Функциональный анализ и его приложения 2008, т. 42, вып. 2, с. 56–67

УДК 512.743+512.761.2

Разрешения особенностей для многообразий Шуберта в двойных грассманианах

© 2008. Е. Ю. Смирнов

§1. Введение

Пусть V-конечномерное векторное пространство над произвольным полем $\mathbb K.$

Мы будем описывать пары подпространств пространства V фиксированных размерностей k и l с точностью до действия группы невырожденных верхнетреугольных матриц $B \subset GL(V)$. Другими словами, мы описываем B-орбиты на прямом произведении $X = Gr(k, V) \times Gr(l, V)$ двух грассмановых многообразий. Разложение многообразия X на B-орбиты является аналогом шубертовского разложения для грассманианов и разложения Эресмана–Брюа для многообразий полных флагов.

Комбинаторное описание *B*-орбит на *X* приводится (как частный случай некоторой более общей задачи) в работе Мадьяра, Веймана и Зелевинского [7] и существенно использует теорию колчанов. Приводимое ниже описание опирается лишь на элементарную линейную алгебру и не использует результатов из [7]. Оно является обобщением описания орбит в симметрическом пространстве $\operatorname{GL}_{k+l}/(\operatorname{GL}_k \times \operatorname{GL}_l)$, приведенного в диссертации Пина [8].

Нас также интересуют замыкания *B*-орбит в *X*. Они являются аналогами многообразий Шуберта в грассманианах. Особенности многообразий Шуберта хорошо изучены: для них имеются разрешения, построенные Боттом и Самельсоном; известно, что многообразия Шуберта являются нормальными, а их особенности рациональны; множества их особых точек могут быть явно описаны. Подробнее об этом можно прочитать, например, в лекциях [2] и книге [6]. Таким образом, было бы естественно задать те же вопросы (разрешение особенностей, нормальность, рациональность) и для замыканий *B*-орбит в *X*. В настоящей работе строятся разрешения особенностей для этих многообразий.

Мотивировкой для рассмотрения этих вопросов является также недавняя статья Бобинского и Звары [3], в которой доказывается, что особенности замыканий орбит в представлениях колчанов типа D эквивалентны особенностям многообразий Шуберта в двойных грассманианах.

Автор благодарит Мишеля Бриона за постоянное внимание к работе, а также Э. Б. Винберга и Д. А. Тимашёва за ценные обсуждения и замечания.

§2. Описание орбит

2.1. Обозначения. Пусть V — векторное пространство размерности n над полем $\mathbb{K}, k, l < n$ — натуральные числа. Результаты, приведенные в этом параграфе, верны над произвольным основным полем; в §§3, 4 требуется, чтобы поле \mathbb{K} было алгебраически замкнутым. Прямое произведение $\operatorname{Gr}(k, V) \times \operatorname{Gr}(l, V)$

будет обозначаться через X. Как правило, мы не будем различать точки в X и соответствующие конфигурации подпространств (U, W), где $U, W \subset V$, $\dim U = k$, $\dim W = l$.

Мы фиксируем борелевскую подгруппу *B* в GL(V). Через $V_{\bullet} = (V_1, \ldots, V_n = V)$ будет обозначаться полный флаг в *V*, неподвижный относительно группы *B*.

Комбинаторное описание. В этой части вводятся комбинаторные объекты, параметризующие пары подпространств с точностью до действия группы *B*. А именно, пары подпространств параметризуются тройками, состоящими из двух диаграмм Юнга, которые содержатся в прямоугольниках размера $k \times (n - k)$ и $l \times (n - l)$ соответственно, и инволютивной перестановки из S_n .

Параллельно с введением этих комбинаторных объектов мы строим некоторые «канонические» базисы пространств U, W и V.

Предложение 1. (i) Существуют такие упорядоченные базисы (u_1, \ldots, u_k) , (w_1, \ldots, w_l) и (v_1, \ldots, v_n) пространств U, W и V соответственно, что

- $V_i = \langle v_1, \ldots, v_i \rangle$ для всех $i \in \{1, \ldots, n\}$ (угловые скобки обозначают линейную оболочку векторов);
- $u_i = v_{\alpha_i}$, $ede \ i \in \{1, ..., k\}$ $u \ \{\alpha_1, ..., \alpha_k\} \subset \{1, ..., n\};$
- все w_i суть либо базисные векторы пространства V, либо векторы cдвухэлементным «носителем»: $w_i = v_{\beta_i}$ или $w_i = v_{\gamma_i} + v_{\delta_i}$, где $\gamma_i > \delta_i$; кроме того, в последнем случае $v_{\gamma_i} \in U$ (m. e. $\{\gamma_1, \ldots, \gamma_r\} \subset \{\alpha_1, \ldots, \alpha_k\}$).
- все числа β_i (соответственно γ_i , δ_i) различны между собой; кроме того, все δ_i отличны от всех α_i .

(ii) В обозначениях п. (i) рассмотрим перестановку $\sigma \in S_n$, получаемую как произведение транспозиций (δ_i, γ_i) . Поскольку носители транспозиций не пересекаются, результат их перемножения не зависит от порядка сомножителей.

Тогда для данной пары подпространств (U, W) множества $\bar{\alpha} = \{\alpha_1, \ldots, \alpha_k\}, \bar{\beta} = \{\beta_1, \ldots, \beta_{l-r}\}, \bar{\gamma} = \{\gamma_1, \ldots, \gamma_r\}$ и перестановка σ не зависят от выбора базисов в U, W и V.

