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Flag varieties

G = GLn(C)

B ⊂ G upper-triangular matrices

Fl(n) = {V0 ⊂ V1 ⊂ · · · ⊂ Vn | dimVi = i} ∼= G/B

Theorem (Borel, 1953)

Z[x1, . . . , xn]/(x1 + · · ·+ xn, . . . , x1 . . . xn) ∼= H∗(G/B ,Z).

This isomorphism is constructed as follows:

V1, . . . ,Vn tautological vector bundles over G/B ;

Li = Vi/Vi−1 (1 ≤ i ≤ n);

xi $→ −c1(Li );

The kernel is generated by the symmetric polynomials without
constant term.
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Schubert varieties

G/B =
⊔

w∈Sn
B−wB/B — Schubert decomposition;

Xw = B−wB/B, where B− the opposite Borel subgroup;

H∗(G/B ,Z) ∼=
⊕

w∈Sn
Z · [Xw ] as abelian groups.

Question

Are there any “nice” representatives of [Xw ] in Z[x1, . . . , xn]?

Answer: Schubert polynomials

w ∈ Sn ! Sw (x1, . . . , xn−1) ∈ Z[x1, . . . , xn];

Sw $→ [Xw ] ∈ H∗(G/B ,Z) under the Borel isomorphism;

Introduced by J. N. Bernstein, I. M. Gelfand, S. I. Gelfand (1978),
A. Lascoux and M.-P. Schützenberger, 1982;

Combinatorial description: S. Billey and N. Bergeron, S. Fomin and
An. Kirillov, 1993–1994.
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Pipe dreams

Let w ∈ Sn. Consider a triangular table filled by and ✆✞, such that:

the strands intertwine as prescribed by w ;

no two strands cross more than once (reduced pipe dream).

Pipe dreams for w = (1432)

1 4 3 2

1 ✆✞ ✆✞ ✆✞ ✆

2 ✆

3 ✆

4 ✆

1 4 3 2

1 ✆✞ ✆✞ ✆

2 ✆✞ ✆

3 ✆

4 ✆

1 4 3 2

1 ✆✞ ✆

2 ✆✞ ✆✞ ✆

3 ✆

4 ✆

1 4 3 2

1 ✆✞ ✆✞ ✆

2 ✆

3 ✆✞ ✆

4 ✆

1 4 3 2

1 ✆✞ ✆

2 ✆✞ ✆

3 ✆✞ ✆

4 ✆

Pipe dream P ! monomial xd(P) = xd11 xd22 . . . xdn−1
n−1 ,

di = #{ ’s in the i -th row}

x22x3 x1x2x3 x21 x3 x1x
2
2 x21 x2
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Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)

Let w ∈ Sn. Then

Sw (x1, . . . , xn−1) =
∑

w(P)=w

xd(P),

where the sum is taken over all reduced pipe dreams P corresponding to w .

Example

S1432(x1, x2, x3) = x22x3 + x1x2x3 + x21 x3 + x1x
2
2 + x21 x2.
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Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find w ∈ Sn, such that Sw (1, . . . , 1) is maximal.

Answers for small n

n = 3: w = (132), Sw (1) = 2;

n = 4: w = (1432), Sw (1) = 5;

n = 5: w = (15432) and w = (12543), Sw (1) = 14;

n = 6: w = (126543), Sw (1) = 84;

n = 7: w = (1327654), Sw (1) = 660.

Definition

w ∈ Sn is a Richardson permutation, if for (k1, . . . , kr ),
∑

ki = n,

w =

(

1 2 . . . k1 k1 + 1 . . . k1 + k2 k1 + k2 + 1 . . .
k1 k1 − 1 . . . 1 k1 + k2 . . . k1 + 1 k1 + k2 + k3 . . .

)

.
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Motivation

Why are we interested in this?

The value Sw (1, . . . , 1) measures “how singular” is the Schubert variety
Xw .

More precisely

Sw (1, . . . , 1) equals the degree of the matrix Schubert variety
Xw ⊂ Mn;

If w ∈ Sn satisfies the condition

∀1 ≤ i , j ≤ n, i + j > n, either w−1(i) ≤ j or w(j) ≤ i ,

then
Sw (1, . . . , 1) = degXw = multeX

w ;
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Counting pipe dreams of Richardson permutations

Let w0
k,m =

(

1 2 . . . k k + 1 . . . k +m

1 2 . . . k k +m . . . k + 1

)

.

Theorem (Alexander Woo, 2004)

Let w = w0
1,m. Then Sw (1) = Cat(m).

Theorem

Let w = w0
k,m. Then Sw (1) is equal to a (k × k) Catalan–Hankel

determinant:
Sw (1) = det(Cat(m+ i + j − 2))ki ,j=1.

Sw (1) counts the “Dyck plane partitions of height k”;

These results have q-counterparts, involving Carlitz–Riordan q-Catalan
numbers.
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Pipe dream complex (A. Knutson, E. Miller)

To each permutation w ∈ Sn one can associate a shellable
CW-complex PD(w);

0-dimensional cells ↔ reduced pipe dreams for w ;

higher-dimensional cells ↔ non-reduced pipe dreams for w ;

PD(w) ∼= Bℓ or Sℓ, where ℓ = ℓ(w).
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higher-dimensional cells ↔ non-reduced pipe dreams for w ;

PD(w) ∼= Bℓ or Sℓ, where ℓ = ℓ(w).
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Pipe dream complex for w = (1432)
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Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let w = w0
1,n = (1, n + 1, n, . . . , 3, 2) ∈ Sn+1 be as in Woo’s theorem.

Then PD(w) is the Stasheff associahedron.
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Zoo of pipe dream complexes

What about PD(w) for other Richardson elements w?

w = w0
1,n = (1, n + 1, n, . . . , 3, 2)

associahedron;

w = w0
n,2 = (1, 2, . . . , n, n + 2, n + 1)

(n + 1)-dimensional simplex;

w = w0
n,3 = (1, 2, . . . , n, n + 3, n + 2, n + 1)

dual cyclic polytope (C (2n + 3, 2n))∨.

w = w0
k,n

???
(we don’t even know if this is a polytope)

Cyclic polytopes

C (n, d) = Conv((ti , t
2
i , . . . , t

d
i ))

n
i=1 ⊂ R

d .
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Generalization: other Weyl groups

G semisimple group, W its Weyl group;

The longest element in W is denoted by w0;

P ⊂ G parabolic subgroup, P = L! U its Levi decomposition.

The longest element w0(L) ∈ W (L) ⊂ W for L is called a Richardson
element.

For W = Sn, that is exactly our previous definition of Richardson
elements.

Fix a reduced decomposition w0 of the longest element w0 ∈ W .

Can define a subword complex PD(w) = PD(w ,w0) for an arbitrary
w ∈ W : generalization of the pipe dream complex. (Knutson, Miller);

Consider Richardson elements in W and look at their subword
complexes.
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Cyclohedra are subword complexes

Theorem

Let W be of type Cn, generated by s1, . . . , sn, where s1 corresponds to the
longest root α1. Consider a Richardson element w = (s1s2 . . . sn−1)n−1.
Then PD(w) is a cyclohedron.
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Questions about PD(w)

Is it true that PD(w) is always a polytope?

At least, is it true when w is a Richardson element?

If yes, what is the combinatorial meaning of this polytope?

Are there any relations to cluster algebras ???
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Дорогой Аскольд Георгиевич!

С днем рождения!
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