Schubert polynomials and pipe dreams

Evgeny Smirnov

Higher School of Economics
Department of Mathematics
Laboratoire J.-V. Poncelet
Moscow, Russia

Topology of Torus Actions and Applications to Geometry and Combinatorics Daejeon, August 7, 2014

Outline

(9) General definitions

- Flag varieties
- Schubert varieties and Schubert polynomials
- Pipe dreams and Fomin-Kirillov theorem
(2) Numerology of Schubert polynomials
- Permutations with many pipe dreams
- Catalan numbers and Catalan-Hankel determinants
(3) Combinatorics of Schubert polynomials
- Pipe dream complexes
- Generalizations for other Weyl groups
(4) Open questions

Flag varieties

- $G=\mathrm{GL}_{n}(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $F l(n)=\left\{V_{0} \subset V_{1} \subset \cdots \subset V_{n} \mid \operatorname{dim} V_{i}=i\right\} \cong G / B$

Theorem (Borel, 1953)

This isomorphism is constructed as follows:

- V_{1}, \ldots, V_{n} tautological vector bundles over G / B;
- $\mathcal{L}_{i}=\mathcal{V}_{i} / \mathcal{V}_{i-1}(1 \leq i \leq n) ;$
- $x_{i} \mapsto-C_{1}\left(\mathcal{L}_{i}\right)$;
- The kernel is generated by the symmetric polynomials without constant term.

Flag varieties

- $G=\operatorname{GL}_{n}(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $F(n)=\left\{V_{0} \subset V_{1} \subset \cdots \subset V_{n} \mid \operatorname{dim} V_{i}=i\right\} \cong G / B$

Theorem (Borel, 1953)

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}, \ldots, x_{1} \ldots x_{n}\right) \cong H^{*}(G / B, \mathbb{Z})
$$

This isomorphism is constructed as follows:

- $\mathcal{V}_{1}, \ldots, \mathcal{V}_{n}$ tautological vector bundles over G / B;
- $\mathcal{L}_{i}=\mathcal{V}_{i} / \mathcal{V}_{i-1}(1 \leq i \leq n)$;
- $x_{i} \mapsto-c_{1}\left(\mathcal{L}_{i}\right)$;
- The kernel is generated by the symmetric polynomials without constant term.

Flag varieties

- $G=\mathrm{GL}_{n}(\mathbb{C})$
- $B \subset G$ upper-triangular matrices
- $F l(n)=\left\{V_{0} \subset V_{1} \subset \cdots \subset V_{n} \mid \operatorname{dim} V_{i}=i\right\} \cong G / B$

Theorem (Borel, 1953)

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}, \ldots, x_{1} \ldots x_{n}\right) \cong H^{*}(G / B, \mathbb{Z})
$$

This isomorphism is constructed as follows:

- $\mathcal{V}_{1}, \ldots, \mathcal{V}_{n}$ tautological vector bundles over G / B;
- $\mathcal{L}_{i}=\mathcal{V}_{i} / \mathcal{V}_{i-1}(1 \leq i \leq n)$;
- $x_{i} \mapsto-c_{1}\left(\mathcal{L}_{i}\right)$;
- The kernel is generated by the symmetric polynomials without constant term.

Schubert varieties

- $G / B=\bigsqcup_{w \in S_{n}} B^{-} w B / B$ - Schubert decomposition;
- $X^{w}=\overline{B^{-} w B / B}$, where B^{-}is the opposite Borel subgroup;
- $H^{*}(G / B, \mathbb{Z}) \cong \bigoplus_{w \in S_{n}} \mathbb{Z} \cdot\left[X^{w}\right]$ as abelian groups.

Question
 Are there ary "nice" representatives of $\left[X^{w}\right]$ in $\mathbb{Z}\left[x_{1}\right.$

Answer: Schubert polynomials

- $\mathfrak{S}_{w} \mapsto\left[X^{w}\right] \in H^{*}(G / B, \mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
- Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993-1994.

Schubert varieties

- $G / B=\bigsqcup_{w \in S_{n}} B^{-} w B / B$ - Schubert decomposition;
- $X^{w}=\overline{B^{-} w B / B}$, where B^{-}is the opposite Borel subgroup;
- $H^{*}(G / B, \mathbb{Z}) \cong \bigoplus_{w \in S_{n}} \mathbb{Z} \cdot\left[X^{w}\right]$ as abelian groups.

Question

Are there any "nice" representatives of $\left[X^{w}\right]$ in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$?