Доказательство. (i) Доказательство проводится индукцией по *n*.

При n = 1 утверждение очевидно.

Индуктивный переход от n-1 к n. Возьмем ненулевой вектор $v_1 \in V_1$ и рассмотрим следующие случаи:

• $v_1 \notin U + W$. Пусть $\bar{V} = V/\langle v_1 \rangle$. Возьмем в этом факторпространстве флаг $\bar{V}_{\bullet} = (\bar{V}_2 \subset \cdots \subset \bar{V}_n)$ и рассмотрим образ (\bar{U}, \bar{W}) конфигурации (U, W) при факторизации. Оба полученных подпространства будут изоморфны исходным: $\bar{U} \cong U$ и $\bar{W} \cong W$. Теперь применим предположение индукции к данной конфигурации следующим образом. Выберем в \bar{U}, \bar{W} и \bar{V} упорядоченные базисы $\{\bar{u}_1, \ldots, \bar{u}_k\}, \{\bar{w}_1, \ldots, \bar{w}_l\}$ и $\{\bar{v}_1, \ldots, \bar{v}_{n-1}\}$, после чего выделим \bar{V} в V прямым слагаемым: $i: \bar{V} \hookrightarrow V$. «Поднимем» указанные базисные векторы из \bar{V} в V следующим образом: $u_i = i(\bar{u}_i), w_i = i(\bar{w}_i), v_i = i(\bar{v}_{i-1})$. Получим искомую тройку базисов.

• $v_1 \in U, v_1 \notin W$. Положим $u_1 = v_1$ и вновь применим предположение индукции к факторпространству $\bar{V} = V/\langle v_1 \rangle$ с флагом \bar{V}_{\bullet} и конфигурации подпространств (\bar{U}, \bar{W}) , получающихся из U и W при факторизации. В этом случае dim $\bar{U} = \dim U - 1$. После этого опять поднимем полученные векторы из \bar{U}, \bar{W} и \bar{V} в V.

• Случай $v_1 \notin U, v_1 \in W$ разбирается аналогично предыдущему (полагаем $w_1 = v_1$).

• Если $v_1 \in U \cap W$, положим $u_1 = w_1 = v_1$ и вновь применим предположение индукции.

• Наиболее интересен последний случай: $v_1 \in U + W$, но $v_1 \notin U$ и $v_1 \notin W$. Тогда рассмотрим множество векторов $S = \{v \mid v \in U, v_1 + v \in W\}$. Поскольку v_1 принадлежит U + W, это множество непусто. Пусть теперь j — минимальное число, для которого V_j содержит векторы из S, и $v_j \in V_j \cap S$. Положим $u_1 = v_j$, $w_1 = v_1 + v_j$. Теперь применим предположение индукции к (n-2)-мерному пространству $\overline{V} = V/\langle v_1, v_j \rangle$, паре подпространств $\overline{U} = U/\langle v_1, v_j \rangle$, $\overline{W} = W/\langle v_1, v_j \rangle$ и флагу

$$\bar{V}_{\bullet} = V_2/V_1 \subset \cdots \subset V_{j-1}/V_1 = V_j/\langle v_1, v_j \rangle \subset V_{j+1}/\langle v_1, v_j \rangle \subset \cdots \subset V_n/\langle v_1, v_j \rangle.$$

«Подъем» базисных векторов из \overline{V} в V осуществляется так:

$$v_i = i(\bar{v}_{i-1})$$
 при $i \in [2, j-1],$ $v_i = i(\bar{v}_{i-2})$ при $i \in [j+1, n],$

где i, как и прежде, обозначает некоторое вложение \bar{V} в V. Векторы v_1 и v_j уже были определены ранее.

(ii) Предположим, что для конфигурации (U, W) существуют две тройки упорядоченных базисов $((u_1, \ldots, u_k), (w_1, \ldots, w_l), (v_1, \ldots, v_n))$ и $((u'_1, \ldots, u'_k), (w'_1, \ldots, w'_l), (v'_1, \ldots, v'_n))$, которые удовлетворяют условиям п. (i) и для которых либо соответствующие этим тройкам базисов наборы $(\bar{\alpha}, \bar{\beta}, \bar{\gamma})$ и $(\bar{\alpha}', \bar{\beta}', \bar{\gamma}')$, либо перестановки σ и σ' отличны друг от друга.

Множество $\bar{\alpha}$ может быть описано следующим образом: $i \in \bar{\alpha}$ тогда и только тогда, когда dim $U \cap V_i > \dim U \cap V_{i-1}$. Следовательно, $\bar{\alpha} = \bar{\alpha}'$.

Аналогично доказывается, что $\bar{\beta} \cup \bar{\gamma} = \bar{\beta}' \cup \bar{\gamma}'$.

