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A pair of pants and the limit set of a Fuchsian group
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Figure 1: A pair of pants is a three-punctured
sphere. It is uniquely defined by the lengths of
boundary geodesics: 2`1, 2`2, and 2`3. Cutting
the pants along the red geodesics, we obtain a
right-angled hyperbolic hexagon.
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Figure 2: The pair of pants appears then as
a factor-space H/Γ, where the group Γ is
generated by reflections with respect to red
geodesics. The group Γ is uniquely defined by
the pairwise distances `1, `2, and `3.

Λ

Figure 3: The group of reflections Γ is acting
hyperbolically on the hyperbolic plane H. We
are interested in the Hausdorff dimension of the
limit set as a function of length dimH(Λ) =
dim(`1, `2, `3).

Dynamical Zeta Function Toolbox

The Selberg zeta function for a hyperbolic surface is a complex analytic function
defined in terms of lengths of closed geodesics λ(γ):

Z(s) =
∏
n

∏
γ

(1− e−(s+n)λ(γ)).

Any closed geodesics is uniquely defined by a sequence of reflections with
respect to the red cuts. This allows one to write a dynamical zeta function

ζ(z, s) = exp

− ∞∑
m=1

zm

m

∑
|γ|=m

e−sλ(γ)

1− e−λ(γ)


The power series coefficients converge to zero superexponentially, and this gives
us an efficient way of computing zeta function numerically, as ζ(1, s) = Z(s).
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Figure 4: Typical graphs of a zeta function,
computed using closed geodesics with n = 6
and n = 8 reflections.

Results on Hausdorff Dimension
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Figure 5: Dimension of a limit set of a pair of pants, as a function of
`1, `2 under additional assumption `1 + `2 + `3 =: ` = 11.

• The Hausdorff dimension is the largest real zero of the
zeta function and can be efficiently computed
numerically.

• The dimension function has, at least, 4 points of global
minima and 3 saddle points.

• The dimension of the limit set in the middle
dim(`3,

`
3,
`
3) ≈ 1

` → 0 as `→∞.
• The dimension is a continuous function up to the
boundary.

• It is known that when the original surface has cusps, the
Hausdorff dimension is at least 1

2. However, the
numerical method we use is not applicable to this case.
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