Schubert polynomials and pipe dreams

Evgeny Smirnov

Higher School of Economics Department of Mathematics

Laboratoire J.-V. Poncelet Moscow, Russia

Topology of Torus Actions and Applications to Geometry and Combinatorics

Daejeon, August 7, 2014

Outline

- General definitions
 - Flag varieties
 - Schubert varieties and Schubert polynomials
 - Pipe dreams and Fomin–Kirillov theorem
- Numerology of Schubert polynomials
 - Permutations with many pipe dreams
 - Catalan numbers and Catalan–Hankel determinants
- Combinatorics of Schubert polynomials
 - Pipe dream complexes
 - Generalizations for other Weyl groups
- Open questions

Flag varieties

- $G = GL_n(\mathbb{C})$
- B ⊂ G upper-triangular matrices
- $FI(n) = \{V_0 \subset V_1 \subset \cdots \subset V_n \mid \dim V_i = i\} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1,\ldots,x_n]/(x_1+\cdots+x_n,\ldots,x_1\ldots x_n)\cong H^*(G/B,\mathbb{Z}).$$

This isomorphism is constructed as follows

- V_1, \ldots, V_n tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1} \ (1 \leq i \leq n);$
- \bullet $x_i \mapsto -c_1(\mathcal{L}_i);$
- The kernel is generated by the symmetric polynomials without constant term.

Flag varieties

- $G = GL_n(\mathbb{C})$
- B ⊂ G upper-triangular matrices
- $FI(n) = \{V_0 \subset V_1 \subset \cdots \subset V_n \mid \dim V_i = i\} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1,\ldots,x_n]/(x_1+\cdots+x_n,\ldots,x_1\ldots x_n)\cong H^*(G/B,\mathbb{Z}).$$

This isomorphism is constructed as follows:

- V_1, \ldots, V_n tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1} \ (1 \leq i \leq n);$
- \bullet $x_i \mapsto -c_1(\mathcal{L}_i);$
- The kernel is generated by the symmetric polynomials without constant term.

Flag varieties

- $G = GL_n(\mathbb{C})$
- B ⊂ G upper-triangular matrices
- $FI(n) = \{V_0 \subset V_1 \subset \cdots \subset V_n \mid \dim V_i = i\} \cong G/B$

Theorem (Borel, 1953)

$$\mathbb{Z}[x_1,\ldots,x_n]/(x_1+\cdots+x_n,\ldots,x_1\ldots x_n)\cong H^*(G/B,\mathbb{Z}).$$

This isomorphism is constructed as follows:

- V_1, \ldots, V_n tautological vector bundles over G/B;
- $\mathcal{L}_i = \mathcal{V}_i/\mathcal{V}_{i-1} \ (1 \leq i \leq n);$
- $x_i \mapsto -c_1(\mathcal{L}_i);$
- The kernel is generated by the symmetric polynomials without constant term.

Schubert varieties

- $G/B = \bigsqcup_{w \in S_n} B^- wB/B$ Schubert decomposition;
- $X^w = \overline{B^- wB/B}$, where B^- is the opposite Borel subgroup;
- $H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w]$ as abelian groups.

Question

Are there any "nice" representatives of $[X^w]$ in $\mathbb{Z}[x_1,\ldots,x_n]$?

Answer: Schubert polynomials

- $w \in S_n \quad \leadsto \quad \mathfrak{S}_w(x_1, \ldots, x_{n-1}) \in \mathbb{Z}[x_1, \ldots, x_n];$
- $\mathfrak{S}_w \mapsto [X^w] \in H^*(G/B, \mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
- Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994.

Schubert varieties

- $G/B = \bigsqcup_{w \in S_n} B^- wB/B$ Schubert decomposition;
- $X^w = \overline{B^- wB/B}$, where B^- is the opposite Borel subgroup;
- $H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w]$ as abelian groups.

