Geometry of spherical varieties and Newton-Okounkov polytopes

В.A. Кириченко*

*Факультет математики и Лаборатория алгебраической геометрии и её приложений,
Национальный исследовательский университет Высшая Школа Экономики и
Институт проблем передачи информации им. Харкевича РАН

24 июля 2018 г.

Main results

Euler characteristic of complete intersections in reductive groups
How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

Convex geometric models for Schubert calculus
How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

Newton-Okounkov polytopes of flag varieties
How to compute Newton-Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

Main results

Euler characteristic of complete intersections in reductive groups
How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

Convex geometric models for Schubert calculus How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

Newton-Okounkov polytopes of flag varieties
How to compute Newton-Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

Main results

Euler characteristic of complete intersections in reductive groups
How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

Convex geometric models for Schubert calculus How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

Newton-Okounkov polytopes of flag varieties How to compute Newton-Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

Euler characteristic of complete intersections in reductive groups

Notation
Let G be a complex connected reductive group of dimension d and rank r. Let $T \subset G$ be a maximal torus (that is, $\operatorname{dim} T=r$).

Examples

Euler characteristic of complete intersections in reductive groups

Notation
Let G be a complex connected reductive group of dimension d and rank r. Let $T \subset G$ be a maximal torus (that is, $\operatorname{dim} T=r$).

Examples

Euler characteristic of complete intersections in reductive groups

Notation
Let G be a complex connected reductive group of dimension d and rank r. Let $T \subset G$ be a maximal torus (that is, $\operatorname{dim} T=r$).

Examples

- $G=\left(\mathbb{C}^{*}\right)^{n}$ - complex torus; $d=r=n$;
- $S L_{n}(\mathbb{C})-$ special linear group; $d=n^{2}-1 ; r=n-1$;
- $S_{p_{2 n}}(\mathbb{C})$ - symplectic group; $d=n^{2}+n ; r=n$.

Euler characteristic of complete intersections in reductive groups

Notation
Let G be a complex connected reductive group of dimension d and rank r. Let $T \subset G$ be a maximal torus (that is, $\operatorname{dim} T=r$).

Examples

- $G=\left(\mathbb{C}^{*}\right)^{n}$ - complex torus; $d=r=n$;
- $S L_{n}(\mathbb{C})$ - special linear group; $d=n^{2}-1 ; r=n-1$;

Euler characteristic of complete intersections in reductive groups

Notation
Let G be a complex connected reductive group of dimension d and rank r. Let $T \subset G$ be a maximal torus (that is, $\operatorname{dim} T=r$).

Examples

- $G=\left(\mathbb{C}^{*}\right)^{n}$ - complex torus; $d=r=n$;
- $S L_{n}(\mathbb{C})$ - special linear group; $d=n^{2}-1 ; r=n-1$;
- $S_{p_{2 n}}(\mathbb{C})$ - symplectic group; $d=n^{2}+n ; r=n$.

Euler characteristic of complete intersections in reductive groups

More notation
Let $\pi: G \rightarrow G L(V)$ be a faithful finite-dimensional complex representation of G.

Definition
A generic hyperplane section $H_{\pi} \subset G$ is the preimage $\pi^{-1}(H)$ of a generic affine hyperplane $H \subset \operatorname{End}(V)$.

Definition
The weight polytope $P_{\pi} \subset L_{T} \otimes \mathbb{R}$ is the convex hull of all weights of T that occur in π.

Euler characteristic of complete intersections in reductive groups

More notation
Let $\pi: G \rightarrow G L(V)$ be a faithful finite-dimensional complex representation of G.

Definition
A generic hyperplane section $H_{\pi} \subset G$ is the preimage $\pi^{-1}(H)$ of a generic affine hyperplane $H \subset \operatorname{End}(V)$.

Definition
The weight polytope $P_{\pi} \subset L_{T} \otimes \mathbb{R}$ is the convex hull of all weights of T that occur in π.

Euler characteristic of complete intersections in reductive groups

More notation
Let $\pi: G \rightarrow G L(V)$ be a faithful finite-dimensional complex representation of G.

Definition

A generic hyperplane section $H_{\pi} \subset G$ is the preimage $\pi^{-1}(H)$ of a generic affine hyperplane $H \subset \operatorname{End}(V)$.

Definition
The weight polytope $P_{\pi} \subset L_{T} \otimes \mathbb{R}$ is the convex hull of all weights of T that occur in π.

Euler characteristic of complete intersections in reductive groups

Euler characteristic of complete intersections in reductive groups

Example

Weight nolytope of the adjoint representation of $S L_{3}(\mathbb{C})$:

Euler characteristic of complete intersections in reductive groups

Example

Weight polytope of the adjoint representation of $S L_{3}(\mathbb{C})$:

$$
\begin{gathered}
V=\operatorname{End}\left(\mathbb{C}^{3}\right) \ni X \\
\operatorname{Ad}(g): X \mapsto g X g^{-1}
\end{gathered}
$$

Euler characteristic of complete intersections in reductive groups

Example

Weight polytope of the adjoint representation of $S L_{3}(\mathbb{C})$:

$$
\begin{gathered}
V=\operatorname{End}\left(\mathbb{C}^{3}\right) \ni X \\
\operatorname{Ad}(g): X \mapsto g X g^{-1}
\end{gathered}
$$

Euler characteristic of complete intersections in reductive groups

Theorem (D.Bernstein, Khovanskii, 1978)
Let $G=\left(\mathbb{C}^{*}\right)^{n}$. The topological Euler characteristic of a generic hyperplane section H_{π} can be computed as follows:

$$
\chi\left(H_{\pi}\right)=(-1)^{d-1} d!\operatorname{Volume}\left(P_{\pi}\right) .
$$

> Remark
> In the torus case, the weight polytope P_{π} coincides with the Newton polytope of a Laurent polynomial f such that $H_{\pi}=\{f=0\}$.

