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How to extend Brion—Kazarnovskii formula to subvarieties that are
not complete intersections?

Convex geometric models for Schubert calculus

How to extend results of K.-Smirnov—Timorin to Schubert cycles
on complete flag varieties in any type?

Newton—Okounkov polytopes of flag varieties

How to compute Newton—Okounkov polytopes of line bundles on
complete flag varieties for geometric valuations?
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Euler characteristic of complete intersections in reductive
groups

Notation
Let G be a complex connected reductive group of dimension d and
rank r. Let T C G be a maximal torus (that is, dim T = r).

Examples
e G =(C*)" — complex torus; d = r = n;
e SL,(C) — special linear group; d =n?> —1; r =n—1;
o Spo,(C) — symplectic group; d = n?> 4+ n; r = n.
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groups

More notation
Let 7 : G — GL(V) be a faithful finite-dimensional complex
representation of G.

Definition
A generic hyperplane section H, C G is the preimage m~1(H) of a
generic affine hyperplane H C End(V).

Definition
The weight polytope P, C LT ® R is the convex hull of all weights
of T that occur in 7.
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Euler characteristic of complete intersections in reductive
groups

Theorem (D.Bernstein, Khovanskii, 1978)

Let G = (C*)". The topological Euler characteristic of a generic
hyperplane section H; can be computed as follows:

x(Hz) = (=1)4"1d!Volume(P;).

Remark
In the torus case, the weight polytope P, coincides with the Newton
polytope of a Laurent polynomial f such that H, = {f = 0}.

Outline of the proof

First show that x(H,) = (—1)971HY, then apply the Kouchnirenko
theorem.
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Theorem (Brion 1989, Kazarnovskii 1987)
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Euler characteristic of complete intersections in reductive
groups

Theorem (Brion 1989, Kazarnovskii 1987)

Let D C LT ® R be a dominant Weyl chamber, R™ the set of
positive roots of G, and p the half of the sum of all positive roots

of G. ,
H = d! / T % g

Pﬂ_ﬁ’D a€R+ (p7 a)

The measure dx on LT+ ® R is normalized so that the covolume of
LT is 1.

Remark
The RHS can be interpreted as the volume of a d-dimensional
Newton—Okounkov polytope.



Gelfand—Zetlin polytope for SL3

The Gelfand—Zetlin polytopes
GZ(\) for SLs:

A1 A2 A3
X

On the picture,
(A1, A2,A3) = (—1,0,1).




Brion—Kazarnovskii formula for Sl

Take the polytope that projects

to P ND and whose fiber at \ is
GZ(\) x GZ())

DA
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groups

Non-torus example (Kaveh, 2001)

Let G = SLp(C). If 7 is an irreducible representation of SL;(C)
with the highest weight nwi, then

x(Hy) = 2n* — 4n® + 4n.
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Non-torus example (Kaveh, 2001)

Let G = SLp(C). If 7 is an irreducible representation of SL;(C)
with the highest weight nwi, then

x(Hy) = 2n* — 4n® + 4n.

Counterexample

The identity
X(Hx) = (=1)7H

does not hold already for SLy(C).
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There exist elements Si,..., Sy_, (Chern classes) in the ring of
conditions of G (regarded as G x G-space) such that
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X(H) = (1) T HI + > (1) ISiHE
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Theorem (K., 2004)

There exist elements Si,..., Sy_, (Chern classes) in the ring of
conditions of G (regarded as G x G-space) such that

d—r
X(H) = (1) T HI + > (1) ISiHE
i=1

Example
If G = SLy(C), then S1 = [Had], S2 = 2[T]. Hence,

x(Hz) = 2n® — 4n? + 4n.



Euler characteristic of complete intersections in reductive
groups

Theorem (K., 2006)

The Euler characteristic of the complete intersection Hy N ...N Hp,
is equal to the term of degree d in the expansion of the following
product:

m
(14 Si+...+Sqr)- [[H(1+ H) .
i=1
The product in this formula is the intersection product in the ring
of conditions.