Schubert varieties

- $G / B=\bigsqcup_{w \in S_{n}} B^{-} w B / B$ - Schubert decomposition;
- $X^{w}=\overline{B^{-} w B / B}$, where B^{-}is the opposite Borel subgroup;
- $H^{*}(G / B, \mathbb{Z}) \cong \bigoplus_{w \in S_{n}} \mathbb{Z} \cdot\left[X^{w}\right]$ as abelian groups.

Question

Are there any "nice" representatives of $\left[X^{w}\right]$ in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$?

Answer: Schubert polynomials

- $w \in S_{n} \rightsquigarrow \mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$;
- $\mathfrak{S}_{w} \mapsto\left[X^{w}\right] \in H^{*}(G / B, \mathbb{Z})$ under the Borel isomorphism;
- Defined by A. Lascoux and M.-P. Schützenberger, 1982;
- Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993-1994.

Pipe dreams

Let $w \in S_{n}$. Consider a triangular table filled by + and ${ }_{{ }_{r}}$, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for $w=(1432)$

Pipe dream P $d_{i}=\#\{+$'s in the $i-$ th row $\}$

Pipe dreams

Let $w \in S_{n}$. Consider a triangular table filled by + and ${ }_{r}$, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for $w=(1432)$

Pipe dream P
 $d_{i}=\#\{+$'s in the i-th row $\}$

Pipe dreams

Let $w \in S_{n}$. Consider a triangular table filled by + and ${ }_{{ }_{r}}$, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for $w=(1432)$

Pipe dream $P \quad \rightsquigarrow \quad$ monomial $x^{d(P)}=x_{1}^{d_{1}} x_{2}^{d_{2}} \ldots x_{n-1}^{d_{n-1}}$, $d_{i}=\#\{+$'s in the i-th row $\}$

Pipe dreams

Let $w \in S_{n}$. Consider a triangular table filled by + and ${ }_{{ }_{r}}$, such that:

- the strands intertwine as prescribed by w;
- no two strands cross more than once (reduced pipe dream).

Pipe dreams for $w=(1432)$

Pipe dream $P \quad \rightsquigarrow \quad$ monomial $x^{d(P)}=x_{1}^{d_{1}} x_{2}^{d_{2}} \ldots x_{n-1}^{d_{n-1}}$, $d_{i}=\#\{+$'s in the i-th row $\}$
$x_{2}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2}^{2} \quad x_{1}^{2} x_{2}$

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)
Let $w \in S_{n}$. Then

$$
\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n-1}\right)=\sum_{w(P)=w} x^{d(P)}
$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

Corollary

$\mathcal{S}_{w}(1, \ldots, 1)=\#\{P \mid$ pipe dream P corresponds to $W\}$

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)
Let $w \in S_{n}$. Then

$$
\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n-1}\right)=\sum_{w(P)=w} x^{d(P)}
$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$
\mathfrak{S}_{1432}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2} .
$$

\square

Pipe dreams and Schubert polynomials

Theorem (S. Fomin, An. Kirillov, 1994)
Let $w \in S_{n}$. Then

$$
\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n-1}\right)=\sum_{w(P)=w} x^{d(P)}
$$

where the sum is taken over all reduced pipe dreams P corresponding to w.

Example

$$
\mathfrak{S}_{1432}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{2} .
$$

Corollary

$$
\mathfrak{S}_{w}(1, \ldots, 1)=\#\{P \mid \text { pipe dream } P \text { corresponds to } w\}
$$

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} I(n)
$$

- $\widetilde{F} I(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

$$
X^{w} \rightarrow \widetilde{X}^{w} \subset \widetilde{F} I(n)
$$

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_{w}(1, \ldots, 1)$ "measures how singular X^{w} is".

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} /(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope GZ(n).

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_{w}(1, \ldots, 1)$ "measures how singular X^{w} is".

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} /(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope $G Z(n)$.

Degenerate Schubert varieties (A. Knuison, M. Kogan, E. Miller)

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_{w}(1, \ldots, 1)$ "measures how singular X^{w} is".

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} /(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope $G Z(n)$.

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

$$
X^{w} \rightarrow \widetilde{X}^{w} \subset \tilde{F} I(n)
$$

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to W .
- $\Im_{w}(1, \ldots, 1)$ "measures how singular X^{w} is".

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} I(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope $G Z(n)$.

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

$$
X^{w} \rightarrow \widetilde{X}^{w} \subset \tilde{F} I(n)
$$

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_{w}(1, \ldots, 1)$ "measures how singular X^{w} is"

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} /(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope $G Z(n)$.

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

$$
X^{w} \rightarrow \widetilde{X}^{w} \subset \tilde{F} I(n)
$$

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.