> Outline of the proof
> First show that $\chi\left(H_{\pi}\right)=(-1)^{d-1} H_{\pi}^{d}$, then apply the Kouchnirenko theorem.

Euler characteristic of complete intersections in reductive groups

Theorem (D.Bernstein, Khovanskii, 1978)
Let $G=\left(\mathbb{C}^{*}\right)^{n}$. The topological Euler characteristic of a generic hyperplane section H_{π} can be computed as follows:

$$
\chi\left(H_{\pi}\right)=(-1)^{d-1} d!\operatorname{Volume}\left(P_{\pi}\right)
$$

Remark

In the torus case, the weight polytope P_{π} coincides with the Newton polytope of a Laurent polynomial f such that $H_{\pi}=\{f=0\}$.

Outline of the proof
First show that $\chi\left(H_{\pi}\right)=(-1)^{d-1} H_{\pi}^{d}$, then apply the Kouchnirenko theorem.

Euler characteristic of complete intersections in reductive groups

Theorem (D.Bernstein, Khovanskii, 1978)
Let $G=\left(\mathbb{C}^{*}\right)^{n}$. The topological Euler characteristic of a generic hyperplane section H_{π} can be computed as follows:

$$
\chi\left(H_{\pi}\right)=(-1)^{d-1} d!\operatorname{Volume}\left(P_{\pi}\right)
$$

Remark

In the torus case, the weight polytope P_{π} coincides with the Newton polytope of a Laurent polynomial f such that $H_{\pi}=\{f=0\}$.

Outline of the proof
First show that $\chi\left(H_{\pi}\right)=(-1)^{d-1} H_{\pi}^{d}$, then apply the Kouchnirenko theorem.

Euler characteristic of complete intersections in reductive groups

Theorem (Brion 1989, Kazarnovskii 1987)
Let $\mathcal{D} \subset L_{T} \otimes \mathbb{R}$ be a dominant Weyl chamber, R^{+}the set of positive roots of G, and ρ the half of the sum of all positive roots of G.

$$
H_{\pi}^{d}=d!\int_{P_{\pi} \cap \mathcal{D}} \prod_{\alpha \in R^{+}} \frac{(x, \alpha)^{2}}{(\rho, \alpha)^{2}} d x .
$$

The measure $d x$ on $L_{T} \otimes \mathbb{R}$ is normalized so that the covolume of L_{T} is 1 .

Remark
The RHS can be interpreted as the volume of a d-dimensional Newton-Okounkov polytope.

Euler characteristic of complete intersections in reductive groups

Theorem (Brion 1989, Kazarnovskii 1987)
Let $\mathcal{D} \subset L_{T} \otimes \mathbb{R}$ be a dominant Weyl chamber, R^{+}the set of positive roots of G, and ρ the half of the sum of all positive roots of G.

$$
H_{\pi}^{d}=d!\int_{P_{\pi} \cap \mathcal{D}} \prod_{\alpha \in R^{+}} \frac{(x, \alpha)^{2}}{(\rho, \alpha)^{2}} d x .
$$

The measure $d x$ on $L_{T} \otimes \mathbb{R}$ is normalized so that the covolume of L_{T} is 1 .

Remark
The RHS can be interpreted as the volume of a d-dimensional Newton-Okounkov polytope.

Gelfand-Zetlin polytope for $S L_{3}$

The Gelfand-Zetlin polytopes $G Z(\lambda)$ for $S L_{3}$:

$$
\begin{array}{lllll}
\lambda_{1} & & \lambda_{2} & & \lambda_{3} \\
& x & & y & \\
& & z & &
\end{array}
$$

On the picture,
$\left(\lambda_{1}, \lambda_{2}, \lambda 3\right)=(-1,0,1)$.

Brion-Kazarnovskii formula for $S L_{3}$

Take the polytope that projects to $P_{\pi} \cap \mathcal{D}$ and whose fiber at λ is $G Z(\lambda) \times G Z(\lambda)$

Euler characteristic of complete intersections in reductive groups

Non-torus example (Kaveh, 2001)
Let $G=S L_{2}(\mathbb{C})$. If π is an irreducible representation of $S L_{2}(\mathbb{C})$ with the highest weight $n \omega_{1}$, then

$$
\chi\left(H_{\pi}\right)=2 n^{3}-4 n^{2}+4 n .
$$

Counterexample
The identity

does not hold already for $S L_{2}(\mathbb{C})$.