Euler characteristic of complete intersections in reductive
groups

Theorem (K., 2007)

Define the polynomial Fi(x,y) on (LT & L7) ® R by extending:
Fi(A1,X2) == ci(G/B x G/B)D¥""(\1, \2)

Then

Sng_i:(d(d_:i)!,-)! / Fi(x, x)dx.



Euler characteristic of complete intersections in reductive
groups

Theorem (K., 2007)
Define the polynomial Fi(x,y) on (LT & L7) ® R by extending:

Fi(A1,X2) == ci(G/B x G/B)D¥""(\1, \2)

Then (d— i)
_ —0)!
SiHI™ = @—rn / Fi(x, x)dx.

Remark
For i =0 and Sy = G, this formula becomes the
Brion—Kazarnovskii formula for G.



Euler characteristic of complete intersections in reductive
groups

Example

Let G = SL3(C). If 7 is an irreducible representation of SL3(C)
with the highest weight mw; + nwy, then x(Hy) is equal to

—3(m®4+16m” n+112m°n®+448m°n®+700m* n* +448m3n°>+112m?nb+
16mn” 4n8+18(m°+12m® n+50m*n*+80m3n®4+50m?n*412mn°+n®)+
+6(5m* +40m*n+72m?n® 4+ 40mn® + 5n*) + 6(m? + 4mn + n*)—
—6(m+n)(m®+13m° n+71m*n*+139m® 3+ 71m?n*+13mn®4-n°+
+5(m* +9m*n + 19m?n® + 9mn® + n*) + 3(m* 4 5mn + n?))).
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Convex geometric models for Schubert calculus

Let X = G/B be the complete flag variety.

Question
How to represent Newton—Okounkov polytopes of Schubert cycles
by unions of faces of a single polytope?

Polytopes

Generalizatons of Gelfand—Zetlin polytopes from GL, to G include
string polytopes, Newton—Okounkov polytopes of flag varieties, and
polytopes constructed via convex-geometric divided difference
operators (K., 2016).

Main tool
Geometric mitosis — a convex geometric incarnation of Demazure
operators (K., 2016).
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Motivating example: flag varieties in type A

Definition
The flag variety X is the variety of complete flags in C":

X={{o}=VocVic..cvricvi=c"|dmV =i}

Remark

Alternatively, X = GL,(C)/B, where B denotes the group of
upper-triangular matrices (Borel subgroup). In this form, the
definition can be extended to arbitrary connected reductive groups.

Schubert varieties

Xy =BwB/B, w €S,
give basis in H*(X,Z).
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Schubert varieties for GL3/B.
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Gelfand—Zetlin polytopes

The Gelfand-Zetlin polytope A, is defined by inequalities:

A1 A2 A3 An
1 1 1
X1 X3 ) Xn—1
Xi Xn—2
n—2 n—2
X; X X3
e
X1
h 1 1 . L nh—1 di . d d th

where (x{,...,x;_1;...;x{ ) are coordinates in RY, and the
notation

a b

c

means a < ¢ < b.



Gelfand—Zetlin polytopes

A Gelfand-Zetlin
polytope for GLs:




Schubert calculus and Gelfand—Zetlin polytopes
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w4 S

[XSI 5251 ]:

[st S1 ]:



Schubert calculus and Gelfand—Zetlin polytopes

~Ppyra v,
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[Xsl 5251 ]:
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Schubert calculus and Gelfand—Zetlin polytopes

[Xa]+[Xs]



Schubert calculus and Gelfand—Zetlin polytopes

Xl = \/[Xs2]/ =\
[X52$1]2 = ’ . ( ' +/ ) = / [Xsl]

/




Schubert calculus and Gelfand—Zetlin polytopes

P

[Xsl] = \ ' [st] =
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Flag varieties and Gelfand—Zetlin polytopes

