## Geometry of spherical varieties and Newton–Okounkov polytopes

#### В.А. Кириченко\*

\*Факультет математики и Лаборатория алгебраической геометрии и её приложений,

Национальный исследовательский университет Высшая Школа Экономики

И

Институт проблем передачи информации им. Харкевича РАН

24 июля 2018 г.

## Main results

## Euler characteristic of complete intersections in reductive groups

## How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

### Convex geometric models for Schubert calculus

How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

### Newton-Okounkov polytopes of flag varieties

How to compute Newton-Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

(日)

## Main results

## Euler characteristic of complete intersections in reductive groups

How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

## Convex geometric models for Schubert calculus

How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

### Newton-Okounkov polytopes of flag varieties

How to compute Newton–Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

## Main results

## Euler characteristic of complete intersections in reductive groups

How to extend Brion-Kazarnovskii formula to subvarieties that are not complete intersections?

## Convex geometric models for Schubert calculus

How to extend results of K.-Smirnov-Timorin to Schubert cycles on complete flag varieties in any type?

### Newton-Okounkov polytopes of flag varieties

How to compute Newton-Okounkov polytopes of line bundles on complete flag varieties for geometric valuations?

#### Notation

Let G be a complex connected reductive group of dimension d and rank r. Let  $T \subset G$  be a maximal torus (that is, dim T = r).

#### Examples

- $G = (\mathbb{C}^*)^n$  complex torus; d = r = n;
- $SL_n(\mathbb{C})$  special linear group;  $d=n^2-1$ ; r=n-1;

*Sp*<sub>2n</sub>(ℂ) − symplectic group; *d* = n<sup>2</sup> + n; *r* = n.

#### Notation

Let G be a complex connected reductive group of dimension d and rank r. Let  $T \subset G$  be a maximal torus (that is, dim T = r).

## Examples

• 
$$G = (\mathbb{C}^*)^n$$
 — complex torus;  $d = r = n$ ;

•  $SL_n(\mathbb{C})$  — special linear group;  $d = n^2 - 1$ ; r = n - 1;

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

#### Notation

Let G be a complex connected reductive group of dimension d and rank r. Let  $T \subset G$  be a maximal torus (that is, dim T = r).

### Examples

• 
$$G = (\mathbb{C}^*)^n$$
 — complex torus;  $d = r = n$ ;

•  $SL_n(\mathbb{C})$  — special linear group;  $d = n^2 - 1$ ; r = n - 1;

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

#### Notation

Let G be a complex connected reductive group of dimension d and rank r. Let  $T \subset G$  be a maximal torus (that is, dim T = r).

### Examples

- $G = (\mathbb{C}^*)^n$  complex torus; d = r = n;
- $SL_n(\mathbb{C})$  special linear group;  $d = n^2 1$ ; r = n 1;

#### Notation

Let G be a complex connected reductive group of dimension d and rank r. Let  $T \subset G$  be a maximal torus (that is, dim T = r).

### Examples

- $G = (\mathbb{C}^*)^n$  complex torus; d = r = n;
- $SL_n(\mathbb{C})$  special linear group;  $d = n^2 1$ ; r = n 1;

### More notation

Let  $\pi: G \to GL(V)$  be a faithful finite-dimensional complex representation of G.

## Definition

A generic hyperplane section  $H_\pi\subset G$  is the preimage  $\pi^{-1}(H)$  of a generic affine hyperplane  $H\subset\mathrm{End}(\mathrm{V}).$ 

## Definition

The weight polytope  $P_{\pi} \subset L_{\mathcal{T}} \otimes \mathbb{R}$  is the convex hull of all weights of  $\mathcal{T}$  that occur in  $\pi$ .

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

### More notation

Let  $\pi: G \to GL(V)$  be a faithful finite-dimensional complex representation of G.

## Definition

A generic hyperplane section  $H_{\pi} \subset G$  is the preimage  $\pi^{-1}(H)$  of a generic affine hyperplane  $H \subset \text{End}(V)$ .

## Definition

The weight polytope  $P_\pi \subset L_T \otimes \mathbb{R}$  is the convex hull of all weights of T that occur in  $\pi$ .

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

### More notation

Let  $\pi: G \to GL(V)$  be a faithful finite-dimensional complex representation of G.

## Definition

A generic hyperplane section  $H_{\pi} \subset G$  is the preimage  $\pi^{-1}(H)$  of a generic affine hyperplane  $H \subset \text{End}(V)$ .