Pipe dreams and torus actions

Toric degeneration of a flag variety (N. Gonciulea, V. Lakshmibai)

$$
F I(n) \rightarrow \tilde{F} /(n)
$$

- $\tilde{F} /(n)$ is a singular (but still irreducible!) toric variety.
- It corresponds to Gelfand-Zetlin polytope $G Z(n)$.

Degenerate Schubert varieties (A. Knutson, M. Kogan, E. Miller)

$$
X^{w} \rightarrow \tilde{X}^{w} \subset \tilde{F} I(n)
$$

- \widetilde{X}^{w} may be reducible!
- Its irreducible components are indexed by the pipe dreams corresponding to w.
- $\mathfrak{S}_{w}(1, \ldots, 1)$ "measures how singular X^{w} is".

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.
Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \mathfrak{S}_{w}(1)=14$;
- $n=6: w=(126543), \mathfrak{S}_{w}(1)=84$;
- $n=7: w=(1327654), \mathfrak{S}_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{p}\right), \sum k_{i}=n_{\text {, }}$

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.

Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;

- $n=7: w=(1327654), \mathfrak{S}_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.

Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \Im_{w}(1)=14$
- $n=6: w=(126543), \mathfrak{S}_{w}(1)=84$;
- $n-7:$ м $-(1327654)$ © (...(1) - 660

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?

Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.

Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \mathfrak{S}_{w}(1)=14$;
- $n=7: w=(1327654), \mathfrak{S}_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?
Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.

Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \mathfrak{S}_{w}(1)=14$;
- $n=6: w=(126543), \mathfrak{S}_{w}(1)=84$;
$n=7: w=(1327654), \varsigma_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?
Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.
Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \mathfrak{S}_{w}(1)=14$;
- $n=6: w=(126543), \mathfrak{S}_{w}(1)=84$;
- $n=7: w=(1327654), \mathfrak{S}_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

Permutations with the maximal number of pipe dreams

How many pipe dreams can a permutation have?
Find $w \in S_{n}$, such that $\mathfrak{S}_{w}(1, \ldots, 1)$ is maximal.
Answers for small n

- $n=3: w=(132), \mathfrak{S}_{w}(1)=2$;
- $n=4: w=(1432), \mathfrak{S}_{w}(1)=5$;
- $n=5: w=(15432)$ and $w=(12543), \mathfrak{S}_{w}(1)=14$;
- $n=6: w=(126543), \mathfrak{S}_{w}(1)=84$;
- $n=7: w=(1327654), \mathfrak{S}_{w}(1)=660$.

Definition

$w \in S_{n}$ is a Richardson permutation, if for $\left(k_{1}, \ldots, k_{r}\right), \sum k_{i}=n$,

$$
w=\left(\begin{array}{cccccccc}
1 & 2 & \ldots k_{1} & k_{1}+1 & \ldots & k_{1}+k_{2} & k_{1}+k_{2}+1 & \ldots \\
k_{1} & k_{1}-1 & \ldots 1 & k_{1}+k_{2} & \ldots & k_{1}+1 & k_{1}+k_{2}+k_{3} & \ldots
\end{array}\right) .
$$

Counting pipe dreams of Richardson permutations

Let $w_{k, m}^{0}=\left(\begin{array}{ccccccc}1 & 2 & \cdots & k & k+1 & \cdots & k+m \\ 1 & 2 & \cdots & k & k+m & \cdots & k+1\end{array}\right)$.
Theorem (A. Noo)
Let $w=w_{1, m}^{0}$. Then $\mathfrak{S}_{w}(1)=\operatorname{Cat}(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w=w_{k, m}^{0}$. Then $\mathfrak{S}_{w}(1)$ is equal to the number of "Dyck plane partitions of height k ", i.e., subdiagrams of the prism of height k and side length m.

Counting pipe dreams of Richardson permutations

Let $w_{k, m}^{0}=\left(\begin{array}{ccccccc}1 & 2 & \ldots & k & k+1 & \ldots & k+m \\ 1 & 2 & \ldots & k & k+m & \ldots & k+1\end{array}\right)$.
Theorem $(\mathrm{A}$. Woo)
Let $w=w_{1, m}^{0}$. Then $\mathfrak{S}_{w}(1)=\operatorname{Cat}(m)$.

Theorem (S. Fomin, An. Kirilov)

Let $w=w_{k, m}^{0}$. Then $\mathfrak{S}_{w}(1)$ is equal to the number of "Dyck plane partitions of height k ", i.e., subdiagrams of the prism of height k and side length m.