Results

e Relation between Schubert varieties and preimages of rc-faces
of Py under the Guillemin—Sternberg moment map X — P,
(Kogan, 2000)

e Degenerations of Schubert varieties to (reducible) toric
varieties given by (unions of) faces of Py (Kogan—E.Miller,
Knutson—E.Miller, 2003)

e Description of H*(X,Z) using volume polynomial of P
(Kaveh, 2011)

e Schubert calculus: intersection product of Schubert cycles in

H*(X,Z) = intersection of faces in Py (K.=Smirnov-=Timorin,
2012)
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Flag varieties and Gelfand—Zetlin polytopes

Results

e Relation between Schubert varieties and preimages of rc-faces
of Py under the Guillemin—Sternberg moment map X — P,
(Kogan, 2000)

e Degenerations of Schubert varieties to (reducible) toric
varieties given by (unions of) faces of P, (Kogan—E.Miller,
Knutson—E.Miller, 2003)

e Description of H*(X,Z) using volume polynomial of P
(Kaveh, 2011)

e Schubert calculus: intersection product of Schubert cycles in
H*(X,Z) = intersection of faces in Py (K.=Smirnov-Timorin,
2012)
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String polytopes

(J.Miller, 2014)

Newton—Okounkov polytopes of Schubert varieties can be
represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so
far known in the case of GL,, wo = s1(s251) -~ - (Sp—1- - 51)
(K.=Smirnov—Timorin, 2012) and Sps, Wy = s1s2515» (llyukhina,
2012).

Problem
Find an efficient algorithm for representing Schubert cycles
explicitly by unions of faces.
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Mitosis on parallelepipeds

Coordinate parallelepipeds
Let M := MN(u,v) C R" be given by inequalities u; < x; < v; for
i=1,...,n.

Essential edges
An edge of I is essential if it is given by equations

X1 = M1y-- 5 Xi—1 = Mi—1; Xi+1 = Vit1,---,Xn = Vn

forsomei=1,...,n.

A coordinate
parallelepiped in R3
and its essential
edges.
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Mitosis on parallelepipeds

For every face I' C T, we now define a collection of faces M(I)

1. Let k be the minimal number such that ' C {x; = p;} for all
i > k (in particular, I € {xx = ux}) and v; # p; for at least
one i > k. If no such k exists then M(T') = ().

2. Under the isomorphism R"” ~ Rk x Rn—k.
(X1, ..y Xn) = (X15 .oy Xk) X (Xkt1, - - -5 Xn) we have

N~N'xnN", T~Ixv

where v = (pks1,. -, 0n) €N and ' C IV,

3. The set M(T) consists of all faces [’ x E such that E is an
essential edge of ",

Example
If T is the vertex (p1, ..., un), then M(T) is the set of essential
edges of I.



Mitosis on parallelepipeds

The subdivision of a tetrahedron by two extra edges yields a
combinatorial cube. Essential edges of the cube form a single edge
of the tetrahedron.
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Mitosis on parallelepipeds and pipe-dreams

Faces can be encoded by 2 x n tables

+eoXx1=uUr|... |+ Xp= ln
+Ex1=v1 | ... |+ Xy, =V,

Example
If N(u,v) C R*, where = (1,1,1,1) and v = (2,2,1,2) (that is,
13 = v3), then the vertex I = {x1 = v1, xo = 2, x4 = g} is

+[+]+
+ |+

The set M(I") consists of two edges represented by the tables

+[+] g, -
- + + [+[+




Geometric mitosis: type A

Gelfand-Zetlin polytope

A1 A2 A3 ... An
1 1 1
Xi ) X5 ) Xp—1
X1 Xn—2
n—2 n—2
X1 ) X2
n—
X1

has (n — 1) different fibrations by coordinate parallelepipeds. Hence,
there are (n — 1) different mitosis operations on its faces.
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Geometric mitosis: type C
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Example Sp,
Take Wo = sps15251. The corresponding DDO polytope @) is given
by inequalities

0<x< A1, z<x+4+MX, y<2z

y<z4 X, 0<t<h, tg%.
Remark

The polytopes @, coincide with the Newton—Okounkov polytopes
of Sps/B for the lowest order term valuation v associated with the
flag of subvarieties woXjy C s15251Xs, C 5152 X5, C 51 Xsp55, C X-

Remark
The polytopes @y have 11 vertices so they are not combinatorially
equivalent to string polytopes associated with s)s15:51 or s15515).
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Faces that contain the lowest vertex a) = (0,0,0,0) can be
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The polytope Q) admits two different fibrations (by translates of
xy- and zt-planes), hence, there are two mitosis operations M; and
M- on faces of Q).



