Gelfand-Zetlin polytopes and Demazure characters

Valentina Kiritchenko*

*Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics and
Kharkevich Insitute for Information Transmission Problems RAS

$$
\text { July 29, } 2011
$$

Toric geometry

$P \subset \mathbb{R}^{n}$ - integer convex polytope $\rightsquigarrow X_{P}^{n} \subset \mathbb{C P}^{N}$ projective toric variety

The Hilbert polynomial H of $X_{P}=$ the Ehrhart polynomial of P :

$$
H(k)=\left|k P \cap \mathbb{Z}^{n}\right|
$$

Example: $n=2 ; \quad P=\backsim X_{P}=\mathbb{P}^{2}$
$H(k)=$ the number of monomials of degree $\leq k$ in x and $y=$ the number of integer points inside and at the boundary of $k P$

Generalizations

- Spherical varieties (flag varieties, symmetric varieties, wonderful compactifications,...) $\leadsto \gg$ moment polytopes, string polytopes (generalizations of Gelfand-Zetlin polytopes),...; Brion, Kazarnovskii, Littelmann-Berenstein-Zelevinskii,...
- Arbitrary algebraic varieties $\longleftrightarrow \leadsto$ Newton-Okounkov bodies; Kaveh-Khovanskii, Lazarsfeld-Mustata (2009)
- Algebraic varieties with a reductive group action $u \rightarrow$ moment, multiplicity and string bodies; Kaveh-Khovanskii (2010)

Flag varieties

X - the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B - upper-triangular matrices.
projective embeddings of $X \leftrightarrow$ irreducible representations of $G L_{n}(\mathbb{C})$ with strictly dominant weights

Flag varieties and Gelfand-Zetlin polytopes

$\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}-$ a strictly dominant weight of the group $G L_{n}(\mathbb{C})$, i.e. $\lambda_{i}<\lambda_{i+1}$ for all $i=1, \ldots, n-1$.
V_{λ} - the highest weight irreducible $G L_{n}$-module with the highest weight λ
$X \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$ - projective embedding
$P_{\lambda} \subset \mathbb{R}^{d}$ (where $\left.d=n(n-1) / 2\right)$ - the Gelfand-Zetlin polytope (a convex integer polytope).

The integer points inside and at the boundary of P_{λ} parameterize a natural basis (Gelfand-Zetlin basis) in V_{λ}.

Gelfand-Zetlin polytope

The Gelfand-Zetlin polytope P_{λ} is defined by inequalities:

where $\left(\lambda_{1,1}, \ldots, \lambda_{1, n-1} ; \lambda_{2,1}, \ldots, \lambda_{2, n-2} ; \ldots ; \lambda_{n-2,1}, \lambda_{n-2,2} ; \lambda_{n-1,1}\right)$ are coordinates in \mathbb{R}^{d}, and the notation

$$
{ }_{c} \quad \begin{aligned}
& b \\
& c_{c}
\end{aligned}
$$

means $a \leq c \leq b$.

Gelfand-Zetlin polytopes

Toric geometry

$P \subset \mathbb{R}^{n}$ - integer convex polytope $\rightsquigarrow X_{P}^{n} \subset \mathbb{C P}^{N}$ projective toric variety
Faces $\Gamma \subset P \leftrightarrow$ irreducible toric subvarieties $X_{\Gamma} \subset X_{P}$
The Hilbert polynomial H of $X_{\Gamma}=$ the Ehrhart polynomial of Γ.

This is important for intersection theory on X_{P} since

$$
\left[X_{F}\right] \cdot\left[X_{G}\right]=\left[X_{F \cap G}\right]
$$

if F and G are transverse.

Flag varieties

$w \in S_{n}$-permutation \rightsquigarrow Schubert variety $X^{w} \subset X$ $X^{w}=\overline{B^{-} w}$, where B^{-}- lower-triangular matrices and w acts on the standard basis vectors e_{i} by the formula $e_{i} \mapsto e_{w(i)}$.
The codimension of X^{w} is equal to the length $I(w)$ of w.
Goal: find faces of the Gelfand-Zetlin polytope responsible for the Hilbert polynomial of the Schubert variety $X^{w} \subset X \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$.

Gelfand-Zetlin polytopes

Kogan faces - faces of the Gelfand-Zetlin polytope given by the equations of the type $\lambda_{i, j}=\lambda_{i+1, j}$.

$$
\lambda_{i, j}{ }_{\lambda_{i+1, j}} \lambda_{i, j+1}
$$

Kogan face $F \rightsquigarrow$ permutation $w(F)$

1. $\lambda_{i, j}=\lambda_{i+1, j} \rightsquigarrow$ transposition $s_{i+j}=(i+j, i+j+1)$.
2. compose s_{i+j} by going from left to right in each row and by going from the bottom row to the top one.

We say that a Kogan face F is reduced if the decomposition for $w(F)$ obtained this way is reduced.
Kogan faces \leftrightarrow pipe-dreams (Kogan 2000)

Gelfand-Zetlin polytopes

Kogan faces for $n=3$

Note that the faces F_{1} and F_{2} have the same permutation.

