Regluing of rational functions

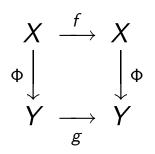
V. Timorin*

* Jacobs University Bremen

February 4, 2009 Boston University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A standard commutative diagram



To do a surgery, one needs to make Φ discontinuous.

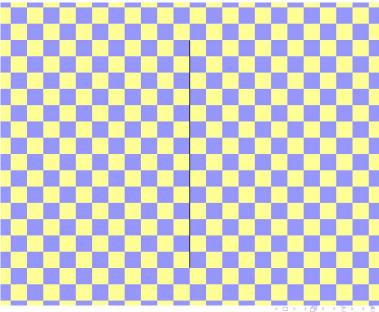
An example of regluing

A branch of the analytic function

$$j(z)=\sqrt{z^2+1}$$

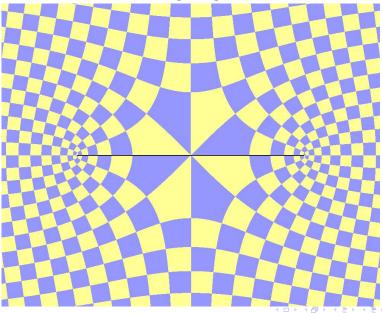
is defined on the complement to [-i, i]. It reglues the segment [-i, i] into [-1, 1].

A regluing: before



E 990

A regluing: after



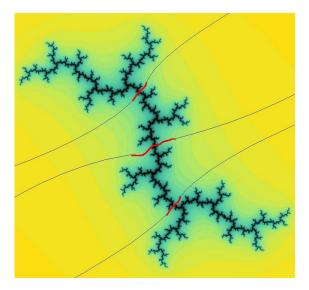
~ ~ ~ ~ ~

The Julia set of $z \mapsto z^2 - 3$ is a Cantor subset of \mathbb{R} . Reglue all complementary segments. We obtain the map $z \mapsto z^2 - 2$, whose Julia set is a segment!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

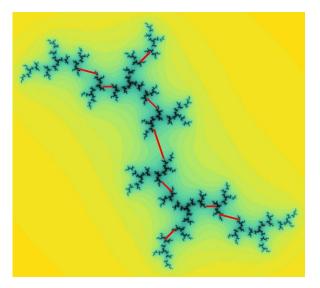
More generally, let f be a quadratic polynomial $z \mapsto z^2 + c$, where c is the landing point of an external parameter ray R. Suppose that the Julia set of f is locally connected, and all periodic points are repelling. Also, consider a quadratic polynomial g, for which the corresponding parameter value belongs to R. Thus the Julia set of g is disconnected. Then $\Phi \circ f = g \circ \Phi$ for a regluing Φ .

Regluing: before



▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

Regluing: after

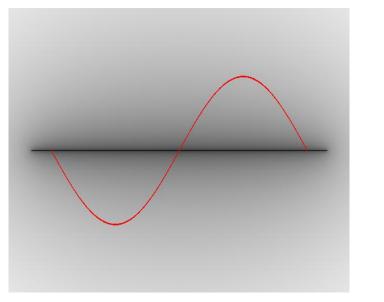


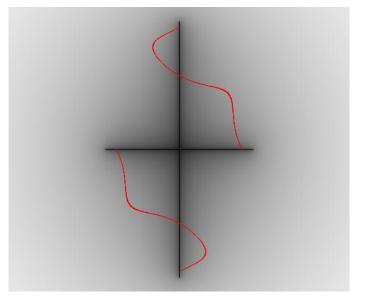
Existence of topological regluing

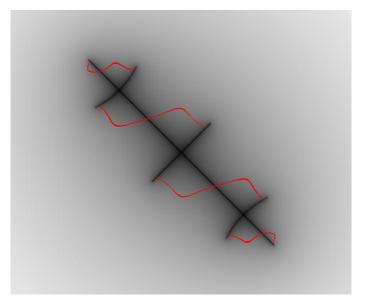
Let X be a compact metric space, and A a set of compact subsets of X. We say that A is *contracted* if for every $\varepsilon > 0$, there are only finitely many elements of A, whose diameter exceeds ε . It is not hard to see that this property is topological, i.e. does not depend on the choice of metric.