Euler characteristic of complete intersections in reductive groups

Non-torus example (Kaveh, 2001)
Let $G=S L_{2}(\mathbb{C})$. If π is an irreducible representation of $S L_{2}(\mathbb{C})$ with the highest weight $n \omega_{1}$, then

$$
\chi\left(H_{\pi}\right)=2 n^{3}-4 n^{2}+4 n .
$$

Counterexample The identity

$$
\chi\left(H_{\pi}\right)=(-1)^{d} H_{\pi}^{d}
$$

does not hold already for $S L_{2}(\mathbb{C})$.

Euler characteristic of complete intersections in reductive groups

Theorem (K., 2004)
There exist elements S_{1}, \ldots, S_{d-r} (Chern classes) in the ring of conditions of G (regarded as $G \times G$-space) such that

$$
\chi\left(H_{\pi}\right)=(-1)^{d-1} H_{\pi}^{d}+\sum_{i=1}^{d-r}(-1)^{d-i-1} S_{i} H_{\pi}^{d-i}
$$

Example
If $G=S L_{2}(\mathbb{C})$, then $S_{1}=\left[H_{A d}\right], S_{2}=2[T]$. Hence,

$$
\chi\left(H_{\pi}\right)=2 n^{3}-4 n^{2}+4 n .
$$

Euler characteristic of complete intersections in reductive groups

Theorem (K., 2004)
There exist elements S_{1}, \ldots, S_{d-r} (Chern classes) in the ring of conditions of G (regarded as $G \times G$-space) such that

$$
\chi\left(H_{\pi}\right)=(-1)^{d-1} H_{\pi}^{d}+\sum_{i=1}^{d-r}(-1)^{d-i-1} S_{i} H_{\pi}^{d-i}
$$

Example
If $G=S L_{2}(\mathbb{C})$, then $S_{1}=\left[H_{\mathrm{Ad}}\right], S_{2}=2[T]$. Hence,

$$
\chi\left(H_{\pi}\right)=2 n^{3}-4 n^{2}+4 n .
$$

Euler characteristic of complete intersections in reductive groups

Theorem (K., 2006)
The Euler characteristic of the complete intersection $H_{1} \cap \ldots \cap H_{m}$ is equal to the term of degree d in the expansion of the following product:

$$
\left(1+S_{1}+\ldots+S_{d-r}\right) \cdot \prod_{i=1}^{m} H_{i}\left(1+H_{i}\right)^{-1}
$$

The product in this formula is the intersection product in the ring of conditions.

Euler characteristic of complete intersections in reductive groups

Theorem (K., 2007)
Define the polynomial $F_{i}(x, y)$ on $\left(L_{T} \oplus L_{T}\right) \otimes \mathbb{R}$ by extending:

$$
F_{i}\left(\lambda_{1}, \lambda_{2}\right):=c_{i}(G / B \times G / B) D^{d-r-i}\left(\lambda_{1}, \lambda_{2}\right)
$$

Then

$$
S_{i} H_{\pi}^{d-i}=\frac{(d-i)!}{(d-r-i)!} \int_{P_{\pi} \cap \mathcal{D}} F_{i}(x, x) d x .
$$

Remark
For $i=0$ and $S_{0}=G$, this formula becomes the
Brion-Kazarnovskii formula for G.

Euler characteristic of complete intersections in reductive groups

Theorem (K., 2007)
Define the polynomial $F_{i}(x, y)$ on $\left(L_{T} \oplus L_{T}\right) \otimes \mathbb{R}$ by extending:

$$
F_{i}\left(\lambda_{1}, \lambda_{2}\right):=c_{i}(G / B \times G / B) D^{d-r-i}\left(\lambda_{1}, \lambda_{2}\right)
$$

Then

$$
S_{i} H_{\pi}^{d-i}=\frac{(d-i)!}{(d-r-i)!} \int_{P_{\pi} \cap \mathcal{D}} F_{i}(x, x) d x
$$

Remark
For $i=0$ and $S_{0}=G$, this formula becomes the
Brion-Kazarnovskii formula for G.

Euler characteristic of complete intersections in reductive

groups

Example

Let $G=S L_{3}(\mathbb{C})$. If π is an irreducible representation of $S L_{3}(\mathbb{C})$ with the highest weight $m \omega_{1}+n \omega_{2}$, then $\chi\left(H_{\pi}\right)$ is equal to

$$
-3\left(m^{8}+16 m^{7} n+112 m^{6} n^{2}+448 m^{5} n^{3}+700 m^{4} n^{4}+448 m^{3} n^{5}+112 m^{2} n^{6}+\right.
$$

$$
16 m n^{7}+n^{8}+18\left(m^{6}+12 m^{5} n+50 m^{4} n^{2}+80 m^{3} n^{3}+50 m^{2} n^{4}+12 m n^{5}+n^{6}\right)+
$$

$$
+6\left(5 m^{4}+40 m^{3} n+72 m^{2} n^{2}+40 m n^{3}+5 n^{4}\right)+6\left(m^{2}+4 m n+n^{2}\right)-
$$

$$
-6(m+n)\left(m^{6}+13 m^{5} n+71 m^{4} n^{2}+139 m^{3} n^{3}+71 m^{2} n^{4}+13 m n^{5}+n^{6}+\right.
$$

$$
\left.\left.+5\left(m^{4}+9 m^{3} n+19 m^{2} n^{2}+9 m n^{3}+n^{4}\right)+3\left(m^{2}+5 m n+n^{2}\right)\right)\right)
$$