Demazure characters

$X^{w} \subset X \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$
\mathcal{L}_{λ} - restriction to $X^{w} \subset \mathbb{P}\left(V_{\lambda}\right)$ of the tautological line bundle
$V_{\lambda, w}^{-}:=H^{0}\left(X^{w}, \mathcal{L}_{\lambda}\right)^{*}$ is a B^{-}-module called Demazure module
$\chi^{\omega}(\lambda)$ - the character of $V_{\lambda, w}^{-}$called Demazure character Choose a basis of weight vectors in $V_{\lambda, w}^{-}$. The character $\chi^{w}(\lambda)$ of $V_{\lambda, w}^{-}$is

$$
\chi^{w}(\lambda):=\sum_{\mu \in \Lambda} m_{\lambda, w}(\mu) e^{\mu},
$$

where Λ is the weight lattice of $G L_{n}$ and $m_{\lambda, w}(\mu)$ is the multiplicity of the weight μ in $V_{\lambda, w}^{-}$.

Demazure characters

an integer point $z \in P_{\lambda} \rightsquigarrow$ the weight $p(z) \in \Lambda$
This extends to the linear map $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n-1}$ from the space \mathbb{R}^{d} with coordinates $\lambda_{i, j}$ to the space \mathbb{R}^{n} with coordinates u_{i} :

$$
u_{i}=\sum_{j=1}^{n-i} \lambda_{i, j}, \quad u_{n}=\lambda_{1}+\ldots+\lambda_{n}
$$

$S \subset P_{\lambda}-$ subset \rightsquigarrow character $\chi(S)$

$$
\chi(S):=\sum_{z \in S \cap \mathbb{Z}^{d}} e^{p(z)}
$$

Example: $S=P_{\lambda} \rightsquigarrow \chi(S)=\chi^{\text {id }}(\lambda)$

Demazure characters

Theorem (VK, Evgeny Smirnov, Vladlen Timorin, 2010) For each permutation $w \in S_{n}$, the Demazure character $\chi^{w}(\lambda)$ is equal to the character of the union of the reduced Kogan faces in the Gelfand-Zetlin polytope P_{λ}, whose permutation is w:

$$
\chi^{w}(\lambda)=\chi\left(\bigcup_{w\left(F_{\lambda}\right)=w} F_{\lambda}\right) .
$$

This theorem generalizes a formula of Postnikov-Stanley (2009) for 132-avoiding (=Kempf=dominant) permutations.

A permutation w is Kempf if and only if there is a unique reduced Kogan face F such that $w(F)=w$.

Hilbert functions

Corollary

The dimension of the space $H^{0}\left(X^{w},\left.\mathcal{L}_{\lambda}\right|_{X^{w}}\right)$ is equal to the number of integer points in the union of all reduced Kogan faces with permutation w:

$$
\operatorname{dim} H^{0}\left(X^{w}, \mathcal{L}_{\lambda}\right)=\left|\bigcup_{w(F)=w} F_{\lambda} \cap \mathbb{Z}^{d}\right|
$$

In particular, the Hilbert function $H_{w, \lambda}(k):=\operatorname{dim} H^{0}\left(X^{w}, \mathcal{L}_{\lambda}^{\otimes k}\right)$ is equal to the Ehrhart polynomial of $\bigcup_{w\left(F_{\lambda}\right)=w} F_{\lambda}$, that is,

$$
H_{w, \lambda}(k)=\left|\bigcup_{w\left(F_{\lambda}\right)=w} k F_{\lambda} \cap \mathbb{Z}^{d}\right|
$$

for all positive integers k.

Degrees of Schubert varieties

Denote by $\mathbb{R} F \subset \mathbb{R}^{d}$ the affine span of a face F. In the formulas displayed below, the volume form on $\mathbb{R} F$ is normalized so that the covolume of the lattice $\mathbb{Z}^{d} \cap \mathbb{R} F$ in $\mathbb{R} F$ is equal to 1 .

Corollary
The degree $\operatorname{deg}_{\lambda}\left(X^{w}\right)$ of the Schubert variety X^{w} in the embedding $X_{w} \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$ can be computed as follows:

$$
\operatorname{deg}_{\lambda}\left(X^{w}\right)=(d-I(w))!\sum_{w\left(F_{\lambda}\right)=w} \operatorname{Volume}\left(F_{\lambda}\right)
$$

Applications and open problems

Multiplying Schubert cycles in the flag variety $=$ intersecting faces of the Gelfand-Zetlin polytope

```
\Downarrow
```

- Schubert calculus on the variety of complete flags:

$$
\left[X^{v}\right] \cdot\left[X^{w}\right]=\sum_{u \in S_{n}} c_{v w}^{u}\left[X^{u}\right]
$$

Gelfand-Zetlin polytopes \rightarrow a positive combinatorial formula for $c_{v w}^{u}$?

- Schubert varieties in G / B for other reductive groups G (e.g. for $G=S p_{2 n}$) \rightarrow faces of string polytopes?
- Polytopes \rightarrow Description of the cohomology rings of spherical varieties by generators and relations?

