intervals (d},d}, ) and
(d),9,d; 3) containing long branches of the map (7", such that d,, — d;; > s,
then we split the interval (d,,,d},,) into intervals of the size s,™, allowing one of
them to be longer, or smaller, if necessary. More precisely, let ) = (d},d, ;) be
an interval of ) that doesn’t contain a long branch. Let n := [sgl(d; 41— d;)} be
the number of “whole” intervals of the length s,™ that could fit inside (d},d, ). If
(dy —dj) —nsyt < s7™, we split the interval (d},d},,) into n intervals; adding the
intervals (d + ksy ™, d; + (k +1)s;™), 0 < k < n to the partition 2. Otherwise, we

]
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split the interval (d},d},,) into n + 1 intervals, adding (d} + ksy™, d; + (k + 1)s;™),
0<k<nto.
The intervals (a{™, —1) and (1, am), do not contain any long branches, and we define

the partition there as described above. Finally, we define the partition on (—oo, aY”))

and (am

We have obtained a partition of the real line, that satisfies Conditions (D2) and (D4)
of Definition 3. We have to check other conditions of Definition 3.

, +00) splitting them into equal intervals of the length 27

Lemma 5.8. The partition constructed satisfies Condition (D3). Any interval I C R

of the length § contains at most Ny < 2™ D+ ptervals of the partition.

Proof. The statement holds true for any interval I C R\ [agm), a%g] of the length 0.

Assume that [ C [agm), am], and |I| = . Then there are two possibilities:

(1) the interval I contains a long branch;

(2) the interval I doesn’t contain a long branch.

Consider the first case. Observe that for any ky < m and for any interval I, C [—1,1]
of the length |I| < s7™ such that t¢(Ip) C [-1,1] for all k < ko, the map Elgo is

) we have

one-to-one on /. (Easy to check by induction). Since for any long branch ag-m
1-— % € Eg(cém)), we conclude that ky: = [—log, dlog,, 2] = [amlog,, 2] and then we
see that the map élgo is one-to-one on any interval Iy of the length less than ¢ such that
C¢(Io) C [=1,1] for all k < ko. Thus any interval of the length § contains at most 2%
long branches of the map ¢{". Consequently, any interval I with [I| < § contains at
most 2™ % < Nj intervals of the partition with a long branch inside.

Assume now that the interval I of the length |I| = § contains some intervals of
the partition that do not contain a long branch inside. Let Iy C [ be a maximal
by inclusion subinterval not containing a long branch. Then by construction of the
partition, it contains at most one interval of the partition €2 of the length less than s;™.
Since the interval I contains at most 2™ % long branches, it may contain not more
than 2™~% + 2 intervals Iy without a long branch inside. Therefore, the interval I
contains not more than §si* + 2m %+ < N intervals of the partition.

In the second case, an argument similar to the one above shows that an interval
I of the length |I| = § and without a long branch inside contains not more than
dsh* + 1 < Ns intervals of the partition.

[ |
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Lemma 5.9. The partition constructed satisfies Condition (D1) of Definition 3. The
interval [—1,1] contains at least 2™~' and at most 2™ — 2182 4 misT intervals of

the partition.

Proof. By Corollary 1 of Lemma 5.7, the map ¢ has at least 2m~2 Jong branches,
provided sy is chosen such that 2a/log,, 2 > 1. Every long branch belongs to exactly one
of intervals of the partition, and the escaping set of measure md contains at most mdsy*
intervals. |

Summing up, we conclude that the construction leads to a partition of the class G,
as desired.

We shall refer to the resulting partition 2 as the canonical partition of the map £".

Lemma 5.10. Any interval of a canonical partition 2 has at most two main branches

of the map (¢".

Proof. 1f an interval §2; of the partition contains more than one main branch, one of the

main branches is not long. Let it be uém). Then by Definition 9 ‘f?’(uém))ﬂ [—1,1]] < %
Now we repeat the calculation of Lemma 5.5. The end points of the interval a,im)
are the points of discontinuity of the map (¢". Then there exists two numbers n; < m

and ny < m such that égl(a,(gm)) = —14¢&(ny) and f?Q(agj_)) =1 —¢(ny). Therefore,

07 (™) + 1] = [0 (<1 4+ E(m)) + 1] < sPT6s

07 (a)) — 1] = |52 (1 — €(ng)) — 1] < s

Since by assumption |€§m(a,(€m))| < %, we deduce 2 —0(sy " + 577 ") < % The latter

is equivalent to d(s5' " 4+ s ") > %, which implies that either dsh'™"* > L or

- 817

dsy "M > i, or both. Hence we get an upper bound on n; or ns, respectively:

N1 < Mg: :m<1— >+10

log, s1

)

Therefore one of the end points of a,(cm is an end point of the main branch of the

map f¢ with n < mg. Observe that all main branches of the map (7" are long. Any
interval of the length s;"™° contains at not more than one main branch of the map
Egmo. Therefore the distance between short main branches of the map ;" is at least
s7M0 > 2(s7™ + s, ") = sup |©;], and any interval of the partition contains not more
than one short main branch of the map (¢". Therefore, any interval of the partition

contains at most two main branches. [ |
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5.4. Approximating (f; by a generalised toy dynamo operator. Here we prove
the main result of this Section, Theorem 3, which establishes the existence of a gener-
alised toy dynamo operator, a close approximation of (7} for arbitrary |[|£[|. < 4.
Construction. Let a partition Q2 of the class G be given. Let g be as above, and
let a™ be a partition of the real line by its points of discontinuity and let Q! be the
canonical partition of the map ¢¢". Introduce the joint partition: am U = {d;};ez.
We assume the natural numbering: [do;d;] 2 0 and d; < dj1; for any j € Z. Define
the image of the joint partition by

. _ m
{bj o y_l}l;nioﬁf (y )}jEZ'

Then on the interval (dj, d;jy1) the map (7" is given by
-

- —bf bidj — b7, d;
(z): =2 T VD < < dg.
£ djr1 — d; djt1 — d; ’ i

We define an approximating map EA? to be

Z?(l’) _ Lbj_+1J - ’Vb;-—‘x+ ’V —‘ J+1 — |_ ]+1J ’
djsr — d; djr —d;

dj <z < dj-i-l;

where |x] stands for the closest to x point of the partition Q2 which is smaller than x;
and [z] stands for the closest to x point of the partition 2, which is larger than z. In
particular, branches of the map Zg” are not longer than branches of the map £¢".

We define an operator T : ®q1 — P2 by

(To)(@): = Y sgndlf(y)o(y). (33)

yel ™ (w)

Lemma 5.11. The operator T is a linear operator between two subspaces of step func-

tions associated to the partitions Q* and Q2 (see p. 2 for definition): T : ®g1 — Pge.

Proof. Linearity is obvious. It is sufficient to show that for any interval 2} € Q" of the
first partition,

(Txa)(@): = > sendf(y)xa:(y) € Doz,

yel ™ ()

R m 3 m — - m — +
By definition of ¢}, we see yilg?fogf (y) = [b;] and hgjnJroﬁf( y) = [bj], therefore

all points of 22 C 02 have the same number of preimages with respect to g for
any interval Q2. Moreover, Zg ™(Q%) does not contain any point of Q' inside, as it is

piecewise monotone on a subpartition Q' U a(™. |
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Definition 10. We introduce the k-escaping set
By ={ze[-1,1]|3n <k l(z) & [-1,1]}. (34)

Lemma 5.12. In the canonical bases of P and Pg2

Sm
sup #{z € Q) | (7' (x) = y} < m*=-.
yGQ? Sa

Proof. Observe that the map is one-to-one on any interval I C [—1,1] \ E,, of the
length |I] < 2s7™.

Given an element le, consider a maximal by inclusion interval I C E,, N le, such
that |I| < s7™. We shall show that
max #{x € I | ({(x) =y} < 3ms?. (35)

yeR
There are two possibilities:

(1) the map £ is continuous on I C E,, N QJ;
(2) the map £7" is not continuous on I C E,, N €.