Теперь докажем, что $\sigma = \sigma'$. Тем самым доказательство будет закончено, поскольку $\bar{\beta} = \{j \in \bar{\beta} \cup \bar{\gamma} \mid \sigma(j) = j\}.$

Пусть j — минимальное число из $\beta \cup \gamma$, для которого $\sigma(j) \neq \sigma'(j)$. Предположим, что $\sigma(j) < \sigma'(j)$. Возможны два варианта:

(a) $i := \sigma'(j) \neq j$. Заметим, что $i \notin \bar{\alpha}$. Рассмотрим подпространство

$$V = (U \cap V_j) + V_{i-1} = \langle v_s, v_{\alpha_i} \mid s \leq i-1, \, \alpha_i \in \bar{\alpha} \cup [i, j] \rangle$$
$$= \langle v'_s, v'_{\alpha_i} \mid s \leq i-1, \, \alpha_i \in \bar{\alpha}' \cup [i, j] \rangle.$$

Пусть $R = \{r \in \overline{\beta} \cup \overline{\gamma} \mid r, \sigma(r) \in [1, i-1] \cup (\overline{\alpha} \cap [i, j])\}$ и $R' = \{r \in \overline{\beta} \cup \overline{\gamma} \mid r, \sigma'(r) \in [1, i-1] \cup (\overline{\alpha} \cap [i, j])\}$. Легко убедиться, что

$$\dim \overline{V} \cap W = \#R = \#R'.$$

Но $\sigma(r) = \sigma'(r)$ для всех $r \in [1, j - 1]$, а *j* принадлежит множеству *R* и не принадлежит *R'*. Значит, количество элементов в этих двух множествах различно, что и дает искомое противоречие.

(b) Если $\sigma'(j) = j$, положим $i = \sigma(j)$ и будем действовать аналогично тому, как действовали в п. (a).

Теперь введем комбинаторную конструкцию, параметризующую конфигурации подпространств. А именно, по конфигурации мы построим пару диаграмм Юнга, некоторые клетки в которых будут отмечены.

Рассмотрим пару подпространств (U, W). Построим по этой паре, как описано в предложении 1, множества $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ и инволюцию σ . Рассмотрим прямоугольник размера $k \times (n-k)$ и построим путь из его левого нижнего угла в правый верхний следующим образом: *j*-е звено пути будет вертикальным, если j принадлежит $\bar{\alpha}$ (т.е. если v_i равняется какому-то из u_i), и горизонтальным в противном случае. Этот путь ограничивает снизу первую диаграмму Юнга.

Вторая диаграмма будет содержаться в прямоугольнике размера $l \times (n-l)$. Мы снова построим ограничивающий ее путь: *j*-е звено пути будет вертикальным, если $j \in \overline{\beta} \cup \overline{\gamma}$, и горизонтальным в противном случае.

Если $j \in \bar{\gamma}$, то звено пути с номером $\sigma(j)$ горизонтально. Из этого также следует, что *j*-е звено пути, ограничивающего первую диаграмму, вертикально, а $\sigma(j)$ -е горизонтально. Возьмем в каждой из диаграмм клетку, находящуюся над $\sigma(j)$ -м звеном и слева от *j*-го звена, и поместим в этих клетках по точке. Назовем такую пару диаграмм отмеченной парой.

Пример. Пусть n = 9, k = 4, l = 3. Предположим, что $\bar{\alpha} = \{3, 5, 6, 9\}, \bar{\beta} =$ $\{2,5\}, \bar{\gamma} = \{9\}, \sigma = (7,9).$ Тогда соответствующая отмеченная пара диаграмм выглядит так:

Замечание. Отметим, что построенные диаграммы (как диаграммы без точек) совпадают с диаграммами, которые соответствуют клеткам Шуберта, содержащим точки $U \in Gr(k, V)$ и $W \in Gr(l, V)$. (Соответствие между диаграммами Юнга и клетками Шуберта в грассманиане описано, например, в книгах [4] или [6]).

2.3. Стабилизаторы и размерности орбит. Найдем стабилизатор B_(U,W) данной конфигурации подпространств (U, W).

Предложение 2. В обозначениях предложения 1 стабилизатор конфигурации (U,W), записанный в базисе (v_1,\ldots,v_n) , состоит из верхнетреугольных матриц $A = (a_{ij}) \in B$, удовлетворяющих следующим условиям:

- (a) $a_{\gamma\gamma} = a_{\sigma(\gamma)\sigma(\gamma)} \ \partial_{\mathcal{A}\mathcal{A}} \ ecex \ \gamma \in \bar{\gamma};$
- (b) $a_{i\alpha} = 0$ dra $ecex \ \alpha \in \overline{\alpha}, i \notin \overline{\alpha};$
- (c) $a_{j\beta} = 0$ dia beex $\beta \in \overline{\beta}$ u $j \notin \overline{\beta} \cup \overline{\gamma} \cup \sigma(\overline{\gamma});$
- (d) $a_{\gamma\beta} = a_{\sigma(\gamma)\beta}$ dia $\operatorname{ecex} \beta \in \overline{\beta} \ u \ \gamma \in \overline{\gamma}, \ \gamma < \beta;$
- (e) $a_{j\gamma} = -a_{j\sigma(\gamma)}$ dar $ecex \ j \notin \overline{\beta} \cup \overline{\gamma} \cup \sigma(\overline{\gamma}) \ u \ \gamma \in \overline{\gamma};$
- (f) dra beex $\gamma_1, \gamma_2 \in \overline{\gamma}, \gamma_1 < \gamma_2$ uneem mecmo odun us credybuux cryvaeb:
 - $\sigma(\gamma_2) < \sigma(\gamma_1) < \gamma_1 < \gamma_2$: morda $a_{\gamma_1\gamma_2} = a_{\sigma(\gamma_1)\gamma_2} = a_{\sigma(\gamma_2)\gamma_1} = a_{\sigma(\gamma_1)\sigma(\gamma_2)} = 0$; $\sigma(\gamma_1) < \sigma(\gamma_2) < \gamma_1 < \gamma_2$: morda $a_{\sigma(\gamma_2)\gamma_1} = a_{\sigma(\gamma_1)\gamma_2} = 0$, $a_{\gamma_1\gamma_2} = a_{\sigma(\gamma_1)\sigma(\gamma_2)}$; $\sigma(\gamma_1) < \gamma_1 < \sigma(\gamma_2) < \gamma_2$: morda $a_{\sigma(\gamma_1)\gamma_2} = 0$, $a_{\gamma_1\gamma_2} + a_{\gamma_1\sigma(\gamma_2)} = a_{\sigma(\gamma_1)\sigma(\gamma_2)}$.

