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groups

How to extend Brion�Kazarnovskii formula to subvarieties that are

not complete intersections?
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How to compute Newton�Okounkov polytopes of line bundles on

complete �ag varieties for geometric valuations?
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Euler characteristic of complete intersections in reductive

groups

Notation
Let G be a complex connected reductive group of dimension d and

rank r . Let T ⊂ G be a maximal torus (that is, dimT = r).

Examples

• G = (C∗)n � complex torus; d = r = n;

• SLn(C) � special linear group; d = n2 − 1; r = n − 1;

• Sp2n(C) � symplectic group; d = n2 + n; r = n.
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Euler characteristic of complete intersections in reductive

groups

More notation
Let π : G → GL(V ) be a faithful �nite-dimensional complex

representation of G .

De�nition
A generic hyperplane section Hπ ⊂ G is the preimage π−1(H) of a

generic a�ne hyperplane H ⊂ End(V).

De�nition
The weight polytope Pπ ⊂ LT ⊗ R is the convex hull of all weights

of T that occur in π.
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Weight polytope of the adjoint

representation of SL3(C):

V = End(C3) 3 X ;

Ad(g) : X 7→ gXg−1.
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Euler characteristic of complete intersections in reductive

groups

Theorem (D.Bernstein, Khovanskii, 1978)

Let G = (C∗)n. The topological Euler characteristic of a generic

hyperplane section Hπ can be computed as follows:

χ(Hπ) = (−1)d−1d!Volume(Pπ).

Remark
In the torus case, the weight polytope Pπ coincides with the Newton

polytope of a Laurent polynomial f such that Hπ = {f = 0}.

Outline of the proof

First show that χ(Hπ) = (−1)d−1Hd
π , then apply the Kouchnirenko

theorem.
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Euler characteristic of complete intersections in reductive

groups

Theorem (Brion 1989, Kazarnovskii 1987)

Let D ⊂ LT ⊗ R be a dominant Weyl chamber, R+ the set of

positive roots of G , and ρ the half of the sum of all positive roots

of G .

Hd
π = d!

∫
Pπ∩D

∏
α∈R+

(x , α)2

(ρ, α)2
dx .

The measure dx on LT ⊗ R is normalized so that the covolume of

LT is 1.

Remark
The RHS can be interpreted as the volume of a d-dimensional

Newton�Okounkov polytope.
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Gelfand�Zetlin polytope for SL3

The Gelfand�Zetlin polytopes

GZ (λ) for SL3:

λ1 λ2 λ3
x y

z

On the picture,

(λ1, λ2, λ3) = (−1, 0, 1).



Brion�Kazarnovskii formula for SL3

Take the polytope that projects

to Pπ ∩D and whose �ber at λ is

GZ (λ)× GZ (λ)



Euler characteristic of complete intersections in reductive

groups

Non-torus example (Kaveh, 2001)

Let G = SL2(C). If π is an irreducible representation of SL2(C)
with the highest weight nω1, then

χ(Hπ) = 2n3 − 4n2 + 4n.

Counterexample

The identity

χ(Hπ) = (−1)dHd
π

does not hold already for SL2(C).
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Euler characteristic of complete intersections in reductive

groups

Theorem (K., 2004)

There exist elements S1,. . . , Sd−r (Chern classes) in the ring of

conditions of G (regarded as G × G -space) such that

χ(Hπ) = (−1)d−1Hd
π +

d−r∑
i=1

(−1)d−i−1SiH
d−i
π .

Example

If G = SL2(C), then S1 = [HAd], S2 = 2[T ]. Hence,

χ(Hπ) = 2n3 − 4n2 + 4n.
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Euler characteristic of complete intersections in reductive

groups

Theorem (K., 2006)

The Euler characteristic of the complete intersection H1 ∩ . . . ∩ Hm

is equal to the term of degree d in the expansion of the following

product:

(1 + S1 + . . .+ Sd−r ) ·
m∏
i=1

Hi (1 + Hi )
−1.

The product in this formula is the intersection product in the ring

of conditions.



Euler characteristic of complete intersections in reductive

groups

Theorem (K., 2007)

De�ne the polynomial Fi (x , y) on (LT ⊕ LT )⊗ R by extending:

Fi (λ1, λ2) := ci (G/B × G/B)Dd−r−i (λ1, λ2)

Then

SiH
d−i
π =

(d − i)!