Question

Are there any "nice" representatives of $[X^w]$ in $\mathbb{Z}[x_1,\ldots,x_n]$?

Answer: Schubert polynomials

- $w \in S_n \quad \leadsto \quad \mathfrak{S}_w(x_1,\ldots,x_{n-1}) \in \mathbb{Z}[x_1,\ldots,x_n];$
- $\mathfrak{S}_w \mapsto [X^w] \in H^*(G/B, \mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
- Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994.

Schubert varieties

- $G/B = \bigsqcup_{w \in S_n} B^- wB/B$ Schubert decomposition;
- $X^w = \overline{B^- wB/B}$, where B^- is the opposite Borel subgroup;
- $H^*(G/B, \mathbb{Z}) \cong \bigoplus_{w \in S_n} \mathbb{Z} \cdot [X^w]$ as abelian groups.

Question

Are there any "nice" representatives of $[X^w]$ in $\mathbb{Z}[x_1,\ldots,x_n]$?

Answer: Schubert polynomials

- $w \in S_n \quad \rightsquigarrow \quad \mathfrak{S}_w(x_1, \ldots, x_{n-1}) \in \mathbb{Z}[x_1, \ldots, x_n];$
- $\mathfrak{S}_w \mapsto [X^w] \in H^*(G/B,\mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
- Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994.

Schubert polynomials and pipe dreams

Let $w \in S_n$. Consider a triangular table filled by + and -, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dream $P \rightarrow \text{monomial } x^{d(P)} = x_1^{d_1} x_2^{d_2} \dots x_{n-1}^{d_{n-1}},$ $d_i = \#\{+\text{'s in the } i\text{-th row}\}$

 $X_1 X_2 X_3$

 $x_1^2 x_3$

 $(1 X_2^2)$

 $\binom{2}{1} X_2$

Let $w \in S_n$. Consider a triangular table filled by + and -, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dream $P \longrightarrow \text{monomial } x^{d(P)} = x_1^{d_1} x_2^{d_2} \dots x_{n-1}^{d_{n-1}},$ $d_i = \#\{+\text{'s in the } i\text{-th row}\}$

 $X_1 X_2 X_3$

 $X_1^2 X_3$

 $(_{1}X_{2}^{2})$

 $\binom{2}{1} X_2$

Let $w \in S_n$. Consider a triangular table filled by + and -, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dream $P \longrightarrow \text{monomial } x^{d(P)} = x_1^{d_1} x_2^{d_2} \dots x_{n-1}^{d_{n-1}},$ $d_i = \#\{+\text{'s in the } i\text{-th row}\}$

Let $w \in S_n$. Consider a triangular table filled by + and -, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for w = (1432)

Pipe dream $P \longrightarrow \text{monomial } x^{d(P)} = x_1^{d_1} x_2^{d_2} \dots x_{n-1}^{d_{n-1}}$, $d_i = \#\{+\text{'s in the } i\text{-th row}\}$

 $X_1 X_2 X_3$

 $x_1^2 x_3$

 $x_1 x_2^2$

 $x_1^2 x_2$

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)

Let $w \in S_n$. Then

$$\mathfrak{S}_w(x_1,\ldots,x_{n-1})=\sum_{w(P)=w}x^{d(P)},$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$\mathfrak{S}_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

Corollary

 $\mathfrak{S}_w(1,\ldots,1)=\#\{P\mid \text{ pipe dream }P\text{ corresponds to }w\}.$

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)

Let $w \in S_n$. Then

$$\mathfrak{S}_w(x_1,\ldots,x_{n-1})=\sum_{w(P)=w}x^{d(P)},$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$\mathfrak{S}_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

Corollary

 $\mathfrak{S}_w(1,\ldots,1)=\#\{P\mid \text{ pipe dream }P\text{ corresponds to }w\}.$

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)