Counting pipe dreams of Richardson permutations

Let $w_{k, m}^{0}=\left(\begin{array}{ccccccc}1 & 2 & \ldots & k & k+1 & \ldots & k+m \\ 1 & 2 & \ldots & k & k+m & \ldots & k+1\end{array}\right)$.
Theorem (A. Woo)
Let $w=w_{1, m}^{0}$. Then $\mathfrak{S}_{w}(1)=\operatorname{Cat}(m)$.

Theorem (S. Fomin, An. Kirillov)

Let $w=w_{k, m}^{0}$. Then $\mathfrak{S}_{w}(1)$ is equal to the number of "Dyck plane partitions of height k ", i.e., subdiagrams of the prism of height k and side length m.

Determinantal formulas for Schubert polynomials

Theorem (G. Merzon, E. S.)

Let $w=w_{k, m}^{0}$. Then the following "Jacobi-Trudi type" formula holds:

$$
\frac{\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{m+k-1}\right)}{x_{1}^{m} \ldots x_{k}^{m} x_{k+1}^{m-1} \ldots x_{m+k-1}}=\operatorname{det}\left(\frac{\mathfrak{S}_{w_{1, m++j}^{0}}\left(x_{i+1}, \ldots, x_{m+i+j-1}\right)}{x_{i+1}^{m+j-1} x_{2}^{m+j-2} \ldots x_{m+i+j-1}}\right)_{i, j=0}^{k-1}
$$

Determinantal formulas for Schubert polynomials

Theorem (G. Merzon, E. S.)

Let $w=w_{k, m}^{0}$. Then the following "Jacobi-Trudi type" formula holds:

$$
\frac{\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{m+k-1}\right)}{x_{1}^{m} \ldots x_{k}^{m} x_{k+1}^{m-1} \ldots x_{m+k-1}}=\operatorname{det}\left(\frac{\mathfrak{S}_{w_{1, m+i+j}^{0}}\left(x_{i+1}, \ldots, x_{m+i+j-1}\right)}{x_{i+1}^{m+j-1} x_{2}^{m+j-2} \ldots x_{m+i+j-1}}\right)_{i, j=0}^{k-1}
$$

Corollary

$\mathfrak{S}_{w}(1)$ is equal to a $(k \times k)$ Catalan-Hankel determinant:
$\mathfrak{S}_{w}(1)=\operatorname{det}\left(\begin{array}{cccc}\operatorname{Cat}(m) & \operatorname{Cat}(m+1) & \ldots & \operatorname{Cat}(m+k-1) \\ \operatorname{Cat}(m+1) & \operatorname{Cat}(m+2) & \ldots & \operatorname{Cat}(m+k) \\ \ldots & \ldots & \ldots & \ldots \\ \operatorname{Cat}(m+k-1) & \operatorname{Cat}(m+k) & \ldots & \operatorname{Cat}(m+2 k-2)\end{array}\right)$

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation $w \in S_{n}$ one can associate a shellable CW-complex $P D(w)$;
- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
- $P D(w) \cong B^{\ell}$ or S^{ℓ}, where $\ell=\ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation $w \in S_{n}$ one can associate a shellable CW-complex $P D(w)$;
- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w; - $P D(w) \cong B^{\ell}$ or S^{ℓ}, where $\ell=\ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation $w \in S_{n}$ one can associate a shellable CW-complex $P D(w)$;
- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
- $P D(w) \cong B^{\ell}$ or S^{ℓ}, where $\ell=\ell(w)$.

Pipe dream complex (A. Knutson, E. Miller)

- To each permutation $w \in S_{n}$ one can associate a shellable CW-complex $P D(w)$;
- 0-dimensional cells \leftrightarrow reduced pipe dreams for w;
- higher-dimensional cells \leftrightarrow non-reduced pipe dreams for w;
- $P D(w) \cong B^{\ell}$ or S^{ℓ}, where $\ell=\ell(w)$.

Pipe dream complex for $w=(1432)$

Pipe dream complex for $w=(1432)$

Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2) \in S_{n+1}$ be as in Woo's theorem.
Then $P D(w)$ is the Stasheff associahedron.

Associahedra are PD-complexes

Theorem (probably folklore? also cf. V. Pilaud)

Let $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2) \in S_{n+1}$ be as in Woo's theorem.
Then $P D(w)$ is the Stasheff associahedron.

Zoo of pipe dream complexes

What about $P D(w)$ for other Richardson elements w ?

- $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2)$
associahedron;
$w=w_{n, 2}^{0}=(1,2, \ldots, n, n+2, n+1)$
($n+1$)-dimensional simplex;
$w=w_{n, 3}^{0}=(1,2, \ldots, n, n+3, n+2, n+1)$
dual cyclic polytope ($C(2 n+3,2 n))$)
- $w=w_{k, n}^{0}$
(we don't even know if this is a polytope)

Cyclie polytopes

\square

Zoo of pipe dream complexes

What about $P D(w)$ for other Richardson elements w ?