(d − r − i)!

∫
Pπ∩D

Fi (x , x)dx .

Remark
For i = 0 and S0 = G , this formula becomes the

Brion�Kazarnovskii formula for G .
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Euler characteristic of complete intersections in reductive

groups

Example

Let G = SL3(C). If π is an irreducible representation of SL3(C)
with the highest weight mω1 + nω2, then χ(Hπ) is equal to

−3(m8+16m7n+112m6n2+448m5n3+700m4n4+448m3n5+112m2n6+

16mn7+n8+18(m6+12m5n+50m4n2+80m3n3+50m2n4+12mn5+n6)+

+6(5m4 + 40m3n + 72m2n2 + 40mn3 + 5n4) + 6(m2 + 4mn + n2)−

−6(m+n)(m6+13m5n+71m4n2+139m3n3+71m2n4+13mn5+n6+

+5(m4 + 9m3n + 19m2n2 + 9mn3 + n4) + 3(m2 + 5mn + n2))).



Convex geometric models for Schubert calculus

Let X = G/B be the complete �ag variety.

Question
How to represent Newton�Okounkov polytopes of Schubert cycles

by unions of faces of a single polytope?

Polytopes

Generalizatons of Gelfand�Zetlin polytopes from GLn to G include

string polytopes, Newton�Okounkov polytopes of �ag varieties, and

polytopes constructed via convex-geometric divided di�erence

operators (K., 2016).

Main tool
Geometric mitosis � a convex geometric incarnation of Demazure

operators (K., 2016).
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Motivating example: �ag varieties in type A

De�nition
The �ag variety X is the variety of complete �ags in Cn:

X = {{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = Cn | dimV i = i}

Remark
Alternatively, X = GLn(C)/B , where B denotes the group of

upper-triangular matrices (Borel subgroup). In this form, the

de�nition can be extended to arbitrary connected reductive groups.

Schubert varieties

Xw = BwB/B, w ∈ Sn

give basis in H∗(X ,Z).
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Schubert varieties for GL3/B .

id s1 s2

s1s2 s2s1 s1s2s1



Gelfand�Zetlin polytopes

The Gelfand�Zetlin polytope ∆λ is de�ned by inequalities:

λ1 λ2 λ3 . . . λn
x11 x12 . . . x1n−1

x21 . . . x2n−2
. . . . . .

xn−21 xn−22

xn−11

where (x11 , . . . , x
1
n−1; . . . ; xn−11 ) are coordinates in Rd , and the

notation
a b

c

means a ≤ c ≤ b.



Gelfand�Zetlin polytopes

A Gelfand�Zetlin

polytope for GL3:

−1 0 1
x y

z



Schubert calculus and Gelfand�Zetlin polytopes

[Xs1s2s1 ]= [Xs1s2 ]=

[Xs2s1 ]=
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Schubert calculus and Gelfand�Zetlin polytopes
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Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = = [Xs2 ] = =

= [Xs1 ]+[Xs2 ]



Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = = [Xs2 ] = =

[Xs2s1 ]2 = · ( + ) = = [Xs1 ]



Schubert calculus and Gelfand�Zetlin polytopes

[Xs1 ] = ; [Xs2 ] =

[Xs1s2 ] · [Xs2s1 ] = · = + = [Xs1 ] + [Xs2 ]



Flag varieties and Gelfand�Zetlin polytopes

Results

• Relation between Schubert varieties and preimages of rc-faces

of Pλ under the Guillemin�Sternberg moment map X → Pλ

(Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric

varieties given by (unions of) faces of Pλ (Kogan�E.Miller,

Knutson�E.Miller, 2003)

• Description of H∗(X ,Z) using volume polynomial of Pλ

(Kaveh, 2011)

• Schubert calculus: intersection product of Schubert cycles in

H∗(X ,Z) = intersection of faces in Pλ (K.�Smirnov�Timorin,

2012)
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String polytopes

(J.Miller, 2014)

Newton�Okounkov polytopes of Schubert varieties can be

represented by unions of faces of a given string polytope.

Remark
This is an existence result. Explicit descriptions of such faces are so

far known in the case of GLn, w0 = s1(s2s1) · · · (sn−1 · · · s1)
(K.�Smirnov�Timorin, 2012) and Sp4, w0 = s1s2s1s2 (Ilyukhina,

2012).