Let $w \in S_n$. Then

$$\mathfrak{S}_w(x_1,\ldots,x_{n-1})=\sum_{w(P)=w}x^{d(P)},$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$\mathfrak{S}_{1432}(x_1, x_2, x_3) = x_2^2 x_3 + x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_2^2 + x_1^2 x_2.$$

Corollary

 $\mathfrak{S}_w(1,\ldots,1)=\#\{P\mid \text{ pipe dream }P\text{ corresponds to }w\}.$

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}I(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w \to \widetilde{X}^w \subset \widetilde{F}I(n)$$

- X^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}I(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w \to \widetilde{X}^w \subset \widetilde{F}I(n)$$

- X^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}I(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w \to \widetilde{X}^w \subset \widetilde{F}I(n)$$

- X^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}l(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w o \widetilde{X}^w \subset \widetilde{FI}(n)$$

- X^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}l(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w o \widetilde{X}^w \subset \widetilde{FI}(n)$$

- \widetilde{X}^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}l(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w o \widetilde{X}^w \subset \widetilde{FI}(n)$$

- \widetilde{X}^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$FI(n) \rightarrow \widetilde{F}I(n)$$

- $\widetilde{F}l(n)$ is a *singular* (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

$$X^w o \widetilde{X}^w \subset \widetilde{FI}(n)$$

- \widetilde{X}^w may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_w(1,\ldots,1)$ "measures how singular X^w is".

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1, \dots, 1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1, \dots, 1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1,\ldots,1)$ is maximal.

Answers for small n

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1,\ldots,1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1,\ldots,1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1,\ldots,1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}$$

How many pipe dreams can a permutation have?

Find $w \in S_n$, such that $\mathfrak{S}_w(1, \dots, 1)$ is maximal.

Answers for small *n*

- n = 3: w = (132), $\mathfrak{S}_w(1) = 2$;
- n = 4: w = (1432), $\mathfrak{S}_w(1) = 5$;
- n = 5: w = (15432) and w = (12543), $\mathfrak{S}_w(1) = 14$;
- n = 6: w = (126543), $\mathfrak{S}_w(1) = 84$;
- n = 7: w = (1327654), $\mathfrak{S}_w(1) = 660$.

Definition

$$w = \begin{pmatrix} 1 & 2 & \dots k_1 & k_1 + 1 & \dots & k_1 + k_2 & k_1 + k_2 + 1 & \dots \\ k_1 & k_1 - 1 & \dots 1 & k_1 + k_2 & \dots & k_1 + 1 & k_1 + k_2 + k_3 & \dots \end{pmatrix}.$$

Counting pipe dreams of Richardson permutations

Let
$$w_{k,m}^0 = \begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & k+m \\ 1 & 2 & \dots & k & k+m & \dots & k+1 \end{pmatrix}$$
.

Theorem (A. Woo)

Let $w = w_{1,m}^0$. Then $\mathfrak{S}_w(1) = Cat(m)$

Theorem (S. Fomin, An. Kirillov)

Let $w = w_{k,m}^0$. Then $\mathfrak{S}_w(1)$ is equal to the number of "Dyck plane partitions of height k", i.e., subdiagrams of the prism of height k and side length m.

Counting pipe dreams of Richardson permutations

Let
$$w_{k,m}^0 = \begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & k+m \\ 1 & 2 & \dots & k & k+m & \dots & k+1 \end{pmatrix}$$
.

Theorem (A. Woo)

Let $w = w_{1,m}^0$. Then $\mathfrak{S}_w(1) = Cat(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w = w_{k,m}^0$. Then $\mathfrak{S}_w(1)$ is equal to the number of "Dyck plane partitions of height k", i.e., subdiagrams of the prism of height k and side length m.

Counting pipe dreams of Richardson permutations

Let
$$w_{k,m}^0 = \begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & k+m \\ 1 & 2 & \dots & k & k+m & \dots & k+1 \end{pmatrix}$$
.