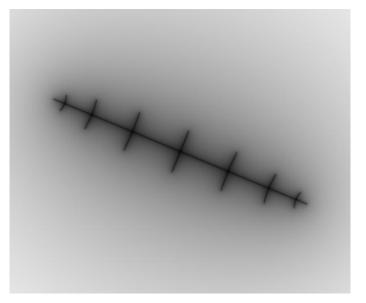
Theorem

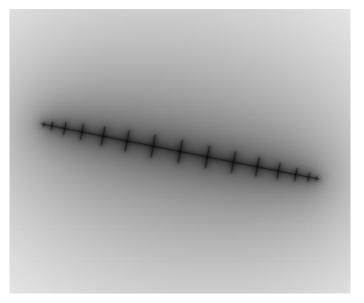
Let \mathcal{A} be a contracted set of disjoint simple curves in S^2 . There exists a homeomorphism $\Phi : S^2 - \bigcup \mathcal{A} \rightarrow S^2 - \bigcup \mathcal{B}$ regluing \mathcal{A} into another set \mathcal{B} of disjoint simple curves.

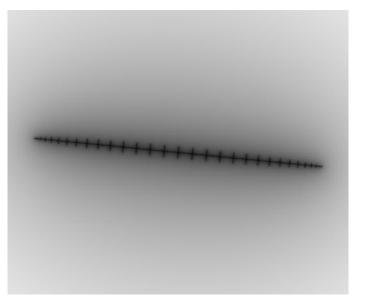


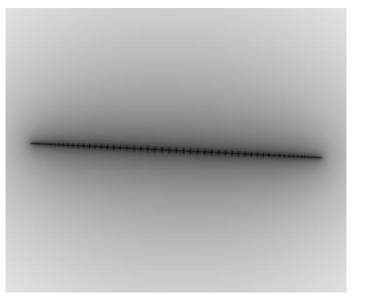




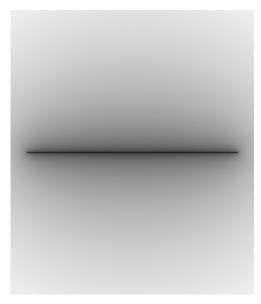




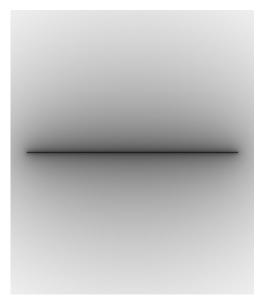


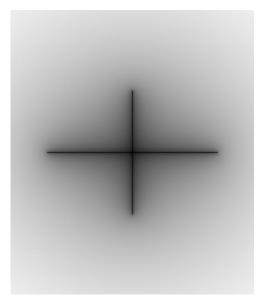


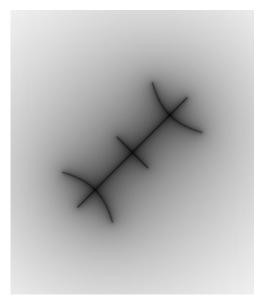
Regluing of $z^2 - 2$ into $z^2 - 2$: the limit