Problem
Find an e�cient algorithm for representing Schubert cycles

explicitly by unions of faces.
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Geometric mitosis

[X ] = [Xs1s2 ] =

[Xs2s1 ] = ∼



Mitosis on parallelepipeds

Coordinate parallelepipeds

Let Π := Π(µ, ν) ⊂ Rn be given by inequalities µi ≤ xi ≤ νi for
i = 1,. . . , n.

Essential edges

An edge of Π is essential if it is given by equations

x1 = µ1, . . . , xi−1 = µi−1; xi+1 = νi+1, . . . , xn = νn

for some i = 1, . . . , n.

A coordinate

parallelepiped in R3

and its essential

edges.
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Mitosis on parallelepipeds

For every face Γ ⊂ Π, we now de�ne a collection of faces M(Γ)

1. Let k be the minimal number such that Γ ⊆ {xi = µi} for all
i > k (in particular, Γ * {xk = µk}) and νi 6= µi for at least
one i > k . If no such k exists then M(Γ) = ∅.
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Mitosis on parallelepipeds

The subdivision of a tetrahedron by two extra edges yields a

combinatorial cube. Essential edges of the cube form a single edge

of the tetrahedron.



Mitosis on parallelepipeds and pipe-dreams

Faces can be encoded by 2× n tables

+⇔ x1 = µ1 . . . +⇔ xn = µn
+⇔ x1 = ν1 . . . +⇔ xn = νn

Example

If Π(µ, ν) ⊂ R4, where µ = (1, 1, 1, 1) and ν = (2, 2, 1, 2) (that is,

µ3 = ν3), then the vertex Γ = {x1 = ν1, x2 = µ2, x4 = µ4} is

+ + +

+ +

The set M(Γ) consists of two edges represented by the tables

+ +

+ +
&

+

+ + +
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Geometric mitosis: type A

Gelfand�Zetlin polytope

λ1 λ2 λ3 . . . λn
x11 x12 . . . x1n−1

x21 . . . x2n−2
. . . . . .

xn−21 xn−22

xn−11

has (n− 1) di�erent �brations by coordinate parallelepipeds. Hence,
there are (n − 1) di�erent mitosis operations on its faces.



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type A

Example GL3

+ +

+
M2−→ + + M1−→ +

&
+

M2−→

pt M2−→ M1−→ M2−→



Geometric mitosis: type C

Example Sp4
Take w0 = s2s1s2s1. The corresponding DDO polytope Qλ is given

by inequalities

0 ≤ x ≤ λ1, z ≤ x + λ2, y ≤ 2z ,

y ≤ z + λ2, 0 ≤ t ≤ λ2, t ≤ y

2
.

Remark
The polytopes Qλ coincide with the Newton�Okounkov polytopes

of Sp4/B for the lowest order term valuation v associated with the

�ag of subvarieties w0Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X .

Remark
The polytopes Qλ have 11 vertices so they are not combinatorially

equivalent to string polytopes associated with s2s1s2s1 or s1s2s1s2.



Geometric mitosis: type C

Example Sp4
Take w0 = s2s1s2s1. The corresponding DDO polytope Qλ is given

by inequalities

0 ≤ x ≤ λ1, z ≤ x + λ2, y ≤ 2z ,

y ≤ z + λ2, 0 ≤ t ≤ λ2, t ≤ y

2
.

Remark
The polytopes Qλ coincide with the Newton�Okounkov polytopes

of Sp4/B for the lowest order term valuation v associated with the

�ag of subvarieties w0Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X .

Remark
The polytopes Qλ have 11 vertices so they are not combinatorially

equivalent to string polytopes associated with s2s1s2s1 or s1s2s1s2.



Geometric mitosis: type C

Example Sp4
Take w0 = s2s1s2s1. The corresponding DDO polytope Qλ is given

by inequalities

0 ≤ x ≤ λ1, z ≤ x + λ2, y ≤ 2z ,

y ≤ z + λ2, 0 ≤ t ≤ λ2, t ≤ y

2
.

Remark
The polytopes Qλ coincide with the Newton�Okounkov polytopes

of Sp4/B for the lowest order term valuation v associated with the

�ag of subvarieties w0Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X .