Geometric mitosis: type C

Skew pipe-dreams

Faces that contain the lowest vertex a) = (0,0,0,0) can be
encoded by the diagrams:

+<<=0=t
[+ 0=x| +=t=7%
+ <= y=2z

Parallelepipeds

The polytope Q) admits two different fibrations (by translates of
xy- and zt-planes), hence, there are two mitosis operations M; and
M- on faces of Q).

Isotropic flags
Spa/B={(V1C V2C V3CC4 | we=0Vl=V3")=
={(a€lCP3) |- isotropic line }



Schubert cycles for Spy

id s1 S g St g
5152 515251 é\ 525152 %



Geometric mitosis: type C

[+] - + + [ ]
a=[+]+ |5 [+ B[ [+ D] 2, |
sl * L
T T T
[+ ]+ | &[+| | B[ [+]&] &+
T T

Qx



Newton—Okounkov polytopes

Valuation

Let X" C PN be a projective subvariety with coordinates
(x1,...,Xn) in a neighborhood of a smooth point p € X. Define the
valuation v : C(X) — Z" by sending every polynomial f(xi, ..., xp)
to (ki,...,kn) where xi* .. xkn is the lowest degree term in f
(assuming that x; = x2 = ... > X,).
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Newton—Okounkov polytopes

Valuation

Let X" C PN be a projective subvariety with coordinates
(x1,...,Xn) in a neighborhood of a smooth point p € X. Define the
valuation v : C(X) — Z" by sending every polynomial f(xi, ..., xp)
to (ki,...,kn) where xi* .. xkn is the lowest degree term in f
(assuming that x; = x2 = ... > X,).

Vector space

Let V C C(X) be the vector space spanned by 1, )% e };—’(‘)’ where
(Yo, Y1, .., yn) are homogeneous coordinates on PV,

Example

If X = vn(PY) = {(ud : vru) ™o i ulV)} PV and xq = e

then v(f) = the order of zero (or pole) of f at p=(1:0) and
V= (1,x,...,xQ").
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hull of v(f) for all f € V.
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Example

A toric variety X" has a natural system of coordinates (xi, ..., xp)
coming from (C*)" C X". For a projective embedding X" C PV,
the space V is spanned by monomials in xi,..., x,. Hence, the
valuation v does not matter, and A,(X") is always the Newton
polytope of X.



Newton—Okounkov polytopes

Naive definition
The Newton—Okounkov polytope A, (X) C R” of X" is the convex
hull of v(f) for all f € V.

Example
A, (v (PY) = [0, N] € Y

Example

A toric variety X" has a natural system of coordinates (xi, ..., xp)
coming from (C*)" C X". For a projective embedding X" C PV,
the space V is spanned by monomials in xi,..., x,. Hence, the
valuation v does not matter, and A,(X") is always the Newton
polytope of X.

Observation
If nlvolume(A, (X)) = deg(X), then the naive definition coincides
with the correct definition.



A Newton—Okounkov polytope of GL3/B

Coordinates on the open Schubert cell

If the flag (a € | C IP?) is in general position with a fixed flag
(ap € Ip C P?), then INJy = a’ # ap and a & Ip. Hence,

ad=(x:1:0) I=(,(y:0:1); a=(xz+y:z:1)

are coordinates (assuming that ag = (1:0:0), lp = {(x: x: 0)}).




A Newton—Okounkov polytope of GL3/B

(D.Anderson, 2011)

Consider the embedding p : GL3/B — P? x (P?)* — P8,
p:(a,1)— axl. Then p takes the flag with coordinates (x, y, z) to

1 xz2+y —x’z—xy —xyz-—y?
(Xz+y z 1)>< —x | = z —Xxz —yz
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three given flags?
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Enumerative geometry

High school geometry problem

How many flags in P? are not in general position with respect to
three given flags?