In the first case the map l¢|; is a bijection and (35) holds true.
Now consider the second case: the map ¢ is not continuous on I C E,, N le We
may find the smallest kg such that KIEO(I ) ¢ [—1,1]. Then

(1) A [=1,1] € (=1, =1+ $07™) U (1 = sbo= 1),

Let myg ©f lema 9 [t follows by induction in k£ that for any kg < k < mg the

logs s1
image £§(I) N [—1,1] may be covered by two disjoint intervals in particular,

G N[=1,1] C (=1, =146 + s} U (1 + 6 — 577, 1),

k . k )
where 0} = 3 sV77¢; and 02 = 3 sh 7€, with |6,%] < sF7*F15 and —1 + % ¢ LE(I)
Jj=ko Jj=ko
for all kg < k < my. In particular, for any x, z5 € I such that 6’50(951) €(—1, —14sko™™)

and flgo (z3) € (1 — s%7™ 1) we have for all k < my:
|€]g(x1) — K’g(xg)} > (1463 — s]f_m) — (=146 + slf_m) =2 — QS'f_m + (62 — 6) > 1.

The map Ezfogko is a bijection on any of the intervals (—1, —14s~™) and (1—s?"™ 1).

Therefore, we deduce that the map 62”0 is a bijection on I. It follows that the
image ¢{"(I) consists of not more than 3mg intervals each of which is not longer
than s77™. Let n = 0™°¢ and consider the map £7'~™°. We claim that it is a bijection

on any interval I C R of the length |I| < s, Indeed, if £~ is continuous on I,
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then it is a bijection. Assume that for some ky < m —mg the map E’;O is not continuous
on I. Then

617;0 (I) N [—1, 1] C (—1; -1+ 871710+k0—m—3 + 5) LJ (1 _ 8717’&o+ko—m—3 B 5; 1)’
and for any kg < k < m —my
B [=1,1] © (=13 =1 + s5+1§ 4 gmothmm=3y | (] — ght1 _ gmo+h-m=3, 1

By straightforward calculation we see that provided s; < 22¢

— 1
gpoth=m=3 4 ghtls < —
S1

mo—m—3

Therefore for any interval I of the length |/] < s and for any two points x1, o € [

with ;1 # x5 we have that (f(z1) # (5(xy) for all 1 < k < m — mg. We see that the
image (/" may be covered by not more than 3mgs® intervals of the length s}~
Hence we conclude that for any interval |I| < s;™

sup#{x € I | (7'(x) =y} < 3mygs] < 3ms] + 3.

yeR
Since by Lemma 5.10 any interval of the partition contains at most two main branches,
the set QN E,, is a union of not more than two intervals, which may be covered by

2+ 2 disjoint intervals of the length s;™. Therefore
S1

max #{z e | (x) =y} < 3ms§’<z—;)m< m? (—)m

592

Corollary 1. In the canonical bases of ®q1 and Pgq2 the matriz of the operator T

satisfies condition (D1):

m
max |7;;| + 1 < m2<ﬂ)
52

Proof. Recall the definition of the operator T

(To)(x): = Y sgndff(y)dly). (33)
yely ™ ()
Then for ¢ = Xo1 we have

ZTUXQQ Z Z Sgn d€€ XQl( )XQ? ($) =

€L €L yef ™ (z)

=3 Y sendf(y)xax(x); (36)

€L yel, ™ (2)n0}
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therefore

Tij = Z sgn ng”(y).

yel, ™ (0N}
The definition of the map Zg guarantees that 7;; are well-defined; in particular
I7ij] < #{x € Q) | £ (2) =y € O},
and the right hand side is independent on the choice of y. Obviously,
sup #{z € Q] | EA?(:E) =y e} <sup#{z e Q| (I (z) =y cQ},
[

Corollary 2. We have the following upper bound for a total number of preimages of

a point x € R :
251 m

sg}g{y eER| P (y) =z} < 2m2(§) ; (37)

~ - 9 @m
iléﬂg{yeR|€£(y)—x}§2m(S2> . (38)

Proof. By definition of a partition of the class G, the interval [—1, 1] contains not more
than 2™ intervals of the partition; and intervals [—1 — md; —1] and [1; 1 + md] contain
not more than mNjy intervals of the partition each. Finally, both maps are bijections

on the complement to [—1 —md, 1 + md]. [

Lemma 5.13. Let Q' be the canonical partition of the map bt Let Q2% be another
partition of the class G. Then

#{(i,j) €O C [-L1 NN E,)} < m*si™
Proof. We shall prove that

S Y ™) < sy

Diy? a;m)cEm

then the Lemma will from from the lower bound on the size of the elements of partition.

Indeed, by induction one can show that

Sk_Zk
> @) < ——F

h S1 — 2
u§. )CEk
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The case k = 1 is trivial. Then we proceed

S > e+ YT k) <

Cl;k)CEk Cl‘(jkil)CEk_l a;k)CEk\Ek_l
k—1 k—1 k k
s -2 sy —2
S 81(5 . + 2k6 = L 0.
S1 — 2 S1 — 2
|

Corollary 1. Let Q' be the canonical partition of the map lg'. Let 0% be another
partition of the class G; and let EA? be a map defined as above on p. 24. Then

#{(i,j) € 0] QF C [-1, 1 NP Q) N E,)} < m?osi™

Proof. The inequality for the map Zg” follows from the fact that images of all branches
under adjusted map Z’g‘ are shorter than the images of the same branches under the

original map £¢". |

Proposition 5.3. In the canonical bases of g1 and P2 the operator T defined by (33)

1s a generalised toy dynamo.
Proof. We have checked the condition (D1) already. We should verify the following
conditions.
(D2)  #Di, < 3m*dsi™;
(D3) for any pair (4, j) € Sp we have that 7;; = 0 whenever |7 — j| > mNy;
(D4)  #Ar>2m2

Ar: ={je{N' ... N} | #{i e {N} ... N} | 75 =1} > 2™ — N; };
Din: = {(i,7) € {N} ... N} x {N} ...N}!} | 7i; # 1}

To verify the condition (D2): #Dy, < 357™m?$ we shall show that y-, [QF] < 3s7"md

—m
51

and then taking into account |Q?] > we get the result. Let E,, be the m-escaping
set as defined by (34) above.

We introduce three subsets of the set Dj,.

m

Din': = {(i,/) € D | 9 € [-L, U\ &\ En)}
— complement to the images of the main branches;

Din?: ={(i,5) € Din | Q2 C [-1,1] N QL N B}
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— image of the points that were mapped outside [—1, 1] and back;
Din®: ={(i,5) € Din | Q2 C [-1,1] N EQ}\ Ep)}

— image of the points that were inside [—1, 1] in first m iterations.

We claim that Dy, = Dj,' UD;,> UDy,*: indeed, for any pair of indices (7, j) € Dy, we
have that Q} N E,, # @. We shall show that Y5 1+ [QF] < s7'md, Yo 2 [QF] < s7'md,
and #D;,* < s2mm?6.

We start with D;,' and recall the original partition a™ by the points of discontinuity

of the map £". Let J (Di') be the union of intervals with indices corresponding to Dy,":

J(Dinl) L= U (le \ Em)'

j: (ivj)GDinl

We may write then

Sl <2#{a™ cIDuht- Y @™ <m0 > ™)),

Diy ! a{™ (D) af™ C[~11\Eum

and we shall show by induction in &k that

ST k)] < sk k2R where [|é]l < 274

o\ 1,1\ Ex

The case k = 1 is trivial. Let b(® be the canonical partition of the map ¢5. This
partition has 2¥ elements in [—1,1]. There exists a correspondence between the sets of
indices 7: {i € Z | az(k) C (=1,1)} = {=2%,...,2" — 1} that satisfies d¢§ | w= déG | m
i ()
and 7(j1) # 7(j2) for all j; # jo. In particular, sgn d@g | = sgn d@g ROR
i ()

)

We split the intervals ag-k into two groups:

BY: ={je{-2% .. .,2" 1} | j = 7(i) for some i € Z};
BY: ={-2% .. 2" 1)\ B
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We also see that Elg(b§k)) = [~1,1] for any interval of the partition b*)
k) k
2 ST = (o e X )=
ol®) -1\ By jeBY  jeB§ gk)c[fl,l}\Ek
=3I\ @k + D 1Y) <
jEBY jeBk
k—1) 1y ke —1p (k=1
<s 3 1T ETINGET @I H 202 3 1 o) <
jeBY! jeBE?
§31<2’“ Z\E’“ )+2’“5<
Bk 1