Remark
The polytopes Qλ have 11 vertices so they are not combinatorially

equivalent to string polytopes associated with s2s1s2s1 or s1s2s1s2.



Geometric mitosis: type C

Skew pipe-dreams

Faces that contain the lowest vertex aλ = (0, 0, 0, 0) can be

encoded by the diagrams:

+⇐⇒ 0 = x

+⇐⇒ 0 = t

+⇐⇒ t = y
2

+⇐⇒ y = 2z

Parallelepipeds

The polytope Qλ admits two di�erent �brations (by translates of

xy - and zt-planes), hence, there are two mitosis operations M1 and

M2 on faces of Qλ.

Isotropic �ags

Sp4/B = {(V 1 ⊂ V 2 ⊂ V 3 ⊂ C4) | ω|V 2 = 0,V 1 = V 3⊥} =
= {(a ∈ l ⊂ P3) | l − isotropic line }
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Schubert cycles for Sp4

id s1 s2 s2s1

s1s2 s1s2s1 s2s1s2



Geometric mitosis: type C

aλ = +

+

+

+

M1−→
+

+

+

M2−→
+

+
M1−→

+
M2−→ = Qλ

+

+

+
M1−→

+

+

& +

+
M2−→ + &

+

& +



Newton�Okounkov polytopes

Valuation
Let X n ⊂ PN be a projective subvariety with coordinates

(x1, . . . , xn) in a neighborhood of a smooth point p ∈ X . De�ne the

valuation v : C(X )→ Zn by sending every polynomial f (x1, . . . , xn)
to (k1, . . . , kn) where xk11 · · · xknn is the lowest degree term in f
(assuming that x1 � x2 � . . . � xn).

Vector space

Let V ⊂ C(X ) be the vector space spanned by 1, y1
y0
,. . . , yN

y0
, where

(y0, y1, . . . , yN) are homogeneous coordinates on PN .

Example

If X = νN(P1) = {(uN0 : u1u
N−1
0 : . . . : uN1 )} ⊂ PN and x1 = u1

u0
,

then v(f ) = the order of zero (or pole) of f at p = (1 : 0) and

V = 〈1, x1, . . . , xN1 〉.
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Newton�Okounkov polytopes

Naive de�nition
The Newton�Okounkov polytope ∆v (X ) ⊂ Rn of X n is the convex

hull of v(f ) for all f ∈ V .

Example

∆v (νN(P1)) = [0,N] ⊂ R1

Example

A toric variety X n has a natural system of coordinates (x1, . . . , xn)
coming from (C∗)n ⊂ X n. For a projective embedding X n ⊂ PN ,

the space V is spanned by monomials in x1,. . . , xn. Hence, the
valuation v does not matter, and ∆v (X n) is always the Newton

polytope of X .

Observation
If n!volume(∆v (X )) = deg(X ), then the naive de�nition coincides

with the correct de�nition.
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A Newton�Okounkov polytope of GL3/B

Coordinates on the open Schubert cell

If the �ag (a ∈ l ⊂ P2) is in general position with a �xed �ag

(a0 ∈ l0 ⊂ P2), then l ∩ l0 = a′ 6= a0 and a /∈ l0. Hence,

a′ = (x : 1 : 0); l = 〈a′, (y : 0 : 1)〉; a = (xz + y : z : 1)

are coordinates (assuming that a0 = (1 : 0 : 0), l0 = {(? : ? : 0)}).

a′ l a



A Newton�Okounkov polytope of GL3/B

(D.Anderson, 2011)

Consider the embedding p : GL3/B ↪→ P2 × (P2)∗ ↪→ P8;

p : (a, l) 7→ a× l . Then p takes the �ag with coordinates (x , y , z) to

(
xz + y z 1

)
×

 1
−x
−y

 =

xz + y −x2z − xy −xyz − y2

z −xz −yz
1 −x −y



∆v (p(GL3/B)) =



A Newton�Okounkov polytope of GL3/B

(D.Anderson, 2011)

Consider the embedding p : GL3/B ↪→ P2 × (P2)∗ ↪→ P8;

p : (a, l) 7→ a× l . Then p takes the �ag with coordinates (x , y , z) to

(
xz + y z 1

)
×

 1
−x
−y

 =

xz + y −x2z − xy −xyz − y2

z −xz −yz
1 −x −y



∆v (p(GL3/B)) =



A Newton�Okounkov polytope of GL3/B

(D.Anderson, 2011)