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

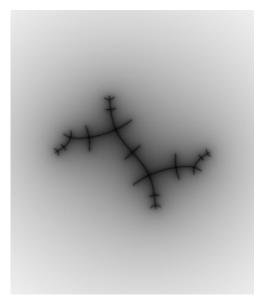


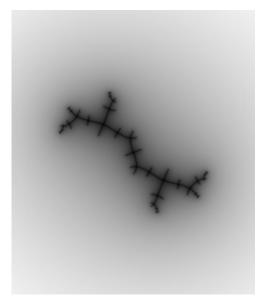




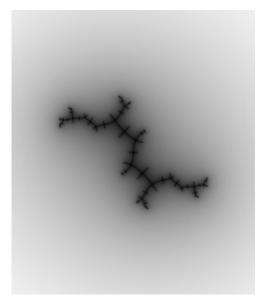
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

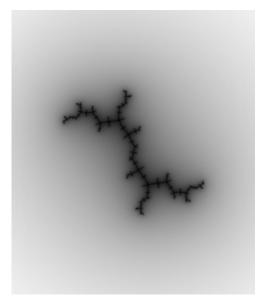


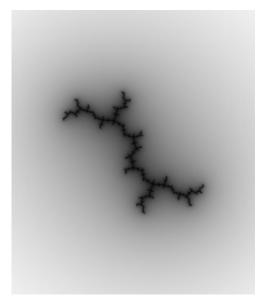


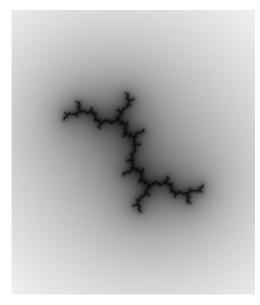


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



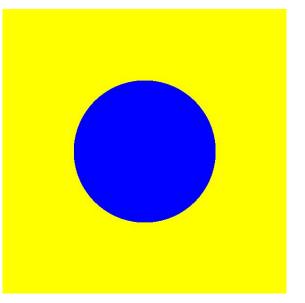


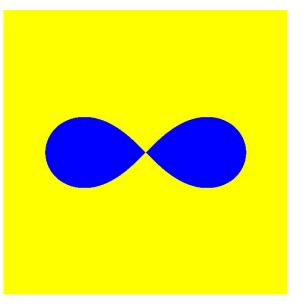




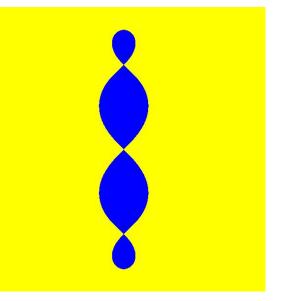
Regluing of $z^2 - 2$ into $z^2 + i$: the limit

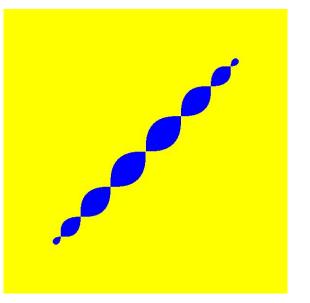
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●



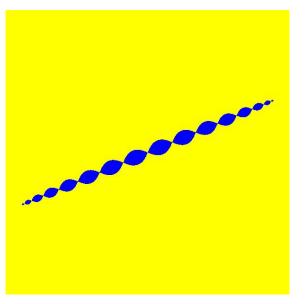


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

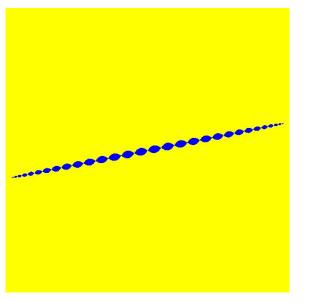




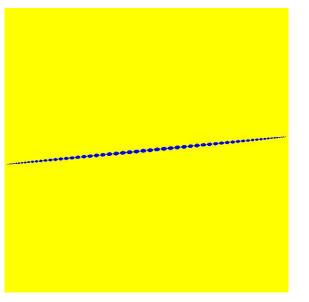
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