< sh(k —1)6 + 276 < stké.
Therefore we deduce that

23T )] < s m2, where [l < 274,

¥ c[-1,1\By,

Since there are not more than 2™ main branches, and the length of intervals of the
partition Q2 is bounded |Q?| < 2(s;™ + s7™), we get

2t 3T (@) < s em27m 2™ (5™ 5™ < 2mdsy

P -1\ By

provided s, < 2 < 51 are chosen such that s;5, > 2'* which is possible.
The inequality for the set Dy,* follows from 1 of Lemma 5.13.
Finally, for the set Dy,® we observe that (1,7) € D;,? if and only if there exist two

main branches §1 ), (-Z”) C Qj such that for any k& < m we have @g(ag-zn)) C [-1,1] and

G(af)) C [=1,1], and (o) N 62 (af”) N Q2 # 2. Since both aff”’ and aff") are

2
< 5

or |[(7'(a all" ))| < 2 ;- By Lemma 5.5 there are at most 2m(1=21) main branches Wlth this

belong to the same element of the partition we conclude that either |(7*(a; (m ))

J2
property. Without loss of generality we assume the latter. Then by definition of /¢* we

have @”( )| <2 + 2(s3™ + s7™). Hence #D;,”* < 2m-e0)28s Tt follows that

2N
#Dm - #Dm + #Dm + #Dm < 232mm5 + 2m(1 i (5 3 2mm5,

as required.
The condition (D3) follows from the fact that the map 22” is linear and on the
compliment R\ [-1—md, 1 +md| (in other words, the complement consists of two pieces

of continuity), and, moreover, it is given by Zg‘(x) = x + b on these set. Therefore,
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7;; = 0 whenever |i — j| > b- Nso~*. Obviously, |b] < md, so we get 7,; = 0 whenever
li — 7| > mNs.

|

Now it only remains to show that the generalised toy dynamo, constructed from the

map Zm, is a good approximation to the operator ;.

Theorem 3. Let Q% be a partition of the class G. Consider a sequence & € (o (R)
with ||€]|ee < 27™ and let Q' be the canonical partition of the map g Then for the
operator T = (f,: & — @ defined by (33) and for any essentially bounded integrable
function g € L1(R) we have

3
m 51 "
16 = T)Woglls < (qatay;) - mllalle

Proof. Let ||g|lo, = 1 and let f = Wsg. Then || f]loo < ||lg]loe < 2™/2, since

-m 1 -m
gl = max(2 i [, le@)lde, 272 sup |g(x)] ) < 1.
1251
jez 1ol /9 z€R

By definition, we write

~

THa)= Y sen(l) (W) f(); (39)

yely ™ ()
nf@) = > sen(t) W) f ) (40)
yel; ™ (@)
We begin with weighted £;-norm.
ez f — T2 fllo = | 2|/ T f(z) — €2 f(2)|de <
JEZ
1-mé ~+00
< (/ +/ )T #x) = €2 f ) da+ (41)
14+mé

14+md
51 / /+ ny — 02 f()|da+ (42)

+27m Z 192!/ T f(z) — ¢ f(z)|da. (43)

,N2

We estimate all three terms separately. By the very definition, on the infinite intervals
(1+mé, +00) and (—oo, —1 —md) the map ¢ is given by ({*(z) = (=D)™(z+ > €3))-
j=1
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Therefore, the map Zg” is one to one on each of the intervals (—oo,—1 — md) and

(14§, 4+00); moreover,
te" (=00, =1 = md) U (1 4+ md, +o0)) C (—o0, —1) U (1, +00).

Observe that for the last point ay € R of the last point of discontinuity of the map £

we have, using Lemma 6.3:

+0o0

Heo +eo 27m mNg
|f(z)]dz = (Wsg)(@)ldz = Y =5 [ [Wag(@)lde < [Wiglh < —=-

a a : |Q j | 9% 52 4

N N =Nz "7 j

The first difference we estimate by the sum of absolute values.

+eo - / /
[ ]S @ wie - Y (@) )sw)i -

14+md -~ —m

yel; " (2) yel ™ (@)
+00 . —1 +o0
[ i@y - s @far <2 [+ [ )@l -
14+md -0 1

:2(/_Z+/al_1+/1aN+/a:oo)\f(rﬂ)\dw,

where a; and ay are the first and the last points of discontinuity of the map (¢".

Summing up,

+o0
/ [0Ef(x) =T f(z)|dz < 4mdsup | f| + 4] f[l: < 4<m62m/2 n o
1

+ms b s
(44)
Similarly,
—1-mé mN(S
| i) - Trwld < 8720 (45)
—00 2

Summing up (44) and (45), and taking into account that ||f||; = 1, we get an upper
bound for the first term (41):

(/_1_m6+/1+00>|42'1f(x) T f(a)de < 16720, (46)

m
[eS) +md Sg 0

Now we use a rough upper bound to estimate the second term. Since by Corollary 2

281

of Lemma 5.12 any point has at most QmQ(E)m preimages with respect to Zg” or £g";
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and taking into account || f||. < 27™/2.

1+md 1+mé
/1 (02— T)f(a)lde < / 102 ()| + T (2)|d <
< sup(|62f ()| + [T F(@))md < (3) "m*2 5]l <

< mom(3/2-a) <ﬂ) m
< 5

Therefore we get an upper bound for the second term (42):

<%)m</11+m6 +/:1m5> W?i - (z)|dz < mom(1/2— a)(@) . (47)

The third term (43) is a little more complicated We split the sum into two terms:
long branches and all other intervals. Let a®™ be a partition of R by the points of
discontinuity (cf. (32)) and let al™ = = (a ) an+1) be its intervals. Let a,, = (—1, ag’ﬂzl)
and a,, = (afﬁl, 1) be the most left and the most right intervals of the partition
inside the interval [—1,1]. Let E,, be the m-escaping set as defined by (34) above. By
definition of ¢¢« and T,

> ’“Z o )~ Tl =

dx.

v = o 2 @ W)= Y (@) @)/6)

i=N} yel; ™ (x) gel; ™ (@)

Let us introduce two functions

h(jo): ZXR—=R; h(a)= > sen(6) (W)xgem (0 f W);
yel, " (x)

and
~, . ~, . R N N N
h(jo): ZxR—=R; h(a)= > sen(l) (@)xen ()f ().
jely " ()
Then we see that

SohGa) = > sen(t) W) fw);

JEL yefgm(x)
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and

both sums are well-defined, because they have finite number of non-zero terms, since
by Corollary 2 of Lemma 5.12 the total number of preimages of a point is not more

than m32m s s, ™. Therefore we may write

2m%%/9 |ég;f(a:)—’rf(x)|dx— IQQI/ ‘Z (o g(m))‘dx:
(m)
(Z Z Z ‘QQ / }hﬁ ﬁ(j,x)’da::

n(™  jon(m™ (™ i=N2

(X + X+ X +3) \QQI/ h(j, @) = B, )|de. (48)

I T g

First we estimate the finite sums:

(2 -%) Sy

plm =N}

h(j, ) — h(j, x))dl‘ <

N} N1+mN5
< Z Z ) Z Z|Q2|/}hja "i‘lhj, ’dx<
k=N}!—-mN; k=N} (m) cali= N?

3

S m
< 2mN5 - sup |15] - sup | f] < 2mN5< 2) [ed | §2m<21/2—i0652> ; (49)

for all s; > 2.
Observe that for any domain of a main branch a ¢ E,, and y,9 € u(m), such that
g (y) = E?( ) we have that sgn(¢f")'(y) = sgn(@?)( ) = 1and ({")(y) > sy'. As

before, let ag»m) = (ag»m), 5 ™). Then

. 1 Sy (m) m (M) gm Sin( (m) 1
19—yl < Wmax(ﬁf (a;77) = €¢ (a ) &' (a g+1) ¢ (a11) < =

Hence for any f € W5(L£1(R)) we see that

@) — f)] < - sup(Wag)' <

m 2m S — 2m”
S5 s5™0 T 085
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Summing up, since the total number of main branches is not more than 2™, we get for
the first term of (48):

9-—m 23m/2 8121/2+a m
]QQ / [2:) e < oo | S S (=)

52
(m)¢E i= N2

To estimate the last term, we introduce two sets of indices

DE {(s,) €0 Q2 C [-1,1] N QN En)};
DE {(s,) e 0| Q2 C [-1, 1N QN Ey)}.