Следствие 3. Стабилизатор конфигурации (U, W) есть полупрямое произведение торической и унипотентной частей:

$$B_{(U,W)} = T_{(U,W)} \ltimes U_{(U,W)}$$

где $T_{(U,W)}$ есть подгруппа в группе невырожденных диагональных матриц, определяемая условиями (a), так что $\dim T_{(U,W)} = n - \#\bar{\gamma}$, а $U_{(U,W)}$ есть подгруппа в группе унитреугольных матриц, определяемая условиями (b)-(f).

Определение. Коразмерность торической части стабилизатора называется *рангом* конфигурации (или соответствующей *В*-орбиты):

$$\operatorname{rk}(U, W) := n - \dim T_{(U, W)} = \# \bar{\gamma}.$$

Доказательство предложения 2. Прежде всего, стабилизатор $B_{(U,W)}$ является подгруппой в B, а следовательно, состоит из верхнетреугольных матриц.

Далее, он сохраняет подпространство $U = \langle v_{\alpha_1}, \ldots, v_{\alpha_k} \rangle$. Это значит, что всякий элемент $A \in B_{(U,W)}$ переводит каждый из v_{α_i} в линейную комбинацию элементов v_{α_j} , и поэтому все матричные элементы $a_{i\alpha}$, где $\alpha \in \bar{\alpha}$, $i \notin \bar{\alpha}$, равны нулю. (Заметим, что нули в матрице A сами образуют повернутую на 90° по часовой стрелке диаграмму Юнга, соответствующую подпространству U. В частности, это доказывает, что размерность клетки Шуберта в грассманиане равна числу клеток в соответствующей диаграмме Юнга).

Итак, клетки первой диаграммы Юнга находятся во взаимно однозначном соответствии с линейными уравнениями, задающими B_U в группе верхнетреугольных матриц: клетка, расположенная над *i*-м (горизонтальным) звеном и слева от *j*-го (вертикального) звена (обозначим ее через (i, j)) соответствует уравнению $a_{ij} = 0$.

Аналогично, стабилизатор нашей конфигурации сохраняет подпространство W. Это дает другой набор линейных уравнений на матричные элементы a_{ij} , и число этих уравнений равно числу клеток во второй диаграмме соответствующей отмеченной пары. Мы снова можем установить взаимно однозначное соответствие между клетками этой диаграммы и полученными уравнениями, обозначая клетки диаграммы, как в предыдущем абзаце. Вот это соответствие:

- $a_{j\beta} = 0$ для всех $\beta \in \overline{\beta}$ и $j \notin \overline{\beta} \cap \overline{\gamma} \cap \sigma(\overline{\gamma}), j < \beta$; это соответствует клетке (j,β) ;
- $a_{j\gamma} = -a_{j\sigma(\gamma)}$ для всех $j \notin \bar{\beta} \cup \bar{\gamma} \cup \sigma(\bar{\gamma})$ и $\gamma \in \bar{\gamma}, j < \gamma$; соответствующая клетка это (j, γ) ;
- $a_{\sigma(\gamma)\gamma} + a_{\gamma\gamma} a_{\sigma(\gamma)\sigma(\gamma)} = 0$ при всех $\gamma \in \bar{\gamma}$; соответствующая клетка это $(\sigma(\gamma), \gamma)$;
- $a_{\gamma\beta} = a_{\sigma(\gamma)\beta}$ при всех $\beta \in \overline{\beta}$ и $\gamma \in \overline{\gamma}$, $\gamma < \beta$; это соответствует клетке $(\sigma(\gamma), \beta)$;
- $a_{\sigma(\gamma_1)\sigma(\gamma_2)} + a_{\sigma(\gamma_1)\gamma_2} = a_{\gamma_1\sigma(\gamma_2)} + a_{\gamma_1\gamma_2}$ для всех $\gamma_1 < \gamma_2$; это уравнение соответствует клетке $(\sigma(\gamma_1), \gamma_2)$.

Это доказывает предложение.

Найдя стабилизатор конфигурации, мы можем отыскать его размерность, а значит, и размерность орбиты $B(U,W) \subset X$. Анализируя приведенные выше уравнения, можно найти комбинаторную интерпретацию размерности в терминах отмеченных диаграмм Юнга.