Convex geometric models for Schubert calculus

Let $X=G / B$ be the complete flag variety.
Question
How to represent Newton-Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

Polytopes
Generalizatons of Gelfand-Zetlin polytopes from $G L_{n}$ to G include string polytopes, Newton-Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016)

Main tool
Geometric mitosis - a convex geometric incarnation of Demazure operators (K., 2016)

Convex geometric models for Schubert calculus

Let $X=G / B$ be the complete flag variety.
Question
How to represent Newton-Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

Polytopes
Generalizatons of Gelfand-Zetlin polytopes from $G L_{n}$ to G include string polytopes, Newton-Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016).

Geometric mitosis - a convex geometric incarnation of Demazure operators (K., 2016)

Convex geometric models for Schubert calculus

Let $X=G / B$ be the complete flag variety.
Question
How to represent Newton-Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

Polytopes
Generalizatons of Gelfand-Zetlin polytopes from $G L_{n}$ to G include string polytopes, Newton-Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016).

Main tool
Geometric mitosis - a convex geometric incarnation of Demazure operators (K., 2016).

Motivating example: flag varieties in type A

Definition
The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of
upper-triangular matrices (Borel subgroup). In this form, the
definition can be extended to arbitrary connected reductive groups.
Schubert varieties

$$
X_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Motivating example: flag varieties in type A

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$
X_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Motivating example: flag varieties in type A

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$
x_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Schubert varieties for $G L_{3} / B$.

Gelfand-Zetlin polytopes

The Gelfand-Zetlin polytope Δ_{λ} is defined by inequalities:

$$
\begin{array}{lllllllll}
\lambda_{1} & & \lambda_{2} & & \lambda_{3} & & \cdots & & \lambda_{n} \\
& x_{1}^{1} & & x_{2}^{1} & & \cdots & & x_{n-1}^{1} & \\
& & x_{1}^{2} & & \cdots & & x_{n-2}^{2} & \\
& & & \ddots & \cdots & & & \\
& & & x_{1}^{n-2} & \cdots & x_{2}^{n-2} & & \\
& & & & x_{1}^{n-1} & & &
\end{array}
$$

where $\left(x_{1}^{1}, \ldots, x_{n-1}^{1} ; \ldots ; x_{1}^{n-1}\right)$ are coordinates in \mathbb{R}^{d}, and the notation

$$
{ }_{c} \quad \begin{aligned}
& b \\
& c_{c}
\end{aligned}
$$

means $a \leq c \leq b$.

Gelfand-Zetlin polytopes

A Gelfand-Zetlin polytope for $G L_{3}$:

$\begin{array}{lllll}-1 & & 0 & 1 \\ & x & & y & \end{array}$
z

Schubert calculus and Gelfand-Zetlin polytopes

Schubert calculus and Gelfand-Zetlin polytopes

Schubert calculus and Gelfand-Zetlin polytopes

Schubert calculus and Gelfand-Zetlin polytopes

$$
\left[X_{s_{1}}\right]=\left|=\int\left[X_{s_{2}}\right]=-=\right|
$$

$$
=\quad\left[X_{s_{1}}\right]+\left[X_{s_{2}}\right]
$$

Schubert calculus and Gelfand-Zetlin polytopes

$$
\left[X_{s_{2} s_{1}}\right]^{2}=
$$

Schubert calculus and Gelfand-Zetlin polytopes

$$
\left[X_{s_{1}}\right]=\left\lvert\, \begin{array}{ll}
& \\
; & \left.X_{s_{2}}\right]
\end{array}=\right.
$$

$$
\left[X_{S_{1} s_{2}}\right] \cdot\left[X_{s_{2} s_{1}}\right]=
$$

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin-Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of P_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in $P_{\lambda}(K$. Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin-Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of P_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in $P_{\lambda}(\mathrm{K}$. -Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin-Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of P_{λ} (Kaveh, 2011)
- Schubert calculus intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in $P_{\lambda}(\mathrm{K}$. -Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin-Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of P_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of P_{λ} under the Guillemin-Sternberg moment map $X \rightarrow P_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of P_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in P_{λ} (K.-Smirnov-Timorin, 2012)

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

```
Remark
This is an existence result. Explicit descriptions of such faces are so
far known in the case of GL_ , \overline{w}}=\mp@subsup{s}{1}{}(\mp@subsup{s}{2}{}\mp@subsup{s}{1}{})\cdots(\mp@subsup{s}{n-1}{}\cdots\mp@subsup{s}{1}{}
(K.-Smirnov-Timorin, 2012) and Sp4, \overline{w}}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mathrm{ (Ilyukhina,
2012)
Problem
Find an efficient algorithm for representing Schubert cycles
explicitly by unions of faces.
```


String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of $G L_{n}, \overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ (K.-Smirnov-Timorin, 2012) and $S p_{4}, \overline{w_{0}}=s_{1} s_{2} s_{1} s_{2}$ (Ilyukhina, 2012).

Problem
Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of $G L_{n}, \overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ (K.-Smirnov-Timorin, 2012) and $S p_{4}, \overline{w_{0}}=s_{1} s_{2} s_{1} s_{2}$ (Ilyukhina, 2012).

Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

Geometric mitosis

Mitosis on parallelepipeds

Coordinate parallelepipeds
Let $\Pi:=\Pi(\mu, \nu) \subset \mathbb{R}^{n}$ be given by inequalities $\mu_{i} \leq x_{i} \leq \nu_{i}$ for $i=1, \ldots$, n.

Essential edges
An edge of Π is essential if it is given by equations
for some $i=1, \ldots, n$.

Mitosis on parallelepipeds

Coordinate parallelepipeds
Let $\Pi:=\Pi(\mu, \nu) \subset \mathbb{R}^{n}$ be given by inequalities $\mu_{i} \leq x_{i} \leq \nu_{i}$ for $i=1, \ldots, n$.
Essential edges
An edge of Π is essential if it is given by equations

$$
x_{1}=\mu_{1}, \ldots, x_{i-1}=\mu_{i-1} ; \quad x_{i+1}=\nu_{i+1}, \ldots, x_{n}=\nu_{n}
$$

for some $i=1, \ldots, n$.

Mitosis on parallelepipeds

Coordinate parallelepipeds
Let $\Pi:=\Pi(\mu, \nu) \subset \mathbb{R}^{n}$ be given by inequalities $\mu_{i} \leq x_{i} \leq \nu_{i}$ for $i=1, \ldots, n$.

Essential edges
An edge of Π is essential if it is given by equations

$$
x_{1}=\mu_{1}, \ldots, x_{i-1}=\mu_{i-1} ; \quad x_{i+1}=\nu_{i+1}, \ldots, x_{n}=\nu_{n}
$$

for some $i=1, \ldots, n$.

Mitosis on parallelepipeds

Coordinate parallelepipeds
Let $\Pi:=\Pi(\mu, \nu) \subset \mathbb{R}^{n}$ be given by inequalities $\mu_{i} \leq x_{i} \leq \nu_{i}$ for $i=1, \ldots, n$.

Essential edges
An edge of Π is essential if it is given by equations

$$
x_{1}=\mu_{1}, \ldots, x_{i-1}=\mu_{i-1} ; \quad x_{i+1}=\nu_{i+1}, \ldots, x_{n}=\nu_{n}
$$

for some $i=1, \ldots, n$.

Mitosis on parallelepipeds

Coordinate parallelepipeds
Let $\Pi:=\Pi(\mu, \nu) \subset \mathbb{R}^{n}$ be given by inequalities $\mu_{i} \leq x_{i} \leq \nu_{i}$ for $i=1, \ldots, n$.
Essential edges
An edge of Π is essential if it is given by equations

$$
x_{1}=\mu_{1}, \ldots, x_{i-1}=\mu_{i-1} ; \quad x_{i+1}=\nu_{i+1}, \ldots, x_{n}=\nu_{n}
$$

for some $i=1, \ldots, n$.

A coordinate parallelepiped in \mathbb{R}^{3} and its essential edges.

Mitosis on parallelepipeds

For every face $\Gamma \subset \Pi$, we now define a collection of faces $M(\Gamma)$

```
1. Let }k\mathrm{ be the minimal number such that }\Gamma\subseteq{\mp@subsup{x}{i}{}=\mp@subsup{\mu}{i}{}}\mathrm{ for all
i>k (in particular, }\Gamma\not\subseteq{\mp@subsup{x}{k}{}=\mp@subsup{\mu}{k}{}})\mathrm{ and }\mp@subsup{\nu}{i}{}\not=\mp@subsup{\mu}{i}{}\mathrm{ for at least
one i>k. If no such k exists then M(\Gamma)=\emptyset.
2. Under the isomorphism }\mp@subsup{\mathbb{R}}{}{n}\simeq\mp@subsup{\mathbb{R}}{}{k}\times\mp@subsup{\mathbb{R}}{}{n-k}
(x1,\ldots, xn)\mapsto(x, ,\ldots, xk})\times(\mp@subsup{x}{k+1}{},\ldots,\mp@subsup{x}{n}{})\mathrm{ we have
\Pi\simeq\mp@subsup{\Pi}{}{\prime}\times\mp@subsup{\Pi}{}{\prime\prime};\quad\Gamma\simeq\mp@subsup{\Gamma}{}{\prime}\timesv
where v}=(\mp@subsup{\mu}{k+1}{},\ldots,\mp@subsup{\mu}{n}{})\in\mp@subsup{\Pi}{}{\prime\prime}\mathrm{ and }\mp@subsup{\Gamma}{}{\prime}\subset\mp@subsup{\Pi}{}{\prime}
3. The set M(\Gamma) consists of all faces }\mp@subsup{\Gamma}{}{\prime}\timesE\mathrm{ such that }E\mathrm{ is an
essential edge of П"/
```


Example

If Γ is the vertex $\left(\mu_{1}, \ldots, \mu_{n}\right)$, then $M(\Gamma)$ is the set of essential edges of Π.