By Lemma 5.13 and its Corollary 1, we see #£D < m28s>™ and #D < m2§s2™. Observe
that

U{ ™ x 02) | o™ € By, Q2 c &2 n[-1,1])} C
(U x )| (s,t) €0, Q2 C [-L, 1NN B}
along with
U{ " % 02) [ a™ C By, Q2 C (0™ N [-1,1])} C
{2 | (s,t) €0, Q2 C [-1, 1] N QN B b

. Hence we calculate an upper bound for the second term of (48):

Z Z 193] / \h(j,x ﬁ(j,x)|dx§

(m)CE 1= N2

suplf] S Zm / ) > @) <

o™ CEyp 1=N7 gele ™ (@)

<2 sl 3 o [ irakde <2 suplol syl #(DUD) <
(i.j)eDUD
1 s - s \m
< g lalle- (52)" -0t < m?- (5ta)” (51)

- 2m 21/2+a82



FAST DYNAMO ON THE REAL LINE

Now we collect the four estimates (46), (47), (49), (50), and (51) together and get for
any function g with ||g||; = 1:

102 Wsg — 2 Wsg 2,00 <

3

mNs 2(1/2=a) g2\ m 51 21/2 e\ m s m
<16 (—) 2(—) 2 2<—1 ) <
s m So * s3 em 21/24ag, ) =

3

2 51 m
ng (21/2—%> . (52)

for m large enough and s, < 2 < s1 chosen such that s;s2 > 21/2+2,

Now we turn our attention to the supremum norm. We may write

sup| 2. () ~ TS @) =sup| D sen(@) D)~ N sen() )] <
yel; ™ () vely™ (@)
<swp( X s@) @ - Y sl wiw)| <
€7 yel; ™ (2)n0t yel; ™ (z)N0}
(Z Z > @ wiw- > sen(@) )|+
—mNs el ™ (z)nQk yele " (2)NQ]
Y (Y @i Y @) msw)] 63
Nll—mNé yezgm(z)mﬂzl yefgm(x)ﬂﬂg

Observe that

N1+mN5
sup) Z (> s@wiw- Y s wiw)| <
—mNj ygg ™ (2)NQ} yeﬁgm(x)ﬂﬁzl
Nl+mN5 N1+mN5
< 2sup > #Hye @) N} sup|f(y )| < 2sup > ITm\Suplf( )| <
N} ~mNs & N} —mNj
N,}-i—mNg
< sup |7 Z sup [f(y)|- (54)
N}!—mNs 2
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Our goal is to estimate the last sum from above via weighted £;-norm. Recall that

f = Wsg. By definition of the weighted £; norm, we see

N+mN5 _
iglh = |91| 7, Wl =
NT+mN5 N+mNs
=2 Z o / IWagl—SuplWagl) > 2msup|Wag|
Nll—mN N —mNg
in particular,
N}+mN5 N}+mN5 1
27" Y sup [Wag| < [[Waglh +27" ) (SU1P|W59|—W / Wagl). (55)
N} —mNs & N} —mnN, 5 il JQy

We know that for any bounded, continuous, absolutely integrable, and piecewise

differentiable function f: R — R and any finite interval

suns = [ 1] < [ 171

Therefore

N+mNs N+mNs

1
ol = X ek
N;%N‘SSP Wi |Q;|/Q%' 59| Z [Wag(a)||de <

</2‘ (Wsg(z ”_/‘d /w(;x t)|g(t) |dt‘d:zc<//‘dw(S )|g (t)|dtdx =

dws( 2m
= [t | anar < 25 [ o0l < 5 sup -l

(56)
Hence, substituting (56) to (55), and using Lemma 6.3
N4+mNjs
" m 2™ sup |Q} 2mNs 2™
> supligl < 2 Wagl + 2R gl < (2504 2ol <
N —mn; 52
1 8
2m—i—1]\[(s
< gl (57)

2
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Finally, taking into account ||g|lo, = 1, we substitute (57) to (54) and get for the
second term of (53)

N1+mN5

rrta| SN @) Wi - Y (@) 0)fw)| <
N} —mN; yeé ™ (z)NQ} yel, " (x)NQ]
2M/7HINg  2m2Ns 21/25)\m
< ij < 58
<suplryl 5 < =5 (557) - 69

Let us define A(x) o (r — s, x4+ s5™). We have the following upper bound for
the first sum in (53):

(Z 5 X @ wiw- Y se(@)w)iw)| <
Nl=mN5  yel; ™ (2)nQ! yeL: " ()N
su m/2
<sup swp |fm)— fl < swp |Fm) — fl) < DRI 27 g

m  — m’
2R y1,y2€A(2) [y1—y2|<2s5™ 2532 2552

Summing up (58) and (59), we get in (53)

2m? N <21/251 m 3

1 s m
m/2 m 1
2 sup‘ﬁ 65*]”( )| < 5 2 > + 205 < 3m<—21/2+0‘32> , (60)

(by straightforward calculation).

6. INVARIANT CONE IN &.

In this section we construct an invariant cone in the space of essentially bounded and
absolutely integrable functions ® for the operator W s g w E which is independent
of the choice of ||€|| < . We exploit the properties of the Weierstrass transform that

we prove below.

6.1. Discretization and the Weierstrass transform toolbox. Here we prove a few
estimates showing that the image of the Weierstrass transform with Gaussian kernel
of a large variance compared to the size of elements of a partition may be very well

approximated by a step function on the partition.
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Definition 11. Given a partition  of the class G we define a linear discretization

operator Dg:

Dqo: Li(R)N Lo(R) = Po N L1(R) N Lo(R);
1 :
Dq: f Z iXe,, dj = 2(1%%xf(x) + II(l)lJIlf(J?)) (61)
JEZ
Definition 12. The Weierstrass transform Ws is a convolution with the Gaussian

kernel with variance 62

1
V27

Lemma 6.1. Let f: R — R be a differentiable function. Then

2
Ws: f+— ws = f, where ws(z) = e 207 (62)

1f = Dafllac, < 2m14)%f)‘dx. (63)

Proof. Indeed, by straightforward calculation,
2,
|f = Daflloc, = \f — Do f(z)|dz <
keZ

’ k|/ maxf mmf( )|dz =

keZ

<2’”Z]maxf mlnf \<2m2/

kEZ keZ

- z—m/IR(%)dx.

Lemma 6.2. Let Q' and Q2 be two partitions of the class G(m, d, s1,52). Let Da1 be
a discretization operator and let Wy be the Weierstrass transform defined above. Then
for any bounded integrable function f

max(sup [}, sup [27])

1
| Dan Wi f = Wsfll1 < 5 | fll2 < ﬁ||f||2~
2

Remark 5. The dispersion ¢§ in the Gaussian kernel is the same 0 as in the definition

of a partition of the class G.