## Definition

The weight polytope  $P_{\pi} \subset L_{T} \otimes \mathbb{R}$  is the convex hull of all weights of T that occur in  $\pi$ .

#### Example

Weight polytope of the adjoint representation of  $SL_3(\mathbb{C})$ :

 $V = \operatorname{End}(\mathbb{C}^3) \ni X;$ Ad(g) :  $X \mapsto gXg^{-1}.$ 



## Example

Weight polytope of the adjoint representation of  $SL_3(\mathbb{C})$ :

$$V = \operatorname{End}(\mathbb{C}^3) \ni X;$$

 $\operatorname{Ad}(g): X \mapsto gXg^{-1}.$ 



ヘロト 人間 とくほ とくほとう

ъ

## Example

Weight polytope of the adjoint representation of  $SL_3(\mathbb{C})$ :

$$V = \operatorname{End}(\mathbb{C}^3) \ni X;$$

$$\operatorname{Ad}(g): X \mapsto gXg^{-1}.$$



ヘロト 人間 トイヨト イヨト

## Example

Weight polytope of the adjoint representation of  $SL_3(\mathbb{C})$ :

$$V = \operatorname{End}(\mathbb{C}^3) \ni X;$$

$$\operatorname{Ad}(g): X \mapsto gXg^{-1}.$$



ヘロト 人間 トイヨト イヨト

## Theorem (D.Bernstein, Khovanskii, 1978)

Let  $G = (\mathbb{C}^*)^n$ . The topological Euler characteristic of a generic hyperplane section  $H_{\pi}$  can be computed as follows:

$$\chi(H_{\pi}) = (-1)^{d-1} d! \operatorname{Volume}(P_{\pi}).$$

#### Remark

In the torus case, the weight polytope  $P_{\pi}$  coincides with the Newton polytope of a Laurent polynomial f such that  $H_{\pi} = \{f = 0\}$ .

## Outline of the proof

First show that  $\chi(H_{\pi}) = (-1)^{d-1} H_{\pi}^d$ , then apply the Kouchnirenko theorem.

## Theorem (D.Bernstein, Khovanskii, 1978)

Let  $G = (\mathbb{C}^*)^n$ . The topological Euler characteristic of a generic hyperplane section  $H_{\pi}$  can be computed as follows:

$$\chi(H_{\pi}) = (-1)^{d-1} d! \operatorname{Volume}(P_{\pi}).$$

#### Remark

In the torus case, the weight polytope  $P_{\pi}$  coincides with the Newton polytope of a Laurent polynomial f such that  $H_{\pi} = \{f = 0\}$ .

## Outline of the proof

First show that  $\chi(H_\pi)=(-1)^{d-1}H^d_\pi$ , then apply the Kouchnirenko theorem.

## Theorem (D.Bernstein, Khovanskii, 1978)

Let  $G = (\mathbb{C}^*)^n$ . The topological Euler characteristic of a generic hyperplane section  $H_{\pi}$  can be computed as follows:

$$\chi(H_{\pi}) = (-1)^{d-1} d! \operatorname{Volume}(P_{\pi}).$$

#### Remark

In the torus case, the weight polytope  $P_{\pi}$  coincides with the Newton polytope of a Laurent polynomial f such that  $H_{\pi} = \{f = 0\}$ .

### Outline of the proof

First show that  $\chi(H_{\pi}) = (-1)^{d-1} H_{\pi}^d$ , then apply the Kouchnirenko theorem.

## Theorem (Brion 1989, Kazarnovskii 1987)

Let  $\mathcal{D} \subset L_T \otimes \mathbb{R}$  be a dominant Weyl chamber,  $R^+$  the set of positive roots of G, and  $\rho$  the half of the sum of all positive roots of G.

$$H_{\pi}^{d} = d! \int_{P_{\pi} \cap \mathcal{D}} \prod_{\alpha \in R^{+}} \frac{(x, \alpha)^{2}}{(\rho, \alpha)^{2}} dx.$$

The measure dx on  $L_T \otimes \mathbb{R}$  is normalized so that the covolume of  $L_T$  is 1.

#### Remark

The RHS can be interpreted as the volume of a *d*-dimensional Newton–Okounkov polytope.

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

## Theorem (Brion 1989, Kazarnovskii 1987)

Let  $\mathcal{D} \subset L_T \otimes \mathbb{R}$  be a dominant Weyl chamber,  $R^+$  the set of positive roots of G, and  $\rho$  the half of the sum of all positive roots of G.

$$\mathcal{H}^d_{\pi} = d! \int\limits_{P_{\pi} \cap \mathcal{D}} \prod_{lpha \in R^+} rac{(x, lpha)^2}{(
ho, lpha)^2} dx.$$

The measure dx on  $L_T \otimes \mathbb{R}$  is normalized so that the covolume of  $L_T$  is 1.