Mitosis on parallelepipeds

For every face $\Gamma \subset \Pi$, we now define a collection of faces $M(\Gamma)$

1. Let k be the minimal number such that $\Gamma \subseteq\left\{x_{i}=\mu_{i}\right\}$ for all $i>k$ (in particular, $\Gamma \nsubseteq\left\{x_{k}=\mu_{k}\right\}$) and $\nu_{i} \neq \mu_{i}$ for at least one $i>k$. If no such k exists then $M(\Gamma)=\emptyset$.

where $v=\left(\mu_{k+1}, \ldots, \mu_{n}\right) \in \Pi^{\prime \prime}$ and $\Gamma^{\prime} \subset \Pi^{\prime}$.
2. The set $M(\Gamma)$ consists of all faces $\Gamma^{\prime} \times E$ such that E is an essential edge of $\Pi^{\prime \prime}$.

Example
If Γ is the vertex (μ_{1}

Mitosis on parallelepipeds

For every face $\Gamma \subset \Pi$, we now define a collection of faces $M(\Gamma)$

1. Let k be the minimal number such that $\Gamma \subseteq\left\{x_{i}=\mu_{i}\right\}$ for all $i>k$ (in particular, $\Gamma \nsubseteq\left\{x_{k}=\mu_{k}\right\}$) and $\nu_{i} \neq \mu_{i}$ for at least one $i>k$. If no such k exists then $M(\Gamma)=\emptyset$.
2. Under the isomorphism $\mathbb{R}^{n} \simeq \mathbb{R}^{k} \times \mathbb{R}^{n-k}$; $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right) \times\left(x_{k+1}, \ldots, x_{n}\right)$ we have

$$
\Pi \simeq \Pi^{\prime} \times \Pi^{\prime \prime} ; \quad \Gamma \simeq \Gamma^{\prime} \times v
$$

where $v=\left(\mu_{k+1}, \ldots, \mu_{n}\right) \in \Pi^{\prime \prime}$ and $\Gamma^{\prime} \subset \Pi^{\prime}$.

Mitosis on parallelepipeds

For every face $\Gamma \subset \Pi$, we now define a collection of faces $M(\Gamma)$

1. Let k be the minimal number such that $\Gamma \subseteq\left\{x_{i}=\mu_{i}\right\}$ for all $i>k$ (in particular, $\Gamma \nsubseteq\left\{x_{k}=\mu_{k}\right\}$) and $\nu_{i} \neq \mu_{i}$ for at least one $i>k$. If no such k exists then $M(\Gamma)=\emptyset$.
2. Under the isomorphism $\mathbb{R}^{n} \simeq \mathbb{R}^{k} \times \mathbb{R}^{n-k}$; $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right) \times\left(x_{k+1}, \ldots, x_{n}\right)$ we have

$$
\Pi \simeq \Pi^{\prime} \times \Pi^{\prime \prime} ; \quad \Gamma \simeq \Gamma^{\prime} \times v
$$

where $v=\left(\mu_{k+1}, \ldots, \mu_{n}\right) \in \Pi^{\prime \prime}$ and $\Gamma^{\prime} \subset \Pi^{\prime}$.
3. The set $M(\Gamma)$ consists of all faces $\Gamma^{\prime} \times E$ such that E is an essential edge of $\Pi^{\prime \prime}$.

Mitosis on parallelepipeds

For every face $\Gamma \subset \Pi$, we now define a collection of faces $M(\Gamma)$

1. Let k be the minimal number such that $\Gamma \subseteq\left\{x_{i}=\mu_{i}\right\}$ for all $i>k$ (in particular, $\Gamma \nsubseteq\left\{x_{k}=\mu_{k}\right\}$) and $\nu_{i} \neq \mu_{i}$ for at least one $i>k$. If no such k exists then $M(\Gamma)=\emptyset$.
2. Under the isomorphism $\mathbb{R}^{n} \simeq \mathbb{R}^{k} \times \mathbb{R}^{n-k}$; $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right) \times\left(x_{k+1}, \ldots, x_{n}\right)$ we have

$$
\Pi \simeq \Pi^{\prime} \times \Pi^{\prime \prime} ; \quad \Gamma \simeq \Gamma^{\prime} \times v
$$

where $v=\left(\mu_{k+1}, \ldots, \mu_{n}\right) \in \Pi^{\prime \prime}$ and $\Gamma^{\prime} \subset \Pi^{\prime}$.
3. The set $M(\Gamma)$ consists of all faces $\Gamma^{\prime} \times E$ such that E is an essential edge of $\Pi^{\prime \prime}$.

Example
If Γ is the vertex $\left(\mu_{1}, \ldots, \mu_{n}\right)$, then $M(\Gamma)$ is the set of essential edges of Π.

Mitosis on parallelepipeds

The subdivision of a tetrahedron by two extra edges yields a combinatorial cube. Essential edges of the cube form a single edge of the tetrahedron.