— 39 —



FAST DYNAMO ON THE REAL LINE

Proof. We begin with estimation of the L,,-norm. Let Don Wisf = >° iz deQ;. Then

[ wste =00t = 3 dyxoy (o) =

| DarWsf — Wsf|le = sup

z€R jez

1
= —sup max/w(;(x—t)f(t)dt—min/wg(x—t)f(t)dt <

kez! Q9 Jr Q, Jr

1
< —sup<|Qk| maX‘ /w(;(x—t)f(t)dtD <

2 ez dz

1 d
< sup |2 sup| [ —ws(x = 1) f ()] <
T€R dl‘

< sup o sup @) sup 5 (e[ ) <
= PRSI IATINE Vars =0 A

< Sup—llflloo

Now we proceed to the weighted £;-norm. Using Lemma 6.1 we get

| Den W f— Wy flly <271 /‘diW(sf(x)‘dx =

d
/‘d /ww—t dt‘dm<2m//‘ wilz |£(t)|dtdz =

o [ [ [0 g = J_(SZ/ e < “ 2

Lemma 6.3. Let Q' and Q2 be two partitions of the class G(8, sy, s2). Then an upper
bound of the norm of the Weierstrass transform is given by
mN(g

N,
IWafll < 2m- sup 5] - =21l < —2 1 (64)

Proof. We estimate the norm of the operator Wy on step functlons first. Let ¢ € O
be a step function on Q'. Assume that ¢ = Y ¢;xqr and ||@]|or = 1, that is
JET ’

max(?‘m Z lc;],27™/2 sup |cj|) =1;

JEL
which implies

Z ;| < 2™, suple;| < 2m/2
jEZ

Wsd(z Z/ cjws(z —t)d

JEZ

Then
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So we calculate

[Wsolloz.c, = Z ‘ 2 ZCJ/ ws(z — t) dt)dm <
keZ 2

<] / /
< —_ pu—
< E E 2102 s . ws(x — t)dtdx

keZ jei
|CJ‘/
ws(x — t)dzdt =
C; 1
:ZL—;J ( Z + ) )m/ ws(z — t)dzdt.
jez U z—alsms  [02-0lj<ms K TR
We know that
1 1
— —t)dr < —.
] Jo o0 TS

We also observe that for any t € le

1 —t—md ~+o00 e—m
— ~ <
| 7 /wg r—t)d 1nf](22| </ ws(x t)—l—/Hw(;(x t)dx)d 1nf|Q 1

02— Q1\> 5 i mo

Therefore, taking into account that 27" %", [¢;| < 1,

—-m N e ™ N,
||W5¢||Q2 o < ZZ |2C7ij <1nf|Q2 o 6>|Q | < Sup|Q |< f‘Q | m(s 5>'

kEZ j

Now we consider arbitrary function f € £1(R) N Lo(R) with || f||; = 1. Then

HWszHm,cl = Z Z/Q1 ws(x —t)f dt‘dx <

kez | 0%

2MZ/ f(t ‘Z!Qﬂ/ ws(z — t)dzdt =

JEZ kEZ
1
—gm ) . <
Z/ | f(t) + Z 2] . ws(x — t)dzdt <
JEL |Q2 Ql\> 5 107-0j<
e ™ 3mN5
<9 m ) <
Z/ 1£(6) 1nf\Q2] o dt
JEZL
1/ em 3mNs
SS“pmﬂ"(mfmgy +=5)

In the last inequality we take into account that

o, = zmzml / SOl < 1.

JEZ
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Now we recall that inf [Q] > s7™/m and therefore, for s, < e

e ™ S1\™
-2 <

inf Q7] e
while
% _ zm(l—ozlog;51 24a) > om
)
Therefore we conclude
3mN,
1Wsfllos, < 2sup 03] - .

The upper bound of the supremum norm is easy.

[ wste —os@at] < suplso).

zeR

W5 flloe = sup

zeR

Lemma 6.4. Let Q be a partition of the class G(s1,$2,9, m) where the parameters s,

and § = 2™ satisfy the inequality logy s1 < 2« then
IWsx[-11) — X1y lle < 27772 (65)

Proof. Obviously, sup [Wsx(-1,11(z) — x[-1,11(z)] < 1. Now we have to find an upper
bound for [|[Wsx(-11 — X[_Ll]HQ,ﬁl.

HW5X[—1,1} - X[—l,l]HQ,ﬁl = ’ | / ‘/wé x —t X[ 1,1] ( )dt — X[-1 1] ‘dﬂﬂ =
J

JEZL

We split the sum into two parts: over the intervals inside [—1, 1] and the rest

//wg t)dtdz.
! €]

(66)

N

:ZQg;—m <1 /wa(a:—t)dt>dx+(z+

j:Nl‘ Jl £ - J>Nr <N,

We begin with the first term of (66), that is the sum of the intervals of partition inside
the interval [—1,1].

Ne oem 1
191 b= —t)dt )dx =
a:ZNl 1651 Qj< /_lwg(x t) Tf) T

N;+mNg —mNj .
:( Z + Z T Z ) / (1—/ wa(x—t)dt>dx. (67)
=N j=N;+mNs  j=N,.—mNj Q; -1
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We estimate each term separately. The first term of (67) has only mN; elements:

N;+mNjs 9-m 1 Ni+mNs o _ 1
— 1 —/ m;(x—t)dt) dz < — (1 —/ ws(t+ 1)dt> dz <
JZJ;I 1] Qj< -1 le;z €] Q; -1

< m2™™Nj (1 - /2 m;(t)dt).

We have the following upper bound for the second term of (67), since for [t| <1 —md
the integral f_ll ws(x — t)dz is close to 1:

Nyp—mNg 2—m 1
Z Tl (1 - / ws(r — t)dt)da: <
Nyr—mNg 2_m 1
< il <1—/ w(;l—mé—tdt>dx§
2 Gy )
I TmiNg
2—md
< 2°™(N, — N, — 2mN5)<1 - / w(;(t)dt).
—md
The third term of (67) has only mN; elements, so we write
N 9-m 1
Z o (1 - / ws(x — t)dt)dx <
j=N,—mNjs 1451 Jo, -1
Ny 9-m 1 2
< D> = (1 — / ws(1 — t)dt)dx < mNs2™™ (1 — / w(;(t)dt).
RSN A ;

Putting all three inequalities together, we get the following upper bound for the first
term of (66):

N 5em 1

jZ];l’Q_ﬂ/Qj(l - /_lw(g(as —t)dt)d:v <
<3 (0) s () (- [ o)
< 22_]:? : <%+5> N <1 B %) (/;méw(g(t)dt—f-/2+:5w5(t)dt> <
<R () - (- ()
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Recall that Ny < 2m(1=21es 2) v definition of the partition of the class G. Therefore

we complete the estimation of the first term of (66) :
2mm ! —malog,. 2 —m/2
—— (1 — | ws(x — t)dt)dx <2 Bap = L 272, (68)
—N, |Q]| -1

Now we proceed to the upper bound for the second term of (66).

—t)dtdz <
(3 2 [, [ ote e

J>Nr  j<N;

1+m6 1—-mé
< ws(x— tdtd:z:—i— / / / ws(x—t)dtdzr <
mf|ﬂ|/1m5/1 / ot s e=t)
dt t dadt — t dadt <
2m1nf|Q|/ w5 +/ /+m5 $+ v +/ /+m6 m !
t—ldtd&:—l—// w(;t—ldtdx<
2m lnf‘Q | / /+m6 14+mé

——— +2e ™.
2m1nf\Qj] ‘

We observe that

2mo L 9em — 2msT

- R -m < 2—m/2—1
om inf || pmiita) TS ’

under condition that s; < 2/2t®. Therefore, we get the following upper bound for the

second term of (66)

( |Q|//w5x—tdtdx<2m/21 (69)

J>Nr  J<N;

Summing up (68) with (69), we get (65). [

Proposition 6.1. Let Q' and Q2 be two partitions of the class G(8). Let e, = 2m0~1/2),
Let ¢ € Cone (g1,Q') be a step function. (See p. 3 for a general definition of cones).
Then

| Das Wit > 7116l (70)
Proof. By Lemma 6.3 above, for any ¢ € Cone (g1, Q'),
Wyl < T
By Lemma 6.2,
| Doz Wsx—1,11 — Wsx=11lle < 2. (71)
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We can find an upper bound for the weighted £;-norm using Lemma 6.1,
—m—1 d
||DQ2W6X[—1,1] - W&X[—1,1]HQ2,51 <2 ‘EWEX[—M] (x)‘dx =
R

1
d
_ 2_m_1/‘/ —ws(x — t)dt’d:c = 2_m_1/ jws(x + 1) — ws(z — 1)|de <27
rl/)_q dz R
(72)
Therefore
| D2 Wsx(-1,1 — Wsx—1yl2 < 272 (73)
Using Lemma 6.4,

IWsxi—iiller > X llz = IWsxe1a — X—nlle > 1 =272,

Consider a step function 7 = dy(_1,11+¢ € Cone (g1, Q"), with [|[¢|; < d. By Lemma 6.2

1 om(1—1/2)
IWs) = DoaWedllz < s lldlh < d——re—; (74)
2 2
and by Lemma 6.3
mN; Ns2m(n—1/2)
%% < <d——; 75
Wovile < 2l < 422 i (75)
summing up the last two (74) and (75) together
Ns+1
Doz Wsth|l2 < dgm(71—1/2)L_
s5*0