Для этого введем еще одно комбинаторное понятие. Пусть имеются два прямоугольника размера $k \times (n-k)$ и $l \times (n-l)$ соответственно и путь в каждом из них, ограничивающий диаграмму Юнга (оба пути имеют длину n). Рассмотрим множество всех чисел i, для которых i-е звенья обоих путей горизонтальны, и

рассмотрим столбцы в диаграммах, лежащие над этими звеньями. Затем сделаем то же самое для пар «одновременно вертикальных» звеньев и рассмотрим строки слева от них.

Пересечение этих строк и столбцов также образует диаграмму Юнга. Назовем ее *общей диаграммой*, соответствующей данной паре диаграмм.

Пример. Паре (Y_1, Y_2) диаграмм Юнга

соответствует следующая общая диаграмма Y_{com}:

Согласно нашей конструкции отмеченных пар, точки могут содержаться только в общей диаграмме отмеченной пары.

Следствие 4. Пусть (U, W) — конфигурация подпространств, которой соответствует отмеченная пара диаграмм Юнга (Y_1, Y_2) с точками в некоторых клетках диаграммы Y_{com} .

Углом с вершиной в данной клетке будем называть фигуру, образованную этой клеткой и всеми клетками, находящимися над ней в том же столбце и слева от нее в той же строке. Возъмем в диаграмме $Y_{\rm com}$ все углы с вершинами в клетках, содержащих точки. Пусть H — множество клеток, принадлежащих хотя бы одному из этих углов. Тогда размерность B-орбиты конфигурации (U, W) равна

$$\dim B(U,W) = \#Y_1 + \#Y_2 - \#Y_{\rm com} + \#H,$$

где через #Y обозначено количество клеток в диаграмме Y.

Замечание. #H равняется общему числу клеток, содержащихся во всех углах, а не сумме длин углов. Это означает, что клетку, содержащуюся в двух углах, следует считать один, а не два раза.

Доказательство следствия 4. В доказательстве предложения 2 рассматриваются две системы линейных уравнений на матричные элементы a_{ij} . Эти системы задают стабилизаторы подпространств U и W и состоят из $\#Y_1$ и $\#Y_2$ уравнений соответственно. Легко видеть, что уравнения, соответствующие клетке (i, j), совпадают в обеих системах, если клетка (i, j) общей диаграммы не содержится ни в каком угле, а также что система уравнений, полученная в результате объединения этих двух систем, линейно независима. Поэтому коразмерность стабилизатора $B_{(U,W)}$ в B (т.е. размерность орбиты B(U,W)) равна $\#Y_1 + \#Y_2 - \#Y_{\rm com} + \#H$.

Пример. Пусть общая диаграмма для отмеченной пары имеет вид

Тогда $\#Y_{\rm com} = 26, \ \#H = 15 \ (H \ {\rm состоит} \ {\rm из} \ {\rm всех} \ {\rm клеток}, \ {\rm отмеченных} \ {\rm точкой}$ или звездочкой).

В частности, формула для размерности позволяет описать наименьшую (т.е. наиболее вырожденную) и наибольшую орбиты. Наименьшая орбита нульмерна и соответствует паре пустых диаграмм. Она состоит из одной точки ($\langle v_1, \ldots, v_k \rangle$, $\langle v_1, \ldots, v_l \rangle$) $\in X$. Обе диаграммы Юнга, соответствующие наибольшей орбите, являются прямоугольниками размера $k \times (n-k)$ и $l \times (n-l)$ соответственно. Их общая диаграмма также есть прямоугольник размера $\min\{k,l\} \times (n-\max\{k,l\})$, точки в котором располагаются по главной диагонали, начинающейся в нижнем правом углу.

Пример. Для n = 8, k = 3 и l = 4 наибольшей орбите соответствует такая отмеченная пара:

2.4. Разложение многообразия X в объединение GL(V)-орбит. GL(V)-орбиты в X допускают существенно более простое описание: они параметризуются только одним целым положительным числом, а именно, размерностью пересечения подпространств U и W. Для этого числа (обозначим его через i) имеются неравенства

$$\max\{0, k+l-n\} \leqslant i \leqslant \min\{k, l\}.$$

Обозначим соответствующую GL(V)-орбиту через X_i :

$$X = \bigsqcup_{i \in [\max\{0, k+l-n\}, \min\{k, l\}]} X_i.$$

Из конструкции комбинаторных данных, соответствующих *B*-орбитам, следует, что размерность пересечения dim $(U \cap W)$ равна $\#(\bar{\alpha} \cap \bar{\beta})$.

§3. Слабый порядок на множестве орбит

В предыдущем параграфе мы описали множество *B*-орбит в $Gr(k,V) \times Gr(l,V)$. На этом множестве существует несколько структур частичного порядка. Первая, и наиболее естественная, описывается так:

Определение. Пусть \mathcal{O} и \mathcal{O}' – две *B*-орбиты в $\operatorname{Gr}(k, V) \times \operatorname{Gr}(l, V)$. Скажем, что \mathcal{O} не превосходит \mathcal{O}' относительно *сильного* (или *топологического*) *порядка*, если $\mathcal{O} \subset \overline{\mathcal{O}}'$ (здесь и далее черта над символом обозначает замыкание в топологии Зарисского). Обозначение: $\mathcal{O} \leq \mathcal{O}'$.

На этом множестве существует и другой порядок, обычно называемый слабым. Обозначения, используемые ниже, взяты из работы [1].