Mitosis on parallelepipeds and pipe-dreams
Faces can be encoded by $2 \times n$ tables

$$
\begin{array}{|l|l|l|}
\hline+\Leftrightarrow x_{1}=\mu_{1} & \ldots & +\Leftrightarrow x_{n}=\mu_{n} \\
\hline+\Leftrightarrow x_{1}=\nu_{1} & \cdots & +\Leftrightarrow x_{n}=\nu_{n} \\
\hline
\end{array}
$$

> Example
> If $\Pi(\mu, \nu) \subset \mathbb{R}^{4}$, where $\mu=(1,1,1,1)$ and $\nu=(2,2,1,2)$ (that is, $\left.\mu_{3}=\nu_{3}\right)$, then the vertex $\Gamma=\left\{x_{1}=\nu_{1}, x_{2}=\mu_{2}, x_{4}=\mu_{4}\right\}$ is

The set $M(\Gamma)$ consists of two edges represented by the tables

Mitosis on parallelepipeds and pipe-dreams

Faces can be encoded by $2 \times n$ tables

$$
\begin{array}{|c|l|l|}
\hline+\Leftrightarrow x_{1}=\mu_{1} & \ldots & +\Leftrightarrow x_{n}=\mu_{n} \\
\hline+\Leftrightarrow x_{1}=\nu_{1} & \ldots & +\Leftrightarrow x_{n}=\nu_{n} \\
\hline
\end{array}
$$

Example
If $\Pi(\mu, \nu) \subset \mathbb{R}^{4}$, where $\mu=(1,1,1,1)$ and $\nu=(2,2,1,2)$ (that is, $\left.\mu_{3}=\nu_{3}\right)$, then the vertex $\Gamma=\left\{x_{1}=\nu_{1}, x_{2}=\mu_{2}, x_{4}=\mu_{4}\right\}$ is

	+	+	+
+		+	

The set $M(\Gamma)$ consists of two edges represented by the tables

	+	+				
+		+		$\&$		
:---	:---					

Geometric mitosis: type A

Gelfand-Zetlin polytope

$$
\begin{array}{ccccccc}
\lambda_{1} & & \lambda_{2} & & \lambda_{3} & & \cdots \\
& x_{1}^{1} & & x_{2}^{1} & & \cdots & \\
& & x_{1}^{2} & & \ldots & & x_{n-2}^{2} \\
& & & \ddots & \ldots & & \\
& & & x_{n-1}^{1} & \\
& & & x_{1}^{n-2} & & x_{n}^{n-2} & \\
& & & & x_{1}^{n-1} & & \\
& & & &
\end{array}
$$

has $(n-1)$ different fibrations by coordinate parallelepipeds. Hence, there are $(n-1)$ different mitosis operations on its faces.

Geometric mitosis: type A

Example $G L_{3}$

Geometric mitosis: type C

Example $S p_{4}$
Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

Remark
The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.

Remark
The polytopes Q_{λ} have 11 vertices so they are not combinatorially
equivalent to string polytopes associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} S_{2} s_{1} s_{2}$.

Geometric mitosis: type C

Example $S p_{4}$

Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

Remark

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.

Remark
The polytopes Q_{λ} have 11 vertices so they are not combinatorially
equivalent to string polytopes associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} s_{2} s_{1} s_{2}$.

Geometric mitosis: type C

Example $S p_{4}$

Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

Remark

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.

Remark

The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} s_{2} s_{1} s_{2}$.

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

Parallelepipeds
The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Isotropic flags

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

	$+\Longleftrightarrow 0=t$
$+\Longleftrightarrow 0=x$	$+\Longleftrightarrow t=\frac{y}{2}$
	$+\Longleftrightarrow y=2 z$

Parallelepipeds
The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

	$+\Longleftrightarrow 0=t$
$+\Longleftrightarrow 0=x$	$+\Longleftrightarrow t=\frac{y}{2}$
	$+\Longleftrightarrow y=2 z$

Parallelepipeds

The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Isotropic flags
$S p_{4} / B=\left\{\left(V^{1} \subset V^{2} \subset V^{3} \subset \mathbb{C}^{4}\right)|\omega|_{V^{2}}=0, V^{1}=V^{3^{\perp}}\right\}=$ $=\left\{\left(a \in I \subset \mathbb{P}^{3}\right) \mid I-\right.$ isotropic line $\}$

Schubert cycles for $S p_{4}$

$s_{1} s_{2}$

Geometric mitosis: type C

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by $1, \frac{y_{1}}{y_{0}}, \ldots, \frac{y_{N}}{y_{0}}$, where $\left(y_{0}, y_{1}, \ldots, y_{N}\right)$ are homogeneous coordinates on \mathbb{P}^{N}. Example

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Vector space
Let $V \subset \mathbb{C}(X)$ be the vector space spanned by $1, \frac{y_{1}}{y_{0}}, \ldots, \frac{y_{N}}{y_{0}}$, where $\left(y_{0}, y_{1}, \ldots, y_{N}\right)$ are homogeneous coordinates on \mathbb{P}^{N}.

Example
If $X=\nu_{N}\left(\mathbb{P}^{1}\right)=\left\{\left(u_{0}^{N}\right.\right.$

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by $1, \frac{y_{1}}{y_{0}}, \ldots, \frac{y_{N}}{y_{0}}$, where $\left(y_{0}, y_{1}, \ldots, y_{N}\right)$ are homogeneous coordinates on \mathbb{P}^{N}.