/ /

Two flags NOT in general

Two flags in general position L.
& & P position



Enumerative geometry

Three flags in the plane



Enumerative geometry

A flag not in general position with respect to three given flags:
variant 1



Enumerative geometry

A flag not in general position with respect to three given flags:
variant 2



Enumerative geometry

A flag not in general position with respect to three given flags.
Answer: 6.
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Decomposition of wy

Fix a reduced decomposition Wy = s, ... s;, of the longest element
wp in the Weyl group of G.
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Valuations on C(G/B)

Decomposition of wy

Fix a reduced decomposition Wy = s, ... s;, of the longest element
wp in the Weyl group of G.

Flag of Schubert varieties

Choose coordinates compatible with the flag
Xig C Xs,,d - Xs,,d_l.sid C...C Xs,-Q---s;d cX
(coordinates “at infinity”).

Flag of translated Schubert varieties

Choose coordinates compatible with the flag wyXiy C
Sip .- S,'dilxsid Csjp... Sfd72X5id,15id c...C 5f1X$i2"'Sid cX
(coordinates at the open Schubert cell).



Newton—Okounkov polytopes of flag varieties

(Okounkov, 1998)

The symplectic Gelfand—Zetlin polytopes coincide with the
Newton—Okounkov polytopes of Spy,/B for the lowest order term
valuation v associated with the flag of Schubert varieties for initial

subwords of Wy = (s1)(525152) - - - (SnSp—1 .- - S25152 - . . Sp—15n)-
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Newton—Okounkov polytopes of flag varieties

(Okounkov, 1998)

The symplectic Gelfand—Zetlin polytopes coincide with the
Newton—Okounkov polytopes of Spy,/B for the lowest order term
valuation v associated with the flag of Schubert varieties for initial
subwords of Wy = (s1)(525152) - - - (SnSp—1 .- - S25152 - . . Sp—15n)-

(Kaveh, 2013)

The string polytopes associated with Wy coincide with the
Newton—Okounkov polytopes of X for the highest order term
valuation v associated with the flag of Schubert varieties for wg.

Example
If G = GL, and Wy = s1(s2s1) -+ (Sp—1 - s1) then the
corresponding string polytopes are exactly Gelfand—Zetlin polytopes.



Newton—Okounkov polytopes of flag varieties

(Fujita—Naito, Fujita—Oya 2017)

The string polytopes associated with Wy coincide with the
Newton—Okounkov polytopes of X for the lowest order term-initial
subwords valuation vj, and for the highest order term-terminal
subwords valuation v*™ associated with the flag of Schubert
varieties Wp. The Nakashima—Zelevinsky polyhedral realizations
associated with Wy coincide with the Newton—Okounkov polytopes
of X for the lowest order term-terminal subwords valuation vierm
and for the highest order term-initial subwords v associated with
the flag of Schubert varieties wy.
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(E.Feigin—Fourier—Littelmann 2017)

The Feigin—Fourier-Littelmann—Vinberg polytopes coincide with the
Newton—Okounkov polytopes of X for a valuation not coming from
any longest word decomposition Wy



Newton—Okounkov polytopes of flag varieties

(E.Feigin—Fourier—Littelmann 2017)

The Feigin—Fourier-Littelmann—Vinberg polytopes coincide with the
Newton—Okounkov polytopes of X for a valuation not coming from
any longest word decomposition Wy

(K. 2017)

The Feigin—Fourier-Littelmann—Vinberg polytopes in type A
coincide with the Newton—Okounkov polytopes of X for the longest
word decomposition Wy = s1(sp51) - - - (Sp—1 -+ - 51) and the lowest
order term valuation associated with the flag of translated Schubert
subvarieties:

woXig C Sjp .- s,-d_1X

S,'d CCS’IX
X

512 . .sid

CS,'l...S,'d_2X C

Sig—15ig
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