Пусть W — группа Вейля для GL(n), а Δ — соответствующая система корней. Обозначим простые отражения через s_1, \ldots, s_{n-1} , а соответствующие простые корни через $\alpha_1, \ldots, \alpha_{n-1}$. Пусть $P_i = B \cup Bs_i B$ — минимальная параболическая подгруппа в GL(V), соответствующая простому корню α_i . Будем говорить, что α_i поднимает орбиту 0 до орбиты 0', если $\overline{0}' = P_i \overline{0} \neq \overline{0}$. В этом случае dim 0' = dim 0 + 1. Это понятие позволит нам определить слабый порядок.

Определение. Орбита \mathcal{O} меньше или равна орбите \mathcal{O}' относительно *слабого* порядка (обозначение: $\mathcal{O} \preceq \mathcal{O}'$), если $\overline{\mathcal{O}}'$ может быть получена как результат нескольких последовательных «поднятий» замыкания орбиты \mathcal{O} при помощи минимальных параболических подгрупп:

$$0 \leq 0' \iff \exists (i_1, \ldots, i_r) \colon \overline{0}' = P_{i_r} \ldots P_{i_1} \overline{0} = \overline{P_{i_r} \ldots P_{i_1} 0}.$$

Будем представлять это отношение порядка при помощи ориентированного графа. Рассмотрим граф $\Gamma(X)$, вершинами которого являются *B*-орбиты в *X*. Соединим \mathcal{O} и \mathcal{O}' ребром с меткой *i*, направленным к \mathcal{O}' , если P_i поднимает \mathcal{O} до орбиты \mathcal{O}' .

Ясно, что каждая связная компонента графа $\Gamma(X)$ состоит из всех орбит, принадлежащих одной и той же $\operatorname{GL}(V)$ -орбите X_i , и что во всякой связной компоненте имеется наибольший элемент, т.е. *В*-орбита, открытая в X_i .

Наша следующая цель состоит в описании минимальных элементов относительно слабого порядка в каждой из связных компонент.

3.1. Комбинаторное описание действия минимальных параболических подгрупп. Рассмотрим орбиту \mathcal{O} и соответствующие ей комбинаторные данные: множества $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ и инволюцию $\sigma \in S_n$. Пусть минимальная параболическая подгруппа $P_i = B \cup Bs_i B$ поднимает орбиту \mathcal{O} до орбиты $\mathcal{O}' \neq \mathcal{O}$. Опишем комбинаторные данные $(\bar{\alpha}', \bar{\beta}', \bar{\gamma}', \sigma')$ для орбиты \mathcal{O}' .

Обозначим простую транспозицию $(i, i + 1) \in S_n$ через τ_i .

Возможны следующие случаи:

1. Пусть

$$i \in \bar{\alpha}, \quad i \notin \bar{\beta}, \quad i+1 \notin \bar{\alpha}, \quad i+1 \in \bar{\beta}$$

или, наоборот,

$$i \notin \bar{\alpha}, \quad i \in \bar{\beta}, \quad i+1 \in \bar{\alpha}, \quad i+1 \notin \bar{\beta}.$$

Эти два варианта соответствуют двум орбитам, которые могут быть подняты при помощи P_i до O'. В этом случае комбинаторные данные для O' выглядят так:

$$\bar{\alpha}' = \bar{\alpha} \cup \{i+1\} \setminus \{i\}, \quad \bar{\beta}' = \bar{\beta} \setminus \{i, i+1\}, \quad \bar{\gamma}' = \bar{\gamma} \cup \{i+1\}, \quad \sigma' = \sigma \cdot \tau_i.$$

Отметим, что $\operatorname{rk} \mathcal{O}' = \operatorname{rk} \mathcal{O} + 1$, $\dim \mathcal{O}' = \dim \mathcal{O} + 1$.

На языке отмеченных пар диаграмм это можно представить так. Если *i*-е и (i + 1)-е звенья пути, который ограничивает первую диаграмму, образуют углубление (т.е. первое из них вертикально, а второе горизонтально), а соответствующие звенья для второй диаграммы образуют выступ (или же, наоборот, на данном месте в первой диаграмме имеется выступ, а во второй — углубление), то обе эти пары звеньев заменяются на выступ, ограничивающий клетку с точкой.

Пример. Применим минимальную параболическую подгруппу P_2 к орбите $\mathcal{O} \subset Gr(3,7) \times Gr(4,7)$, задаваемой отмеченной парой диаграмм

Полученная в результате поднятия орбита ${\mathcal O}'$ будет задаваться отмеченной парой

2. Во всех остальных случаях $\bar{\alpha}' = \tau_i(\bar{\alpha}), \, \bar{\beta}' = \tau_i(\bar{\beta}), \, \bar{\gamma}' = \tau_i(\bar{\gamma}), \, a$ перестановка σ' есть результат сопряжения перестановки σ при помощи τ_i :

$$\tilde{\sigma} = \tau_i \sigma \tau_i.$$

Ранги исходной и полученной орбит равны: $\operatorname{rk} \mathcal{O}' = \operatorname{rk} \mathcal{O}$.

3.2. Минимальные орбиты.

Лемма 5. Все минимальные относительно слабого порядка B-орбиты в данной GL(V)-орбите имеют ранг 0.