Theorem (A. Woo)

Let $w = w_{1,m}^0$. Then $\mathfrak{S}_w(1) = Cat(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w = w_{k,m}^0$. Then $\mathfrak{S}_w(1)$ is equal to the number of "Dyck plane partitions of height k", i.e., subdiagrams of the prism of height k and side length m.

Determinantal formulas for Schubert polynomials

Theorem (G. Merzon, E. S.)

Let $w = w_{k,m}^0$. Then the following "Jacobi–Trudi type" formula holds:

$$\frac{\mathfrak{S}_{w}(x_{1},\ldots,x_{m+k-1})}{x_{1}^{m}\ldots x_{k}^{m}x_{k+1}^{m-1}\ldots x_{m+k-1}} = \det\left(\frac{\mathfrak{S}_{w_{1,m+i+j}^{0}}(x_{i+1},\ldots,x_{m+i+j-1})}{x_{i+1}^{m+j-1}x_{2}^{m+j-2}\ldots x_{m+i+j-1}}\right)_{i,j=0}^{k-1}$$

Corollary

 $\mathfrak{S}_w(1)$ is equal to a $(k \times k)$ Catalan–Hankel determinant:

$$\mathfrak{S}_{w}(1) = \det \begin{pmatrix} Cat(m) & Cat(m+1) & \dots & Cat(m+k-1) \\ Cat(m+1) & Cat(m+2) & \dots & Cat(m+k) \\ \dots & \dots & \dots & \dots \\ Cat(m+k-1) & Cat(m+k) & \dots & Cat(m+2k-2) \end{pmatrix}$$

Determinantal formulas for Schubert polynomials

Theorem (G. Merzon, E. S.)

Let $w = w_{k,m}^0$. Then the following "Jacobi–Trudi type" formula holds:

$$\frac{\mathfrak{S}_{w}(x_{1},\ldots,x_{m+k-1})}{x_{1}^{m}\ldots x_{k}^{m}x_{k+1}^{m-1}\ldots x_{m+k-1}} = \det\left(\frac{\mathfrak{S}_{w_{1,m+i+j}^{0}}(x_{i+1},\ldots,x_{m+i+j-1})}{x_{i+1}^{m+j-1}x_{2}^{m+j-2}\ldots x_{m+i+j-1}}\right)_{i,j=0}^{k-1}$$

Corollary

 $\mathfrak{S}_w(1)$ is equal to a $(k \times k)$ Catalan–Hankel determinant:

$$\mathfrak{S}_{w}(1) = \det \begin{pmatrix} \operatorname{Cat}(m) & \operatorname{Cat}(m+1) & \dots & \operatorname{Cat}(m+k-1) \\ \operatorname{Cat}(m+1) & \operatorname{Cat}(m+2) & \dots & \operatorname{Cat}(m+k) \\ \dots & \dots & \dots & \dots \\ \operatorname{Cat}(m+k-1) & \operatorname{Cat}(m+k) & \dots & \operatorname{Cat}(m+2k-2) \end{pmatrix}.$$

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation w ∈ S_n one can associate a shellable CW-complex PD(w);
- 0-dimensional cells ↔ reduced pipe dreams for w;
- higher-dimensional cells ↔ non-reduced pipe dreams for w;
- $PD(w) \cong B^{\ell}$ or S^{ℓ} , where $\ell = \ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation w ∈ S_n one can associate a shellable CW-complex PD(w);
- 0-dimensional cells ↔ reduced pipe dreams for w;
- higher-dimensional cells ↔ non-reduced pipe dreams for w;
- $PD(w) \cong B^{\ell}$ or S^{ℓ} , where $\ell = \ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation w ∈ S_n one can associate a shellable CW-complex PD(w);
- 0-dimensional cells ↔ reduced pipe dreams for w;
- higher-dimensional cells ↔ non-reduced pipe dreams for w;
- $PD(w) \cong B^{\ell}$ or S^{ℓ} , where $\ell = \ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation w ∈ S_n one can associate a shellable CW-complex PD(w);
- 0-dimensional cells ↔ reduced pipe dreams for w;
- higher-dimensional cells ↔ non-reduced pipe dreams for w;
- $PD(w) \cong B^{\ell}$ or S^{ℓ} , where $\ell = \ell(w)$.