- $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2)$ associahedron;
- $w=w_{n, 2}^{0}=(1,2, \ldots, n, n+2, n+1)$
($n+1$)-dimensional simplex;

dual cyclic polytope $(C(2 n+3,2 n))^{\vee}$
- $w=w_{k, n}^{0}$
(we don't even know if this is a polytope)

Cyclic polytopes

\square

Zoo of pipe dream complexes

What about $P D(w)$ for other Richardson elements w ?

- $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2)$ associahedron;
- $w=w_{n, 2}^{0}=(1,2, \ldots, n, n+2, n+1)$
($n+1$)-dimensional simplex;
- $w=w_{n, 3}^{0}=(1,2, \ldots, n, n+3, n+2, n+1)$
dual cyclic polytope $(C(2 n+3,2 n))^{\vee}$.
- $W=W_{k, n}^{0}$
(we don't even know if this is a polytope)

Cyclic polytopes

Zoo of pipe dream complexes

What about $P D(w)$ for other Richardson elements w ?

- $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2)$ associahedron;
- $w=w_{n, 2}^{0}=(1,2, \ldots, n, n+2, n+1)$
($n+1$)-dimensional simplex;
- $w=w_{n, 3}^{0}=(1,2, \ldots, n, n+3, n+2, n+1)$
dual cyclic polytope $(C(2 n+3,2 n))^{\vee}$.
- $w=w_{k, n}^{0}$
???
(we don't even know if this is a polytope)

Zoo of pipe dream complexes

What about $P D(w)$ for other Richardson elements w ?

- $w=w_{1, n}^{0}=(1, n+1, n, \ldots, 3,2)$ associahedron;
- $w=w_{n, 2}^{0}=(1,2, \ldots, n, n+2, n+1)$
($n+1$)-dimensional simplex;
- $w=w_{n, 3}^{0}=(1,2, \ldots, n, n+3, n+2, n+1)$
dual cyclic polytope $(C(2 n+3,2 n))^{\vee}$.
- $w=w_{k, n}^{0}$
???
(we don't even know if this is a polytope)

Cyclic polytopes

$$
C(n, d)=\operatorname{Conv}\left(\left(t_{i}, t_{i}^{2}, \ldots, t_{i}^{d}\right)\right)_{i=1}^{n} \subset \mathbb{R}^{d}
$$

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition to ${ }^{\circ}$ of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition $1 v^{\circ}$ of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, w^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition \mathfrak{w}° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition 10° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, w^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition w° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller)
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition \mathfrak{w}° of the longest element $w^{0} \in W$. arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller)
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition \mathfrak{w}° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{\circ}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition \mathfrak{w}° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{0}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Generalization: other Weyl groups

- G semisimple group, W its Weyl group;
- The longest element in W is denoted by w^{0};
- $P \subset G$ parabolic subgroup, $P=L \rtimes U$ its Levi decomposition.
- The longest element $w^{0}(L) \in W(L) \subset W$ for L is called a Richardson element.
- For $W=S_{n}$, that is exactly our previous definition of Richardson elements.
- Fix a reduced decomposition \mathfrak{w}° of the longest element $w^{0} \in W$.
- Can define a subword complex $P D(w)=P D\left(w, \mathfrak{w}^{0}\right)$ for an arbitrary $w \in W$: generalization of the pipe dream complex. (Knutson, Miller);
- Consider decompositions of Richardson elements in W and look at their subword complexes.

Cyclohedra are subword complexes

Theorem

Let W be of type C_{n}, generated by s_{1}, \ldots, s_{n}, where s_{1} corresponds to the longest root α_{1}. Consider a Richardson element $w=\left(s_{1} s_{2} \ldots s_{n-1}\right)^{n-1}$. Then $P D(w)$ is a cyclohedron.

Questions about $P D(w)$

- Is it true that $P D(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that $P D(w)$ are 2-truncated cubes?

Questions about $P D(w)$

- Is it true that $P D(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that $P D(w)$ are 2-truncated cubes?

Questions about $P D(w)$

- Is it true that $P D(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that $P D(w)$ are 2-truncated cubes?

Questions about $P D(w)$

- Is it true that $P D(w)$ is always a polytope?
- At least, is it true when w is a Richardson element?
- If yes, what is the combinatorial meaning of this polytope?
- Possible answer: associahedra, cyclohedra etc. are examples of 2-truncated cubes (cf. V. Buchstaber's works). Is it true that $P D(w)$ are 2-truncated cubes?