Доказательство. Предположим противное. Пусть \mathcal{O} — минимальная орбита положительного ранга, и пусть ей соответствует набор комбинаторных данных $(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \sigma)$, причем $\sigma \neq \text{Id.}$ Пусть $p \in \bar{\gamma}, p' = \sigma(p)$. Без потери общности предположим, что ни для какого другого $q \in \bar{\gamma}$ не выполнено условие $p < q < \sigma(q') < p'$.

Обозначим через C_1 множество выступов в первой диаграмме, расположенных между p-м и p'-м звеньями, т.е. множество индексов $i, p \leq i < p'$, для которых i-е звено в первой диаграмме горизонтально, а (i + 1)-е вертикально. Пусть также D_1 есть множество углублений т.е. таких i, что $p \leq i < p'$ и при этом i-е звено вертикально, а (i + 1)-е горизонтально.

Обозначим аналогичные множества для второй диаграммы через C_2 и D_2 . Заметим, что $\#C_1 = \#D_1 + 1$ и $\#C_2 = \#D_2 + 1$, поскольку в обеих диаграммах *p*-е звенья горизонтальны, а *p*'-е вертикальны.

Теперь рассмотрим такое число j, что $j \in (C_1 \setminus D_2) \cup (C_2 \setminus D_1)$. При помощи рассуждений из разд. 3.1 можно показать, что $\overline{O} = P_j \overline{O}'$ для некоторой орбиты O'. Действительно, предъявим эту орбиту.

Если перестановка σ содержит транспозицию (j, j + 1), то комбинаторными данными для орбиты O' будут

$$\bar{\alpha}' = \bar{\alpha} \cup \{j\} \setminus \{j+1\}, \quad \bar{\beta}' = \bar{\beta} \cup \{j\}, \quad \bar{\gamma}' = \bar{\gamma} \setminus \{j+1\}, \quad \sigma' = \sigma \cdot \tau_j$$

В противном случае $\bar{\alpha}' = \tau_j(\bar{\alpha}), \ \bar{\beta}' = \tau_j(\bar{\beta}), \ \bar{\gamma}' = \tau_j(\bar{\gamma}), \ \sigma' = \tau_j \sigma \tau_j.$

Подсчет размерностей показывает, что dim $\mathcal{O}' = \dim \mathcal{O} - 1$. Остается показать, что множество $(C_1 \setminus D_2) \cup (C_2 \setminus D_1)$ непусто:

$$#((C_1 \setminus D_2) \cup (C_2 \setminus D_1)) \ge \max(\#(C_1 \setminus D_2), \#(C_2 \setminus D_1)) \ge \max(\#C_1 - \#C_2 + 1, \#C_2 - \#C_1 + 1) \ge 1. \qquad \Box$$

После этого можно найти все минимальные орбиты в X_d . Легко видеть, что им соответствуют следующие комбинаторные данные:

$$\bar{\alpha} \cup \bar{\beta} = \{1, \dots, k+l-d\}, \quad \bar{\alpha} \cap \bar{\beta} = \{1, \dots, d\}, \quad \bar{\gamma} = \emptyset, \quad \sigma = \mathrm{Id}.$$

Размерности всех минимальных орбит в X_d равны (k-d)(l-d). В частности, это означает, что они все замкнуты в X_d (поскольку X_d не содержит орбит меньших размерностей). Они соответствуют разложениям множества $\{d+1, \ldots, k+l-d\}$ на два непересекающихся подмножества, $\bar{\alpha} \setminus \bar{\beta}$ и $\bar{\beta} \setminus \bar{\alpha}$. Поэтому их число равно биномиальному коэффициенту $\binom{k+l-2d}{k-d}$.

Также заметим, что пара диаграмм Юнга, соответствующая минимальной орбите, является дополнительной: эти две диаграммы, будучи сложенными вместе, образуют прямоугольник размера $(k - d) \times (l - d)$.

Поскольку общая диаграмма для каждой из пар диаграмм, соответствующих минимальным орбитам, пуста, то все минимальные B-орбиты также являются $(B \times B)$ -орбитами, т.е. прямыми произведениями клеток Шуберта, взятых в каждом из двух грассманианов.

Эти результаты могут быть подытожены в виде следующей теоремы.

Теорема 6. В каждом X_d , где $d \in [\max\{k+l-n, 0\}, \min\{k, l\}]$, содержится $\binom{k+l-2d}{k-d}$ минимальных орбит. Они все замкнуты в X_d , имеют размерность (k-d)(l-d) и являются прямыми произведениями клеток Шуберта.

§4. Разрешения особенностей для замыканий орбит

В этом параграфе строятся разрешения особенностей для замыканий *B*-орбит в *X*.

Для минимальной параболической подгруппы P_i и замыкания орбит
ы $\bar{\mathbb{O}}$ рассмотрим морфизм

$$F_i: P_i \times {}^B \bar{\mathbb{O}} \to P_i \bar{\mathbb{O}}, \qquad (p, x) \mapsto px.$$

Предположим, что $\bar{0} \neq P_i \bar{0}$. В работах Кнопа [5] и Ричардсона–Спрингера [9] показано, что при этом имеет место один из трех случаев:

- Тип U: $P_i \mathcal{O} = \mathcal{O}' \sqcup \mathcal{O}$ и F_i бирационален;
- Тип N: $P_i \mathcal{O} = \mathcal{O}' \sqcup \mathcal{O}$ и F_i имеет степень 2;
- Тип Т: $P_i \mathcal{O} = \mathcal{O}' \sqcup \mathcal{O} \sqcup \mathcal{O}''$ и F_i бирационален. В этом случае dim $\mathcal{O}'' = \dim \mathcal{O}$.