Consider the embedding p : GL3/B ↪→ P2 × (P2)∗ ↪→ P8;

p : (a, l) 7→ a× l . Then p takes the �ag with coordinates (x , y , z) to

(
xz + y z 1

)
×

 1
−x
−y

 =

xz + y −x2z − xy −xyz − y2

z −xz −yz
1 −x −y



∆v (p(GL3/B)) =



A Newton�Okounkov polytope of GL3/B

(D.Anderson, 2011)

Consider the embedding p : GL3/B ↪→ P2 × (P2)∗ ↪→ P8;

p : (a, l) 7→ a× l . Then p takes the �ag with coordinates (x , y , z) to

(
xz + y z 1

)
×

 1
−x
−y

 =

xz + y −x2z − xy −xyz − y2

z −xz −yz
1 −x −y



∆v (p(GL3/B)) =



Enumerative geometry

High school geometry problem

How many �ags in P2 are not in general position with respect to

three given �ags?

Two �ags in general position
Two �ags NOT in general

position
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Enumerative geometry

Three �ags in the plane



Enumerative geometry

A �ag not in general position with respect to three given �ags:

variant 1



Enumerative geometry

A �ag not in general position with respect to three given �ags:

variant 2



Enumerative geometry

A �ag not in general position with respect to three given �ags.

Answer: 6.



Valuations on C(G/B)

Decomposition of w0

Fix a reduced decomposition w0 = si1 . . . sid of the longest element

w0 in the Weyl group of G .

Flag of Schubert varieties

Choose coordinates compatible with the �ag

Xid ⊂ Xsid
⊂ Xsid−1

sid
⊂ . . . ⊂ Xsi2 ···sid ⊂ X

(coordinates �at in�nity�).

Flag of translated Schubert varieties

Choose coordinates compatible with the �ag w0Xid ⊂
si1 . . . sid−1

Xsid
⊂ si1 . . . sid−2

Xsid−1
sid
⊂ . . . ⊂ si1Xsi2 ···sid ⊂ X

(coordinates at the open Schubert cell).
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Newton�Okounkov polytopes of �ag varieties

(Okounkov, 1998)

The symplectic Gelfand�Zetlin polytopes coincide with the

Newton�Okounkov polytopes of Sp2n/B for the lowest order term

valuation v associated with the �ag of Schubert varieties for initial

subwords of w0 = (s1)(s2s1s2) . . . (snsn−1 . . . s2s1s2 . . . sn−1sn).

(Kaveh, 2013)

The string polytopes associated with w0 coincide with the

Newton�Okounkov polytopes of X for the highest order term

valuation v associated with the �ag of Schubert varieties for w0.

Example

If G = GLn and w0 = s1(s2s1) · · · (sn−1 · · · s1) then the

corresponding string polytopes are exactly Gelfand�Zetlin polytopes.
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Newton�Okounkov polytopes of �ag varieties

(Fujita�Naito, Fujita�Oya 2017)

The string polytopes associated with w0 coincide with the

Newton�Okounkov polytopes of X for the lowest order term-initial

subwords valuation vin and for the highest order term-terminal

subwords valuation v term associated with the �ag of Schubert

varieties w0. The Nakashima�Zelevinsky polyhedral realizations

associated with w0 coincide with the Newton�Okounkov polytopes

of X for the lowest order term-terminal subwords valuation vterm
and for the highest order term-initial subwords v in associated with

the �ag of Schubert varieties w0.



Newton�Okounkov polytopes of �ag varieties

(E.Feigin�Fourier�Littelmann 2017)

The Feigin�Fourier�Littelmann�Vinberg polytopes coincide with the

Newton�Okounkov polytopes of X for a valuation not coming from

any longest word decomposition w0

(K. 2017)

The Feigin�Fourier�Littelmann�Vinberg polytopes in type A
coincide with the Newton�Okounkov polytopes of X for the longest

word decomposition w0 = s1(s2s1) · · · (sn−1 · · · s1) and the lowest

order term valuation associated with the �ag of translated Schubert

subvarieties:

w0Xid ⊂ si1 . . . sid−1
Xsid
⊂ si1 . . . sid−2

Xsid−1
sid
⊂ . . . ⊂ si1Xsi2 ···sid ⊂

X
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Thank you!