#### Remark

The RHS can be interpreted as the volume of a *d*-dimensional Newton–Okounkov polytope.

## Gelfand–Zetlin polytope for $SL_3$



The Gelfand–Zetlin polytopes  $GZ(\lambda)$  for  $SL_3$ :

$$\lambda_1 \qquad \lambda_2 \qquad \lambda_3 \\ x \qquad y \\ z \qquad z$$

On the picture,  $(\lambda_1, \lambda_2, \lambda_3) = (-1, 0, 1).$ 

◆□▶◆□▶◆□▶◆□▶ □ のへの

## Brion-Kazarnovskii formula for SL3



Take the polytope that projects to  $P_{\pi} \cap \mathcal{D}$  and whose fiber at  $\lambda$  is  $GZ(\lambda) \times GZ(\lambda)$ 



## Non-torus example (Kaveh, 2001)

Let  $G = SL_2(\mathbb{C})$ . If  $\pi$  is an irreducible representation of  $SL_2(\mathbb{C})$  with the highest weight  $n\omega_1$ , then

$$\chi(H_{\pi})=2n^3-4n^2+4n.$$

## Counterexample

The identity

$$\chi(H_\pi) = (-1)^d H_\pi^d$$

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

does not hold already for  $SL_2(\mathbb{C})$ .

## Non-torus example (Kaveh, 2001)

Let  $G = SL_2(\mathbb{C})$ . If  $\pi$  is an irreducible representation of  $SL_2(\mathbb{C})$  with the highest weight  $n\omega_1$ , then

$$\chi(H_{\pi})=2n^3-4n^2+4n.$$

## Counterexample

The identity

$$\chi(H_\pi) = (-1)^d H_\pi^d$$

(日)

does not hold already for  $SL_2(\mathbb{C})$ .

#### Theorem (K., 2004)

There exist elements  $S_1, \ldots, S_{d-r}$  (*Chern classes*) in the ring of conditions of G (regarded as  $G \times G$ -space) such that

$$\chi(H_{\pi}) = (-1)^{d-1} H_{\pi}^{d} + \sum_{i=1}^{d-r} (-1)^{d-i-1} S_i H_{\pi}^{d-i}.$$

#### Example

If  $G = SL_2(\mathbb{C})$ , then  $S_1 = [H_{Ad}]$ ,  $S_2 = 2[T]$ . Hence,

$$\chi(H_{\pi})=2n^3-4n^2+4n.$$

◆□▶◆□▶◆豆▶◆豆▶ 豆 のへで

#### Theorem (K., 2004)

There exist elements  $S_1, \ldots, S_{d-r}$  (*Chern classes*) in the ring of conditions of G (regarded as  $G \times G$ -space) such that

$$\chi(H_{\pi}) = (-1)^{d-1} H_{\pi}^{d} + \sum_{i=1}^{d-r} (-1)^{d-i-1} S_i H_{\pi}^{d-i}.$$

#### Example

If  $G = SL_2(\mathbb{C})$ , then  $S_1 = [H_{\mathrm{Ad}}]$ ,  $S_2 = 2[T]$ . Hence,

$$\chi(H_{\pi})=2n^3-4n^2+4n$$

◆□▶◆圖▶◆臣▶◆臣▶ 臣 のへぐ

## Theorem (K., 2006)

The Euler characteristic of the complete intersection  $H_1 \cap \ldots \cap H_m$  is equal to the term of degree d in the expansion of the following product:

$$(1 + S_1 + \ldots + S_{d-r}) \cdot \prod_{i=1}^m H_i (1 + H_i)^{-1}.$$

The product in this formula is the intersection product in the ring of conditions.

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

Theorem (K., 2007)

Define the polynomial  $F_i(x, y)$  on  $(L_T \oplus L_T) \otimes \mathbb{R}$  by extending:

$$F_i(\lambda_1,\lambda_2) := c_i(G/B \times G/B)D^{d-r-i}(\lambda_1,\lambda_2)$$

Then

$$S_i H_{\pi}^{d-i} = \frac{(d-i)!}{(d-r-i)!} \int\limits_{P_{\pi} \cap \mathcal{D}} F_i(x,x) dx.$$

#### Remark

For i = 0 and  $S_0 = G$ , this formula becomes the Brion–Kazarnovskii formula for G.