We have the following upper bound for the error of approximation for a function from
the cone Cone (g1, Q?), using the inequality (72), (73), and (74),

|Wsp — Do2Ws||o < d||Wsx(—1,1] — Da2Wsx(-1.11l2 + [|Ws¢) — Da2Wst)||2 <
om(1-1/2)

<d (21—m/2 L
550

). (76)

We may also write using and Lemma 6.4 and (75)

[Wsoll2 = |dWsx (1.1 + Wsdll2 > d[[Wsx(—1yll2 — [Ws[[2 >
> d(|lxi—iyllz = [Wex=1 — Xi—1ll2) = [[Ws|l2 >
Nyom(n-1/2)

= d<_ -2 sm

). (77)
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Hence we deduce from (76) and (77)

HDQ2WS¢H2 > |’W5¢’|2 — HW(;(b — DQQWMbHQ >
> d<1 _ 2—m/2 _ 21—m/2 . 2m(71—1/2) (N6 + 1))
T2 spy )

We can simplify and write, dividing by d,

1
| Do2Ws||2 > 4_1H¢||1'

6.2. Constructing an invariant cone. We shall construct an invariant cone around
the cones for the discretized operator 7. First we extend the cones from ®q: to ® and
obtain a pair of cones for W57 ; which depend on the choice of the first partition and
hence on the sequence £. Then we get rid of this dependence using estimeates from

the previous Subsection.

Proposition 6.2. Let Q', Q2 Q3 be partitions of the class G(8). Let T: ®g1 — P
be a generalised toy dynamo. There exists a number % < a < 1 such that for § =27m*
we may choose Yo o Y + a1 —log,, 2) < 1/2, and then for any n € Cone (1,Q") we

have

(78)

9om(y2+1/2)
DqsWsT : Cone (1, Ql) — Cone (—, Q3>

Sy’
[DasWsTnlls > 2 ||n| (79)
(See p. 3 for definition of the cone).

Proof. We define an operator £: ®g1 — P2 as before in (27). According to Theorem 2
p. 16, we know that 7: Cone (1,Q') — Cone (2™ =/2 (?). Consider a step function
n = dxp1,1+ ¢ € Cone (1,Q"). Then Tn = d(N} — N}')x(—11] + ¥1, where the norm is
bounded [[th]]2 = ||E¢ + (T — E)nll2 < d2m/27) . We may write

DosWsTn = DasWs(d(N, — N} X[-11) + 1)
Using Lemmas 6.2 and 6.3
mN5 +1

m
55'0

| Das W1 ||z < ||[Wsthr[3 + || DasWsthr — Witp |3 < 1|2 <

mNs + 1

< dom(1/24+m)
- )

(80)
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So we conclude using Lemma 6.4 that
| DasWsxi—1,1) — X113 <
< [[DasWsx(—1,11 = Wexi-nalls + [[Wex -1, — X-1nlls <3 272 (81)
Then we may write
DosWis(d(N,} — N )xi-1,11) = d(N;} — N} )xi-1,1) + 2,
where 19 € Pgs and (81)
[2lls < (N} = N[ DasWx (-1, = Xi-uylls < (N} = N2 772,

Hence

DosWsTn = DasWs(d(N, — Nll)X[—l,l] + 1) = DosWsiy + d(N,; — Nll)X[—u] + 1o,

where using (80)

1DosWsthn + Yalls _ [[t2lls + 1 DasWathills _ g1ompa 2B N+ 1
d(N} — N}) B d(N} — N}) B N} =N/ 530

< ol-m/2 | 20n=1/2)m+3 N

- Bl '

Substituting & = 27 and Ny = 2m072198:2) e set 49: = 4 + a(l — log,, 2) and

get

. . om(12+1/2)
D3WsTn = dx-11) + 3, where |[[¢s]] < d-

m
Sa

Definition 13. We extend the operator £ defined between two spaces of step functions
by (27) to bounded integrable functions. Given a partition Q! of the class G we consider

amap go: R — R by

1+ 2225 if g < & < b for some interval (a,b) = Q} C [—1,1]

golw) = Y | (82)
x, otherwise.

and introduce a linear operator £: L1(R) — L (R) defined by:

EN@) = > f). (83)

-1
y€gy ()
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Lemma 6.5. For any bounded integrable function f

om m(3/2+v1)
/ 07 ()| dz = / Ef@)de + 2o
R

Where 0 < v; < 1/8 is chosen such that

3m
51

m oM
2msy

mo - 2m

Remark 6. The statement of Lemma 6.5 and the argument below hold true for the

map Z’g" as well.

Proof. Let a™: = {—0o = al™ <a{™ < ... < ag\?ﬂl = +o00} be a set of points of
discontinuity of the map £, and let ag-m) = (ag-m), a; +1) be intervals of the partition.

We can
Let us introduce a set of indices of long branches
m) def

{1 <j<N| a ) is a domain of a long branch of the map E?}

split the integral into two

—1-ms +00 1+mé
1624 (@)lde = ( [ )l s@lar+ e f ()| d.
— 50 14+mé —1—md

To estimate the first term we recall that (7, (v) = (=1)"z + >_ £(j) for < a(()m) and

x> aN Since [|£]|co < d, we see that |Z§ )| < md and write

([ [ st = (" [ )] 8 seesfas -

00 1+md —0

- (/__HmS +/+OO§) \(—Umf((—l)’”(a: - if(j))) ’dx -

o 1+m, j=1

([ [ Lemfor<
s/ /M )IfGe |das—/ /m )I€f@)lde.
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Consider the second term.

[ slar= [T S savwswa -

]El(m) J J¢Il(m) a]
[0z (a{™)] [0z (a{™)]
<> . 1fw m dy+ Y [ 1) m dy <
ie fz(m) j j grm =% J
’90 m
< Z If dy+ up [ f(z)| D 16

j €I<m)

_Z s “"Tﬂl Ay + sup £(2)] - suplr | - sup 2] - (D

Observe that

Z/ |£()1d(g0ly Z/ £y () N ) |d:c—/ £ () |dz.

_Nl -

So we may proceed

14+md 1
/ Jes@ldr <2 / E£(y)ldy + sup |f(2)] - sup |7y - sup [22] - #(Dun) <
—1—m —1

sz/ |5f(x)|dx+2m/2\|fu1-m2(ﬂ)m-3m25s§m.
R S9o

in)-
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2m = < 2™ 50 we may conclude
Sa

14+mé om(3/2+1)
/ |02 f ( \dx<2/|5f |dx+—||f||1.
—1—md

52

Lemma 6.6. Let Q, Q2, and Q3 be partitions of the class G. Let T be a linear operator

on the main space such that T : ®q1 — Pq1 is generalised toy dynamo. Assume that

m(3/2+71)

/ T f(2))de < / €5 1dx+2 T

where 0 < v < 1/8 is chosen such that mo - ;j—;} < 2™ Then for any essentially

bounded and absolutely integrable function f
IWsT flls < 5m 2 HfH1 (84)

Proof. We shall show that there exists a polynomial @ such that

Nj ~
HWaé’st<— Q(m)| I,

1-calog,, 2)

and the Lemma will follow. By direct calculation, substituting Ny = 2™ and

0 = 279 we see that

om®/24m) N
s <2
sh 0

ot/ Zmtallos, 271 < o) je. for sy < 2 sufficiently large, or, in

under condition that
other words, for s = log i—; small enough.

By definition of the norm we calculate,

|f(y)
|| £l > /
' jEZZ Q} ‘le Z Q] ’Ql
N+mN5

( Z Z)/ 191 ( >t )/ ,|dy- (85)

j=N}!-mN; J=N} J<N!=mNs  j>Nj+mNs
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We estimate each of three terms separately. For the first term we have the following

lower bound, using [€2}| - dgo(y) = 2 for any y € Q) C [—-1,1].