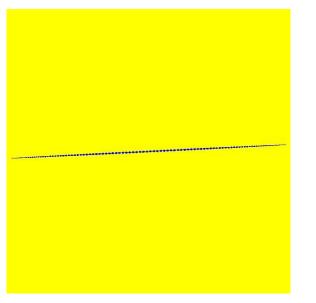


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



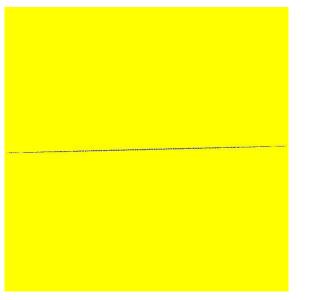
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

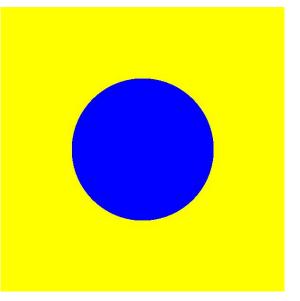
Regluing of z^2 into $z^2 - 2$: step 7



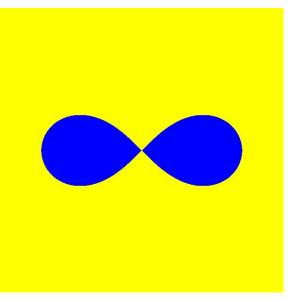
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Regluing of z^2 into $z^2 - 2$: step 8

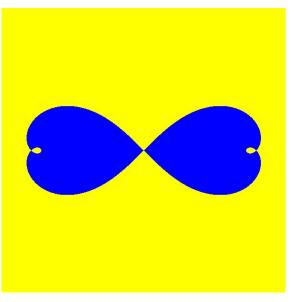




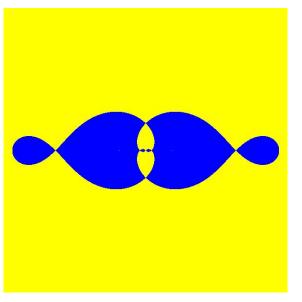
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



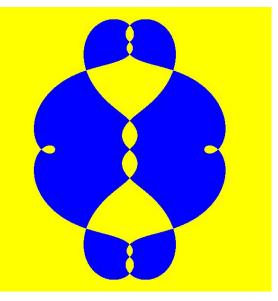
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



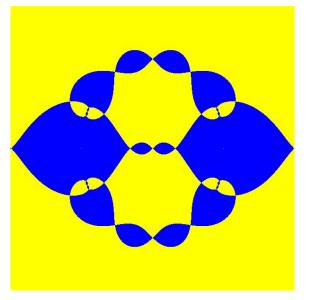
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



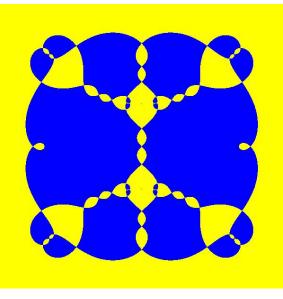
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



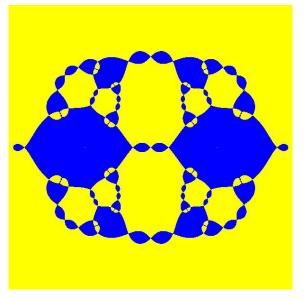
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで



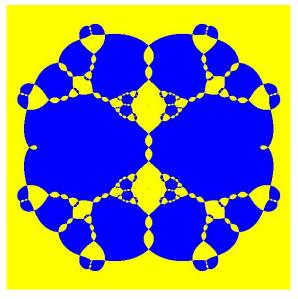
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - の文(で)



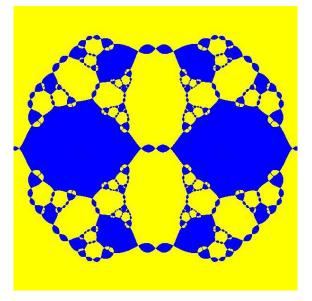
▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで



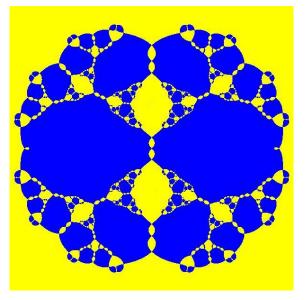
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - の文(で)



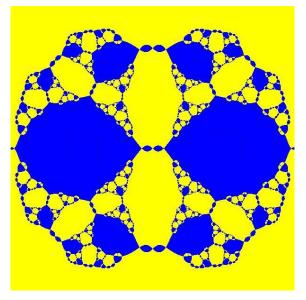
▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - - の Q ()・



▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

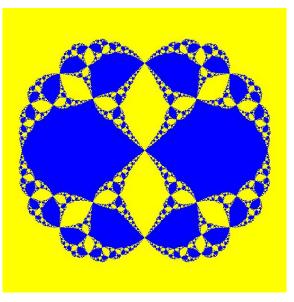


▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Regluing of z^2 into $(z^2 + 2)/(z^2 - 1)$: the limit

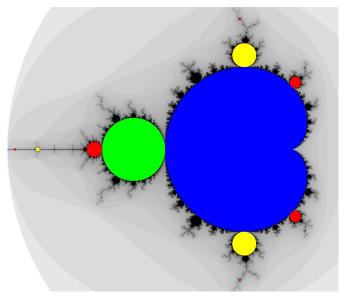


◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

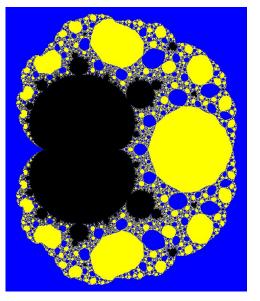
Parameter slices

 $Per_k(0) = \{$ classes of quadratic rational functions f with marked critical points c_1 , c_2 such that $f^{\circ k}(c_1) = c_1 \}$.

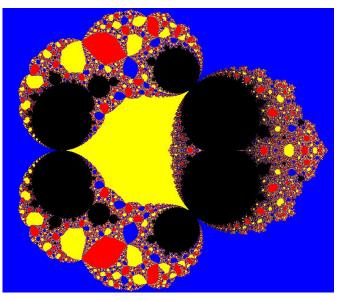
$Per_1(0)$



$Per_2(0)$

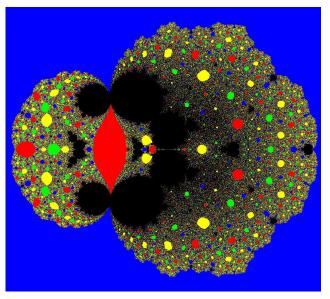


$Per_3(0)$



▲ロト ▲圖ト ▲ヨト ▲ヨト 三回 - のへで

$Per_4(0)$



- Suppose that k > 1, and f is a quadratic rational function with a k-periodic critical point c1 and a free critical point c2.
- *f* is *hyperbolic rational function of type B* if *c*₂ lies in the immediate basin of *c*₁ (but necessarily not in the same component).
- *f* is a hyperbolic rational function of type C if c₂ lies in the full basin of c₁, but not in the immediate basin.
- The set of hyperbolic rational functions with a *k*-periodic critical point splits into *hyperbolic components*.
- We say that a hyperbolic component is of type B or C if it consists of hyperbolic rational functions of this type.

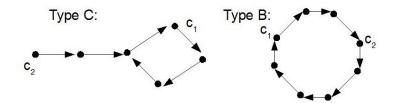
- Suppose that k > 1, and f is a quadratic rational function with a k-periodic critical point c1 and a free critical point c2.
- f is hyperbolic rational function of type B if c_2 lies in the immediate basin of c_1 (but necessarily not in the same component).
- *f* is a hyperbolic rational function of type C if c₂ lies in the full basin of c₁, but not in the immediate basin.
- The set of hyperbolic rational functions with a *k*-periodic critical point splits into *hyperbolic components*.
- We say that a hyperbolic component is of type B or C if it consists of hyperbolic rational functions of this type.

