### Gelfand-Zetlin polytopes and Demazure characters

Valentina Kiritchenko\*

\*Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics and Kharkevich Insitute for Information Transmission Problems RAS

July 29, 2011

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

### Toric geometry

 $P \subset \mathbb{R}^n$  — integer convex polytope  $\rightsquigarrow X_P^n \subset \mathbb{CP}^N$  — projective toric variety

The Hilbert polynomial H of  $X_P$  = the Ehrhart polynomial of P:

$$H(k) = |kP \cap \mathbb{Z}^n|$$

Example: 
$$n=2;$$
  $P=\longrightarrow \sim X_P=\mathbb{P}^2$ 

H(k) =the number of monomials of degree  $\leq k$  in x and y = the number of integer points inside and at the boundary of kP



# Generalizations

- Spherical varieties (flag varieties, symmetric varieties, wonderful compactifications,...) ++++ moment polytopes, string polytopes (generalizations of Gelfand–Zetlin polytopes),...; Brion, Kazarnovskii, Littelmann–Berenstein–Zelevinskii,...
- Arbitrary algebraic varieties +++> Newton-Okounkov bodies; Kaveh-Khovanskii, Lazarsfeld-Mustata (2009)

 Algebraic varieties with a reductive group action moment, multiplicity and string bodies; Kaveh-Khovanskii (2010)

## Flag varieties

X — the variety of complete flags in  $\mathbb{C}^n$ :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n | \dim V^i = i\}$$

ション ふゆ アメリア メリア しょうくの

Alternatively,  $X = GL_n(\mathbb{C})/B$ , where B — upper-triangular matrices.

projective embeddings of  $X \leftrightarrow$  irreducible representations of  $GL_n(\mathbb{C})$  with strictly dominant weights

#### Flag varieties and Gelfand-Zetlin polytopes

 $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$  — a strictly dominant weight of the group  $GL_n(\mathbb{C})$ , i.e.  $\lambda_i < \lambda_{i+1}$  for all  $i = 1, \dots, n-1$ .

 $V_{\lambda}$  — the highest weight irreducible  $GL_n\text{-}\mathsf{module}$  with the highest weight  $\lambda$ 

 $X \hookrightarrow \mathbb{P}(V_{\lambda})$  - projective embedding

 $P_{\lambda} \subset \mathbb{R}^d$  (where d = n(n-1)/2) — the Gelfand–Zetlin polytope (a convex integer polytope).

The integer points inside and at the boundary of  $P_{\lambda}$  parameterize a natural basis (*Gelfand–Zetlin basis*) in  $V_{\lambda}$ .

### Gelfand-Zetlin polytope

The Gelfand-Zetlin polytope  $P_{\lambda}$  is defined by inequalities:

where  $(\lambda_{1,1}, \ldots, \lambda_{1,n-1}; \lambda_{2,1}, \ldots, \lambda_{2,n-2}; \ldots; \lambda_{n-2,1}, \lambda_{n-2,2}; \lambda_{n-1,1})$  are coordinates in  $\mathbb{R}^d$ , and the notation

a b c

means  $a \leq c \leq b$ .

## Gelfand-Zetlin polytopes



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

### Toric geometry

 $P \subset \mathbb{R}^n$  — integer convex polytope  $\rightsquigarrow X_P^n \subset \mathbb{CP}^N$  — projective toric variety

Faces  $\Gamma \subset P \leftrightarrow$  irreducible toric subvarieties  $X_{\Gamma} \subset X_{P}$ 

The Hilbert polynomial H of  $X_{\Gamma}$  = the Ehrhart polynomial of  $\Gamma$ .

This is important for intersection theory on  $X_P$  since

$$[X_F] \cdot [X_G] = [X_{F \cap G}]$$

ション ふゆ く 山 マ チャット しょうくしゃ

if F and G are transverse.

# Flag varieties

 $w \in S_n$  —permutation  $\rightsquigarrow$  Schubert variety  $X^w \subset X$  $X^w = \overline{B^- w}$ , where  $B^-$  — lower-triangular matrices and w acts on the standard basis vectors  $e_i$  by the formula  $e_i \mapsto e_{w(i)}$ . The codimension of  $X^w$  is equal to the length I(w) of w. Goal: find faces of the Gelfand–Zetlin polytope responsible for the Hilbert polynomial of the Schubert variety  $X^w \subset X \hookrightarrow \mathbb{P}(V_\lambda)$ .

ション ふゆ く 山 マ ふ し マ うくの

### Gelfand-Zetlin polytopes

Kogan faces — faces of the Gelfand–Zetlin polytope given by the equations of the type  $\lambda_{i,j} = \lambda_{i+1,j}$ .

$$\lambda_{i,j} \qquad \lambda_{i,j+1} \ \lambda_{i+1,j}$$

Kogan face  $F \rightsquigarrow \text{permutation } w(F)$ 

1.  $\lambda_{i,j} = \lambda_{i+1,j} \rightsquigarrow \text{ transposition } s_{i+j} = (i+j, i+j+1).$ 

2. compose  $s_{i+j}$  by going from left to right in each row and by going from the bottom row to the top one.

We say that a Kogan face F is *reduced* if the decomposition for w(F) obtained this way is reduced.