N1 N1 Nl
) ) - dgo(y) 1 &
dy = =5 dgoly) =
pay Py 11 : Z 1ty
=3 flog (@) nQYlde > = [ [(Ef)(x
>, /.
Thus for any function f
1
/_1 |gf($)|d$ S 2m+1||f||1. (86)

Consider the second term of (85) now:

|f(y)|dy >

<. Z " ; ) ol ‘{(]1?| _SUP’QI /1 mé /11+m6

> ([ [ enwian

N—

Thus
-1 14+mé
([ +[ )enwias <2 sl £l (87)
—1-mé 1

We have for the remaining term of (85)

(X« S ) few=(f - I B [

J<N}—mNs  j>N}+mNs

Summing up the three inequalities (86), (87) and (88) together, we get

/R W)y < 272 /] (89)
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Taking the last inequality (89) into account, we estimate the norm

. 1
Wse flls =2 ZW .

<2° mz| 3|/Qs/w5:1:—t|8f t)|dtdz =

i ws(x — ) (Ef)(t)dt|dz <

JEZL
=27y 3/2/ ws(z — )|Ef(t)|dtdz =
= 1] Jos £ Jar
2m2/ IEf(¢) + Z |Q3|/ ws(z — t)dedt <
keZ |Q3 Ql\> 5 |93-Q}|<md

_ e ™ mN5
<9m <
<2(o o "o /R|5f(t)|dt =

47TLN5

1/l

Taking into account

2m(3/2+’Y1)
[irsena < [ jeroies =17l
R R S2

we calculate in a similar way

e—m

N,
WS £l <2 (i + ) [ ITH0lde <
J

_ e_m mN(; 2m(3/2+71)
<2m<_ ></5tdt i ><
<2 (e + ) ([ 7@+ i) <
Nj om(1/2+1)
<=2 (4m+ =——) I/l
)
<sm=2 1.
)
for 0 < v, < 1/8 and m large enough. [ |

Recall general definition of cones associated to a partition Q (p. 3):

Ny
Cone (r, ) ={n = dxi 1+ |9 =D cixai D¢ =0 llglla <dr}. (10)
JEL J=Ni

Cone (r,2,2) © { f =1+ g, 1 € Cone (r,2)., |lgla < cllnllo} (11).

Theorem 4. Let Wy be the Weierstrass transform defined by (62). Let Q', Q% and Q3
be three partitions of the class G. Let a linear operator T: L1(R) — Lo(R) be such
that T (1) C P2 is a generalised toy dynamo. Then for any m sufficiently large and
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% = log 2L sufficiently small there exists § < o < 1, r3(m) < 1, e2(m) < 1(m) < 1
such that W(sT(C/O\He (1,61,0QY)) C Cone (2, €9, 23) with § = 2™, Moreover, the norm
of any function f € C/o\ne(l,sl,Ql) grows exponentially fast |WsT fllz > 27| f|l.

Proof. By Theorem 2 on p. 16 we know that 7 (Cone (1,Q')) C Cone (2m1=1/2 (?).
Consider a function n = dyxp11 + ¥ € Cone(1,Q"), such that f_ll &Y = 0. By
Proposition 5.2, for any step function ¢ € ®q1 we have ||(T — &)yl < 2m3/281) |||,

Using Lemma 5.3, we calculate

[T nll2 = AT Xl = 1Tl = dllEX—1,0+ (T = E)x—ylle = (T =E)Y+EP|2 =
d

> d(N! — N}') — 2422 4 1) > 5(N; — N} >da2m3 (90)

Consider a function f =7+ g € Cone (1,2, Q), where 57 € Cone (1, Q) as above is a
piecewise constant part; and ||g||; < de;. We may write WT f = WsTn+ WsTg.

We shall show that for § = 27™¢ large enough compared to the size of particles of
the partition, WsT f may be approximated by a step function from ®gs. We write each
term as a sum of a step function with remainder, and estimate the Q3 norm of every

term. Let

W5T77 = ¢1 + g1, where ¢; = DQ3W5T77, and g = W5T77 - DQ3W5T77; (91)
W(;Tg = ¢2 + ga, where (bg = DQ3W5TQ, and g2 = Wng - DQSW5Tg. (92)

Using Lemma, 6.2 and Proposition 5.2 we estimate the Q3 norm of the first remainder
term ||g1 |-

1 _ 1 m
[Toll _ 2d(N: ~ N}) _ a2

laslla = IWsTn = DasWsTlla < “552 < === < o (03)

since
I Tnlle = (T = Enlla + |Enlle < d2m24) L d(N} — N}) < 2d(N} — N}).

We also know that |7 g|l2 < s7*||g|1, therefore we have the following upper bound for

the second remainder term || go||s:

T ds™e
lgalls = W5 Tg — DesWiTgll, = 118Nz o dst'en (04)

m — m :
shr s

Since Tn € Cone (21712 Q%) we may apply Proposition 6.1 to estimate ||¢;]|s, us-
ing (90)
1 —
l#1lls = [|DasWsTn||s > 1||T77|’2 > q2m5,
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Finally, for ||¢a||s we get, using Lemma 6.6

[g2lls = 1 DasWsTglls < IWsTglls + IWsTg — DasWsTglls <
< sm P lglh + ool < 5 (5ms + ). (95)
We would like to find a number 0 < 75(m) < 1 such that for some dy
¢1 + P2 = dox[—1,1) + 1 with [[1)][s < dory; (96)
and two numbers 0 < g9(m) < £1(m) < 1 such that the following inequality holds true

lg1 + g2[ls < doeo. (97)

We apply Proposition 6.2 p. 46 to the function € Cone (1,Q'), and get

~ _9m(y2+1/2) N
¢1 = DQSW5T7] = dX[—l,l] -+ 2/)1 where H"Lp1H3 < d—m and 2m75d <d<2™d.
2
(98)
with 75: = v + a(1 —log,, 2). Using the inequalities (95) and (98) above we write
€1 ST m(12+3/2) 1
lells = lléa +vulls < d= (N + 2 ) +d2 — (99)
) s5 s5
Therefore the condition (96) on 75 holds true if
il (N5 + S—1> < T‘22m_3; (100)
) sh
om(y2+3/2)
<20 (101)
82

We can find a lower bound on dy from (96), using upper bound for [[¢||3 from (99)

ldox(-1,11lls = |61+ ¢2 = Ylls = lldx(-1y + U1 + $2 — V|3 >
> [ldxirnlls = 191+ éalls = [[¢lls > a2~ = 2| ls >
> d2"t — dry2™ > d2m 2 (102)
for all ro < 1/2.
We can find an upper bound for [[g1 + go summing up (93) with (94). Then the

second inequality (97) on e will follow from

om g sl .
— < 2™ %ey. 103
oshr oSyt T ©2 (103)
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We claim that the three inequalities (100), (101), (103), and conditions of Theorem 2 on
p- 16 hold true with a = }—g, v = %, ro = 5é, and g1 =13, g9 =15, if 2= logi—; < %
is small enough. In particular, we get

W5T (Cone (1,73,Q")) C Cone (rs,13,Q°%)
for 1, = 8. The condition on the norm ||[WsT fl|s > 25| f||, follows from (93), (94),
(99) and (102). |
Corollary 1. Under the hypotheses and in the notations of Theorem 4 on p. 52, we
have for ry = §oi ;
Ws T : Cone (1,7“%, Ql) — Cone (7“2,7"‘21, 93) : (104)
Vf € Cone (1,75, Q") + [WaTflls > 277" fllx. (105)
Proof. The theorem follows from Propositions 6.1 and 6.2 and Lemma 6.6. If we replace
0 in the Gaussian kernel by %, we shall multiply the upper bounds in the inequalities

by polynomials. Since the estimates are based on comparison powers of 2, the results
still hold true. [ ]

Theorem 5. Let Wy be the Weierstrass transform defined by (62). Consider a sequence
€ € lo(R) with ||€|| < 9 and a partition Q of the class G. Then there exist four numbers
ro(m) K ri(m) and eo(m) <K €1(m) < 1 such that

Wgﬂgng C/OE3(T1,€1,Q) — &)\Ile(’l“g,ffg,Q) C &)?16(7“1,81,9) . (106)
Vf € Cone (r1,e1,Q) : [[WslgiWsflla = 2™ f|la- (107)

Proof. Let Q! be the canonical partition of the perturbation g'. First of all, we shall
find a number r; such that for any n € Cone (rq, ) we have Dy Wsn € Cone (1,Q1).