Example
If $X=\nu_{N}\left(\mathbb{P}^{1}\right)=\left\{\left(u_{0}^{N}: u_{1} u_{0}^{N-1}: \ldots: u_{1}^{N}\right)\right\} \subset \mathbb{P}^{N}$ and $x_{1}=\frac{u_{1}}{u_{0}}$, then $v(f)=$ the order of zero (or pole) of f at $p=(1: 0)$ and $V=\left\langle 1, x_{1}, \ldots, x_{1}^{N}\right\rangle$.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$
coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$,
the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\triangle_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$
coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$,
the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\triangle_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$ coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$, the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\Delta_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$

Example

A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$ coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$, the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\Delta_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If n !volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

(D.Anderson, 2011)

Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

A Newton-Okounkov polytope of $G L_{3} / B$

(D.Anderson, 2011)

Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

A Newton-Okounkov polytope of $G L_{3} / B$

(D.Anderson, 2011)

Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

$\Delta_{v}\left(p\left(G L_{3} / B\right)\right)=$

A Newton-Okounkov polytope of $G L_{3} / B$

(D.Anderson, 2011)

Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

$\Delta_{v}\left(p\left(G L_{3} / B\right)\right)=$

Enumerative geometry

High school geometry problem
How many flags in \mathbb{P}^{2} are not in general position with respect to three given flags?

Enumerative geometry

High school geometry problem
How many flags in \mathbb{P}^{2} are not in general position with respect to three given flags?

Two flags in general position

position

Enumerative geometry

High school geometry problem
How many flags in \mathbb{P}^{2} are not in general position with respect to three given flags?

Two flags in general position

Enumerative geometry

High school geometry problem
How many flags in \mathbb{P}^{2} are not in general position with respect to three given flags?

Two flags in general position

Two flags NOT in general position

Enumerative geometry

Three flags in the plane

Enumerative geometry

A flag not in general position with respect to three given flags: variant 1

Enumerative geometry

A flag not in general position with respect to three given flags: variant 2

Enumerative geometry

A flag not in general position with respect to three given flags. Answer: 6.

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}
Fix a reduced decomposition $\overline{w_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag
$X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i_{d}}} \subset$.
$($ coordinates "at infinity").
Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
(coordinates at the open Schubert cell).

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}
Fix a reduced decomposition $\overline{w_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag $X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i d}} \subset \ldots \subset X_{s_{i_{2}} \ldots s_{i_{d}}} \subset X$
(coordinates "at infinity").
Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
(coordinates at the open Schubert cell).

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}

Fix a reduced decomposition $\overline{w_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag
$X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset X_{s_{i_{2}} \cdots s_{i_{d}}} \subset X$
(coordinates "at infinity").
Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
$s_{i_{1}} \ldots s_{i_{d-1}} X_{s_{i_{d}}} \subset s_{i_{1}} \ldots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset s_{i_{1}} X_{s_{i_{2}} \cdots s_{i_{d}}} \subset X$
(coordinates at the open Schubert cell).

Newton-Okounkov polytopes of flag varieties

(Okounkov, 1998)
The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of $\overline{W_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.
(Kaveh, 2013)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{W_{0}}$.

Example
If $G=G L_{n}$ and $w_{0}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the
corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

Newton-Okounkov polytopes of flag varieties

(Okounkov, 1998)
The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of $\overline{w_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.
(Kaveh, 2013)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}$.

Example
If $G=G L_{n}$ and $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the
corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

Newton-Okounkov polytopes of flag varieties

(Okounkov, 1998)
The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of $\overline{w_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.
(Kaveh, 2013)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}$.

Example
If $G=G L_{n}$ and $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

Newton-Okounkov polytopes of flag varieties

(Fujita-Naito, Fujita-Oya 2017)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the lowest order term-initial subwords valuation $v_{i n}$ and for the highest order term-terminal subwords valuation $v^{\text {term }}$ associated with the flag of Schubert varieties $\overline{w_{0}}$. The Nakashima-Zelevinsky polyhedral realizations associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the lowest order term-terminal subwords valuation $v_{\text {term }}$ and for the highest order term-initial subwords $v^{\text {in }}$ associated with the flag of Schubert varieties $\overline{w_{0}}$.

Newton-Okounkov polytopes of flag varieties

(E.Feigin-Fourier-Littelmann 2017)

The Feigin-Fourier-Littelmann-Vinberg polytopes coincide with the Newton-Okounkov polytopes of X for a valuation not coming from any longest word decomposition $\overline{w_{0}}$

Newton-Okounkov polytopes of flag varieties

(E.Feigin-Fourier-Littelmann 2017)

The Feigin-Fourier-Littelmann-Vinberg polytopes coincide with the Newton-Okounkov polytopes of X for a valuation not coming from any longest word decomposition $\overline{w_{0}}$
(K. 2017)

The Feigin-Fourier-Littelmann-Vinberg polytopes in type A coincide with the Newton-Okounkov polytopes of X for the longest word decomposition $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ and the lowest order term valuation associated with the flag of translated Schubert subvarieties:
$w_{0} X_{i d} \subset s_{i_{1}} \ldots s_{i_{d-1}} X_{s_{i_{d}}} \subset s_{i_{1}} \ldots s_{i_{d-2}} X_{s_{i_{d-1}} s_{d}} \subset \ldots \subset s_{i_{1}} X_{s_{i_{2}} \cdots s_{i_{d}}} \subset$
X

Thank you！

```
|\square>4可>4三>4 三
```