Kogan faces  $\leftrightarrow$  *pipe-dreams* (Kogan 2000)

### Gelfand-Zetlin polytopes



#### Demazure characters

 $X^w \subset X \hookrightarrow \mathbb{P}(V_\lambda)$ 

 $\mathcal{L}_{\lambda}$  — restriction to  $X^w \subset \mathbb{P}(V_{\lambda})$  of the tautological line bundle

 $V^-_{\lambda,w} := H^0(X^w, \mathcal{L}_\lambda)^*$  is a  $B^-$ -module called *Demazure module* 

 $\chi^{w}(\lambda)$  — the character of  $V_{\lambda,w}^{-}$  called *Demazure character* Choose a basis of weight vectors in  $V_{\lambda,w}^{-}$ . The *character*  $\chi^{w}(\lambda)$  of  $V_{\lambda,w}^{-}$  is

$$\chi^{w}(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^{\mu},$$

where  $\Lambda$  is the weight lattice of  $GL_n$  and  $m_{\lambda,w}(\mu)$  is the multiplicity of the weight  $\mu$  in  $V_{\lambda,w}^-$ .

#### Demazure characters

an integer point  $z \in P_{\lambda} \rightsquigarrow$  the weight  $p(z) \in \Lambda$ 

This extends to the linear map  $p : \mathbb{R}^d \to \mathbb{R}^{n-1}$  from the space  $\mathbb{R}^d$  with coordinates  $\lambda_{i,j}$  to the space  $\mathbb{R}^n$  with coordinates  $u_i$ :

$$u_i = \sum_{j=1}^{n-i} \lambda_{i,j}, \quad u_n = \lambda_1 + \ldots + \lambda_n$$

 $S \subset P_{\lambda}$  — subset  $\rightsquigarrow$  character  $\chi(S)$ 

$$\chi(S) := \sum_{z \in S \cap \mathbb{Z}^d} e^{p(z)}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Example:  $S = P_{\lambda} \rightsquigarrow \chi(S) = \chi^{id}(\lambda)$ 

#### Demazure characters

Theorem (VK, Evgeny Smirnov, Vladlen Timorin, 2010) For each permutation  $w \in S_n$ , the Demazure character  $\chi^w(\lambda)$ is equal to the character of the union of the reduced Kogan faces in the Gelfand–Zetlin polytope  $P_{\lambda}$ , whose permutation is w:

$$\chi^w(\lambda) = \chi \left( \bigcup_{w(F_\lambda)=w} F_\lambda 
ight).$$

This theorem generalizes a formula of Postnikov–Stanley (2009) for 132–avoiding (=Kempf=dominant) permutations.

A permutation w is Kempf if and only if there is a unique reduced Kogan face F such that w(F) = w.

## Hilbert functions

#### Corollary

The dimension of the space  $H^0(X^w, \mathcal{L}_\lambda|_{X^w})$  is equal to the number of integer points in the union of all reduced Kogan faces with permutation w:

$$\dim H^0(X^w, \mathcal{L}_\lambda) = \left| \bigcup_{w(F)=w} F_\lambda \cap \mathbb{Z}^d \right|$$

In particular, the Hilbert function  $H_{w,\lambda}(k) := \dim H^0(X^w, \mathcal{L}_{\lambda}^{\otimes k})$ is equal to the Ehrhart polynomial of  $\bigcup_{w(F_{\lambda})=w} F_{\lambda}$ , that is,

$$H_{w,\lambda}(k) = \left| igcup_{w(F_{\lambda})=w} kF_{\lambda} \cap \mathbb{Z}^d 
ight|$$

ション ふゆ く 山 マ チャット しょうくしゃ

for all positive integers k.

### Degrees of Schubert varieties

Denote by  $\mathbb{R}F \subset \mathbb{R}^d$  the affine span of a face F. In the formulas displayed below, the volume form on  $\mathbb{R}F$  is normalized so that the covolume of the lattice  $\mathbb{Z}^d \cap \mathbb{R}F$  in  $\mathbb{R}F$  is equal to 1.

#### Corollary

The degree deg<sub> $\lambda$ </sub>(X<sup>w</sup>) of the Schubert variety X<sup>w</sup> in the embedding X<sub>w</sub>  $\hookrightarrow \mathbb{P}(V_{\lambda})$  can be computed as follows:

$$\deg_{\lambda}(X^w) = (d - I(w))! \sum_{w(F_{\lambda})=w} \operatorname{Volume}(F_{\lambda})$$

ション ふゆ く 山 マ チャット しょうくしゃ

# Applications and open problems

Multiplying Schubert cycles in the flag variety = intersecting faces of the Gelfand-Zetlin polytope

• Schubert calculus on the variety of complete flags:

$$[X^{v}] \cdot [X^{w}] = \sum_{u \in S_n} c^{u}_{vw}[X^{u}]$$

Gelfand-Zetlin polytopes  $-\rightarrow$  a positive combinatorial formula for  $c_{vw}^{u}$ ?

- Schubert varieties in G/B for other reductive groups G (e.g. for G = Sp<sub>2n</sub>) → faces of string polytopes?
- Polytopes ---> Description of the cohomology rings of spherical varieties by generators and relations?