Since n € Cone (r,Q2), we may write n = dx-1, + ¥, where ¥ = > ¢;xq;,
jez
Ny
> ¢; =0; and ||¢]|qr < dry. Then

J=N

D1 Wsn = dDqx WéX[—l,l] + D1 Wsa).

Using Lemmas 6.2 and 6.3 we get

N, 1 2mN,
miNs + <d7‘1m6

m - m
st 08y

[DearWsiblly < W[y + [[ Der Wsth — Wstplly < dry

and for the supremum norm we have ||Do1Wst||oo < [|1]|oo. Summing up,

2mN5
dsm

[Den Wil < dry (108)
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Using Lemma 6.4, we calculate

| Dar Wax—1,1 — X-111][1 <
< NDar Wesx—1, — Wsx—1ylls + [IWsx(—1. — =1yl < 2'-m/2;(109)
which implies dDgi1 Wsx(—1,1] = dx[-1,1)+ 1, Where ¢y € P, [|1)11 < d2'=m/2 Hence
D1 Wsn = dx(—1,1) + D1 Ws1p + 4y, where

2mN5

m
2

|‘D91W5w+¢1’|1 < drq —|—d217m/2.

By Lemma 5.2 p. 13, in order to guarantee DgpiWsn € Cone (1,Q'), it is sufficient to
choose r; < 1 such that

2mN5 1
< —;
dsy" 1
Let us set
def 5331
= —. 110
"7 N (10)
We can also notice using Lemma 6.2, that
(D Ws — Wotlh < ——d d (111)
_ — dr =
oaWs s)n 1_35”5 1 AmN,
Taking into account that Do1Wsn € Cone (1,Q!') and (111) we conclude
—_— 1
D1 W, Do Ws — Ws)n € C L,—— Q). 112
o Wsn + (Dor Ws 5)1 0ne( "IN, ) (112)

Let T: ®qg1 — ®g2 be a generalised toy dynamo, approximating the operator (g},
constructed as described in Theorem 3 on p. 31. By straightforward calculation we see
that the cone Cone (1, m, Ql> satisfies the assumptions of Theorem 4 on p. 52 for
any 2 < o < 1:

1 ma 1
< Qm(alogs 2—-1) < 2m(a—1) <92 % — §m.
AmN; = 1

Therefore, by Theorem 4,
WsT (Do Wiy + (Dox Wi — Wy)n) € Cone (5@ 5, Q) .
We may write for any partition Q3 of the class G and for any f € Cone (ry,e1, Q)
Wil Ws f = WsligaWs(n + g) = WsT DoxWsn + WsT (Ws — Do Wi )n+

+ DQSW(;KQW(;Q + Wg(fg — T)Wsn + (Id — DQS)W(;EEZWL;Q. (113)
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We are interested in the coefficient in front of the term x(_; ), which corresponds to

the “cone axis”. Let £: &1 — P2 be a linear operator defined by (27), p. 14. Then

WsT Doy Wsn = W(;T(dx[_u] +1) = Wg(T—g)(dX[_l,l] +1/)1)+W55(dx[_1,1] +1p) =
= Ws(T = E)(dx-1,1 + V1) + WsEP1 + d(er — Nll)(Wé)([—l,l] — X[-1,1))+
+d(N;! — N11>X[—1,1} =d(N; — NII)X[—I,I] +1hy;  (114)

where
Yy = Ws(T — E)(dx(-1,1 + ¥1) + W€y + d(N;} — N (Wsx(-1,1 — X[-1,11)5

and its norm may be bounded using Lemmas 5.2 p. 13, 5.3 p. 14, 6.3 p. 40, 6.4 p. 42,
and Proposition 5.2 p. 14:

[2lls < IWs(T—=E)(dxi-1y+¢0) ls+IWsEdrlls+HI AN =N (Wax -1, —x(-11)lls <

< dgm(1/2+71)mN5 + QmN(;
05y dsy

22l 2 < g5 (115)

1
8
By Theorem 3 p. 31 we get, using Lemma 6.3

for a suitable choice of s5 < 2 < s7 and v, =

mN,
IWs(6g = TYWanlls < 22 - (622 = T)Wan]lz <
2

2 3 3
m=N, S
< ‘5-< 1

Pl 21/2+ag, ) Inlly < dm N5<21/2 2) . (116)

Using Lemmas 6.2 and 6.3 we obtain, taking into account that ||g|lq < dey,

[(Id — Das3)Wisli, Wiglls <

HﬁgW&gHg < d€1 mQ(ﬁ)mmNg < 2d€1m3N5(281>m.
) o shé 92

S2

Combining (116) and (117), we have the following upper bound for the sum of the last

two terms in (113)

[Ws(lgs — T)Wsnll + [[(Id — Das)Wslgi Wig|| <
3

s9
91/242

)m e, (ﬁyn (118)

< dm?* Ny (518 (5
2
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Applying Lemma 6.3 and Theorem 3 p. 31 again, we get

mN5

m2N S3m
o 6 = TIWaglls < == - ooy

smy 2 (1/2+“)s§”||g||3 <

[Ws(€g — T)Wisglls <
3

of ST \"
S dElegm (21/—23%> .

By Lemma 6.6, taking into account Lemma 6.3,
2

N, N,
[WsTWagll < 5m=2|[Wagl| < 5deym?® 5.
2

Hence summing up the last three inequalities we obtain:

||DQ3W6E W(sg||3 < ||(Id DQS)W(sf W5g||3 + ||W5(€21 )W(;g||3 + ||W57W5g||3 <

3 2

m3N5 2871 2 Sq 2 N6
S d€17 (S—g) + d€1N5m (21/283> + 5d€1m 372”52 S
N5 2m so?
329, 71 25 22
< degm 62 s%m <32 o 2’”/2 Nés’ln)

We see that for » = log Z—; sufficiently small and « is as chosen above,
2

2 S2\™
0 (57) <1 and N(;(S—l) > 1.

Therefore, we may write
N2
[ DasWslEWaglls < d€1m35255§”' (119)
Therefore we deduce from (114), (119), and (118) that in order to get the inclusion
Wgﬁ?ﬁng € Cone (19,£2,9) we need to make sure that for some 1 > ¢; > e the

following inequalities holds true:

N2
2dry(N} — N} > deym? 7 in, (120)
s3 \m m3Ny /2s
2dey(NY — N >>dm2N5<21/2 2) + e 5( S;) (121)
2

We know that N} — N} > 2™~ therefore we may choose £; = 632 and get in the first
inequality
2N(52 L m22m2(1_a10g51 2)

% s — 5
40%22m s 4shr - 272am . 9m

2m(1—&—2a(1—log51 2))

1 m

9 > 032 .
- 4 85"

It holds true if we set ry = ¢ 6%1 as in Theorem 4 on p. 52. Comparing it with the value

sy +alog, 2> ag—i+1.

of ri =

N I
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It remains to check for the second inequality that

3 2
2 ST \™ | 1 m°Ns (ﬂ)m
e >m N5<23/2$%> +om ot () (122)
We see immediately that we may choose s; and s; such that 5 > log 1{2 and then
3 3 2 1+a

2 ST \™ 2 81 m 1 m“Ns (51 9 512 1

No(gmg) —m( ) <ot () Sk (M) <o
m-iNs 23/252 m 52 ol/2+alog, 2) = 462 \s3 53 <
Hence we conclude that for r; = 4232—%5, ro = 66%1, €1 = §% and €9 = 521 we have

W6€21W6 : (i)?e (7”1, €1, Ql) — (TO?G (7”2, €9, Q) C (%?e (7’1, €1, Q) . (106)

The second inequality on the norm

W& Ws Vo =2m72

|Cone (r1,€1,92

follows from (120), (121) and (114) immediately. |

Corollary 1. Under the hypotheses and in the notations of Theorem 5 p. 55, let us

s 1 1 1
choose four constants r| = ﬁ, r9 = 061, e1 = 032 and €9 = 021. Then we have

nggng C/O\Ile(T1,€17Q) — (%EG(T’Q,EEQ,Q) C @(7”1,51,9)
Vf € Cone (r1,e1,Q) : HWM W6f||Q > 272 f|la-

The constructive proof of the existence of an invariant cone is complete. Fast Dy-

namo Theorem 1 now follows as described in the Section 3.
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