- Suppose that k > 1, and f is a quadratic rational function with a k-periodic critical point c1 and a free critical point c2.
- *f* is *hyperbolic rational function of type B* if *c*₂ lies in the immediate basin of *c*₁ (but necessarily not in the same component).
- f is a hyperbolic rational function of type C if c_2 lies in the full basin of c_1 , but not in the immediate basin.
- The set of hyperbolic rational functions with a *k*-periodic critical point splits into *hyperbolic components*.
- We say that a hyperbolic component is of type B or C if it consists of hyperbolic rational functions of this type.

- Suppose that k > 1, and f is a quadratic rational function with a k-periodic critical point c1 and a free critical point c2.
- *f* is *hyperbolic rational function of type B* if *c*₂ lies in the immediate basin of *c*₁ (but necessarily not in the same component).
- f is a hyperbolic rational function of type C if c_2 lies in the full basin of c_1 , but not in the immediate basin.
- The set of hyperbolic rational functions with a *k*-periodic critical point splits into *hyperbolic components*.
- We say that a hyperbolic component is of type B or C if it consists of hyperbolic rational functions of this type.

- Suppose that k > 1, and f is a quadratic rational function with a k-periodic critical point c1 and a free critical point c2.
- *f* is *hyperbolic rational function of type B* if *c*₂ lies in the immediate basin of *c*₁ (but necessarily not in the same component).
- f is a hyperbolic rational function of type C if c_2 lies in the full basin of c_1 , but not in the immediate basin.
- The set of hyperbolic rational functions with a *k*-periodic critical point splits into *hyperbolic components*.
- We say that a hyperbolic component is of type B or C if it consists of hyperbolic rational functions of this type.

Types of hyperbolic components



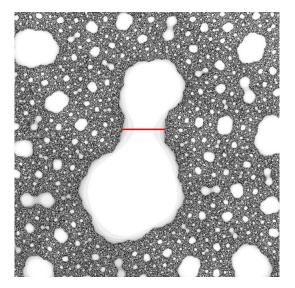
・ロト ・聞ト ・ヨト ・ヨト

æ

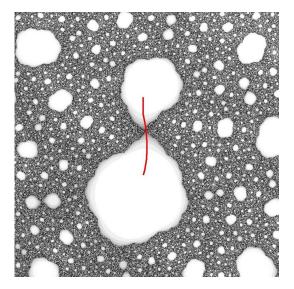
Theorem

If f is on the boundary of a type C hyperbolic component, but not on the boundary of a type B hyperbolic component, then $\Phi \circ f = h \circ \Phi$, where h is the center of a type C hyperbolic component, whose boundary contains f, and Φ is a regluing.

Regluing: before



Regluing: after



Generalized holomorphy

Let Z be a countable union of disjoint simple curves. Assume that Z has zero Lebesgue measure. We say that a map $\Phi : \mathbb{C} - Z \to \mathbb{C}$ is *holomorphic modulo* Z if there is a function $\Psi : Z \to \mathbb{C}$ such that

$$\int_{\mathbb{C}-Z} \Phi \,\overline{\partial}\omega = \int_Z \Psi \,\omega$$

for every smooth (1,0)-form ω on \mathbb{C} with compact support.

.

Theorem

Consider a quadratic polynomial $f : z \mapsto z^2 + c$ with connected Julia set such that the critical value c is accessible from the basin of infinity. There exists a countable union Z of disjoint simple curves of zero area, and a quadratic polynomial g with totally disconnected Julia set such that $\Phi \circ f = g \circ \Phi$ on $\mathbb{C} - Z$, where $\Phi : \mathbb{C} - Z \to \mathbb{C}$ is a holomorphic map modulo Z.