Pipe dream complex for w = (1432)

Pipe dream complex for w = (1432)

Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w = w_{1,n}^0 = (1, n+1, n, ..., 3, 2) \in S_{n+1}$ be as in Woo's theorem. Then PD(w) is the Stasheff associahedron.

Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w = w_{1,n}^0 = (1, n+1, n, ..., 3, 2) \in S_{n+1}$ be as in Woo's theorem. Then PD(w) is the Stasheff associahedron.

What about PD(w) for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, ..., 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, ..., n, n + 2, n + 1)$ (n + 1)-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, ..., n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^{\vee}$.
- $w = w_{k,n}^0$??? (we don't even know if this is a polytope)

$$C(n,d) = Conv((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d$$

What about PD(w) for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, ..., 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, ..., n, n + 2, n + 1)$ (n + 1)-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, ..., n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^{\vee}$.
- $w = w_{k,n}^0$??? (we don't even know if this is a polytope)

$$C(n,d) = Conv((t_i,t_i^2,\ldots,t_i^d))_{i=1}^n \subset \mathbb{R}^d.$$

What about PD(w) for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, \dots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, ..., n, n + 2, n + 1)$ (n + 1)-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, ..., n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^{\vee}$.
- $w = w_{k,n}^0$??? (we don't even know if this is a polytope)

$$C(n,d) = Conv((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d$$

What about PD(w) for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, \dots, 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, ..., n, n + 2, n + 1)$ (n + 1)-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, ..., n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^{\vee}$.
- $w = w_{k,n}^0$??? (we don't even know if this is a polytope)

$$C(n,d) = Conv((t_i, t_i^2, \ldots, t_i^d))_{i=1}^n \subset \mathbb{R}^d.$$

What about PD(w) for other Richardson elements w?

- $w = w_{1,n}^0 = (1, n+1, n, ..., 3, 2)$ associahedron;
- $w = w_{n,2}^0 = (1, 2, ..., n, n + 2, n + 1)$ (n + 1)-dimensional simplex;
- $w = w_{n,3}^0 = (1, 2, ..., n, n + 3, n + 2, n + 1)$ dual cyclic polytope $(C(2n + 3, 2n))^{\vee}$.
- w = w_{k,n}
 ???
 (we don't even know if this is a polytope)

$$C(n,d) = Conv((t_i, t_i^2, \dots, t_i^d))_{i=1}^n \subset \mathbb{R}^d.$$

G semisimple group, W its Weyl group;

- The longest element in W is denoted by w^0 :
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \rtimes U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in *W* and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w°) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w^o) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w^o) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^0 ;
- $P \subset G$ parabolic subgroup, $P = L \times U$ its Levi decomposition.
- The longest element $w^0(L) \in W(L) \subset W$ for L is called a *Richardson element*.
- For $W = S_n$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex PD(w) = PD(w, w^o) for an arbitrary w ∈ W: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Cyclohedra are subword complexes

Theorem

Let W be of type C_n , generated by s_1, \ldots, s_n , where s_1 corresponds to the longest root α_1 . Consider a Richardson element $w = (s_1 s_2 \ldots s_{n-1})^{n-1}$. Then PD(w) is a cyclohedron.

- Is it true that PD(w) is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that PD(w) are 2-truncated cubes?

- Is it true that *PD*(*w*) is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that PD(w) are 2-truncated cubes?

- Is it true that *PD*(*w*) is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that PD(w) are 2-truncated cubes?

- Is it true that PD(w) is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that PD(w) are 2-truncated cubes?