Оказывается, что в нашей ситуации тип N невозможен.

Предложение 7. Пусть \mathfrak{O} есть *B*-орбита в *X* и P_i — такая минимальная параболическая подгруппа, что $P_i\mathfrak{O} \neq \mathfrak{O}$. Тогда отображение $F_i: P_i \times {}^B\mathfrak{O} \to P_i\mathfrak{O}$ бирационально.

Доказательство. Выберем канонический представитель x орбиты \emptyset , как это было сделано в предложении 1. Непосредственное вычисление показывает, что стабилизатор элемента x в P_i равняется его стабилизатору в B, описанному в предложении 2. Отсюда следует бирациональность отображения F_i .

Замечание. Два оставшихся типа соответствуют двум случаям, описанным в разд. 3.1: Т соответствует п. 1, а U — п. 2. В первом случае ранг орбиты увеличивается на 1, во втором остается неизменным. Поэтому слабый порядок совместим с функцией ранга: если $\mathcal{O} \leq \mathcal{O}'$, то rk $\mathcal{O} \leq$ rk \mathcal{O}' . Это верно и для про-

³ Функциональный анализ и его приложения, т. 42, вып. 2

извольных сферических многообразий, см., например, [1]. Отметим, что сильный порядок с функцией ранга не совместим.

Предложение 7 вместе с теоремой 6 позволяет построить разрешения особенностей для \overline{O} , аналогичные разрешениям Ботта–Самельсона для многообразий Шуберта в грассманианах.

Пусть дана орбита О. Рассмотрим произвольную минимальную орбиту О_{min}, меньшую либо равную О в смысле слабого порядка. Это значит, что существует последовательность минимальных параболических подгрупп $(P_{i_1}, \ldots, P_{i_r})$, для которой

$$\mathcal{O} = P_{i_r} \cdots P_{i_1} \mathcal{O}_{\min}.$$

Рассмотрим отображение

$$F: P_{i_r} \times^B \cdots \times^B P_{i_1} \times^B \mathfrak{O}_{\min} \to \mathfrak{O}, \qquad F: (p_{i_r}, \dots, p_{i_1}, x) \mapsto p_{i_r} \cdots p_{i_1} x.$$

Согласно предложению 7, оно бирационально. Но это пока еще не разрешение особенностей, поскольку $\overline{0}_{\min}$ может быть особым многообразием.

Второй шаг заключается в построении *В*-эквивариантного разрешения особенностей многообразия $\bar{\mathbb{O}}_{\min}$. Теорема 6 утверждает, что $\bar{\mathbb{O}}_{\min}$ может быть представлено в виде прямого произведения

$$\mathcal{O}_{\min} = X_w \times X_v$$

для некоторых многообразий Шуберта $X_w \subset Gr(k, V)$ и $X_v \subset Gr(l, V)$. Для X_w и X_v можно взять разрешение Ботта–Самельсона:

 $F_w \colon Z_w \to X_w \quad \text{if} \quad F_v \colon Z_v \to X_v.$

(Подробности этого описаны, например, в [2]). Итак, мы получаем разрешение

$$F_w \times F_v \colon Z_w \times Z_w \to X_w \times X_v = \bar{\mathcal{O}}_{\min}$$

Рассмотрев композицию этого отображения с отображением F, получаем основной результат работы:

Теорема 8. Отображение

$$\widetilde{F} = F \circ (F_w \times F_v) \colon P_{i_r} \times^B \cdots \times^B P_{i_1} \times^B (Z_w \times Z_v) \to \overline{\mathbb{O}}$$

есть разрешение особенностей для многообразия О.

Доказательство. Уже было показано, что оба отображения F и $F_w \times F_v$ суть бирациональные морфизмы. Поскольку все рассматриваемые многообразия проективны, эти морфизмы являются собственными. Многообразие $P_{i_r} \times^B \cdots \times^B P_{i_1} \times^B (Z_w \times Z_v)$ есть последовательность однородных B-расслоений с неособым слоем, и поэтому оно само является неособым.

ЛИТЕРАТУРА

- M. Brion, On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv., 76:2 (2001), 263–299.
- [2] M. Brion, Lectures on the geometry of flag varieties, in: Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85.
- G. Bobiński, G. Zwara, Schubert varieties and representations of Dynkin quivers, Colloq. Math., 94:2 (2002), 285–309.
- [4] У. Фултон, Таблицы Юнга и их приложения к теории представлений и геометрии, МЦНМО, М., 2006.

- [5] F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70:2 (1995), 285–309.
- [6] L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spécialisés, 3, Soc. Math. France, Paris, 1998.
- [7] P. Magyar, J. Weyman, A. Zelevinsky, Multiple flag varieties of finite type, Adv. Math., 141:1 (1999), 97–118.
- [8] S. Pin, Adhérences d'orbites des sous-groupes de Borel dans les éspaces symétriques, Thèse de doctorat, Institut Fourier, Grenoble, 2001; http://www-fourier.ujf -grenoble.fr/THESE/ps/t107.ps.
- R. W. Richardson, T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata, 35:1-3 (1990), 389-436.

Независимый московский университет Institut Fourier e-mail: smirnoff@mccme.ru Поступило в редакцию 1 сентября 2006 г.