Theorem (K., 2007)

Define the polynomial  $F_i(x, y)$  on  $(L_T \oplus L_T) \otimes \mathbb{R}$  by extending:

$$F_i(\lambda_1,\lambda_2) := c_i(G/B \times G/B)D^{d-r-i}(\lambda_1,\lambda_2)$$

Then

$$S_i H_{\pi}^{d-i} = \frac{(d-i)!}{(d-r-i)!} \int\limits_{P_{\pi} \cap \mathcal{D}} F_i(x,x) dx.$$

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

#### Remark

For i = 0 and  $S_0 = G$ , this formula becomes the Brion-Kazarnovskii formula for G.

#### Example

Let  $G = SL_3(\mathbb{C})$ . If  $\pi$  is an irreducible representation of  $SL_3(\mathbb{C})$  with the highest weight  $m\omega_1 + n\omega_2$ , then  $\chi(H_{\pi})$  is equal to

$$\begin{split} &-3(m^8+16m^7n+112m^6n^2+448m^5n^3+700m^4n^4+448m^3n^5+112m^2n^6+\\ &16mn^7+n^8+18(m^6+12m^5n+50m^4n^2+80m^3n^3+50m^2n^4+12mn^5+n^6)+\\ &+6(5m^4+40m^3n+72m^2n^2+40mn^3+5n^4)+6(m^2+4mn+n^2)-\\ &-6(m+n)(m^6+13m^5n+71m^4n^2+139m^3n^3+71m^2n^4+13mn^5+n^6+\\ &+5(m^4+9m^3n+19m^2n^2+9mn^3+n^4)+3(m^2+5mn+n^2))). \end{split}$$

#### 

## Convex geometric models for Schubert calculus

Let X = G/B be the complete flag variety.

### Question

How to represent Newton–Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

### Polytopes

Generalizatons of Gelfand–Zetlin polytopes from  $GL_n$  to G include *string polytopes*, Newton–Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016).

### Main tool

*Geometric mitosis* — a convex geometric incarnation of Demazure operators (K., 2016).

## Convex geometric models for Schubert calculus

Let X = G/B be the complete flag variety.

### Question

How to represent Newton-Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

### Polytopes

Generalizatons of Gelfand–Zetlin polytopes from  $GL_n$  to G include *string polytopes*, Newton–Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016).

#### Main tool

*Geometric mitosis* — a convex geometric incarnation of Demazure operators (K., 2016).

## Convex geometric models for Schubert calculus

Let X = G/B be the complete flag variety.

### Question

How to represent Newton-Okounkov polytopes of Schubert cycles by unions of faces of a single polytope?

### Polytopes

Generalizatons of Gelfand–Zetlin polytopes from  $GL_n$  to G include *string polytopes*, Newton–Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2016).

#### Main tool

Geometric mitosis — a convex geometric incarnation of Demazure operators (K., 2016).

## Motivating example: flag varieties in type A

#### Definition

The *flag variety* X is the variety of complete flags in  $\mathbb{C}^n$ :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

#### Remark

Alternatively,  $X = GL_n(\mathbb{C})/B$ , where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

### Schubert varieties

$$X_w = \overline{BwB/B}, \ w \in S_n$$

(日)

give basis in  $H^*(X,\mathbb{Z})$ .

## Motivating example: flag varieties in type A

#### Definition

The *flag variety* X is the variety of complete flags in  $\mathbb{C}^n$ :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

#### Remark

Alternatively,  $X = GL_n(\mathbb{C})/B$ , where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

### Schubert varieties

$$X_w = \overline{BwB/B}, \ w \in S_n$$

give basis in  $H^*(X,\mathbb{Z})$ .
## Motivating example: flag varieties in type A

### Definition

The *flag variety* X is the variety of complete flags in  $\mathbb{C}^n$ :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

### Remark

Alternatively,  $X = GL_n(\mathbb{C})/B$ , where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

### Schubert varieties

$$X_w = \overline{BwB/B}, w \in S_n$$

give basis in  $H^*(X,\mathbb{Z})$ .

# Schubert varieties for $GL_3/B$ .



◆□▶◆□▶◆≡▶◆≡▶ ≡ のへ⊙

## Gelfand–Zetlin polytopes

The Gelfand–Zetlin polytope  $\Delta_{\lambda}$  is defined by inequalities:



where  $(x_1^1, \ldots, x_{n-1}^1; \ldots; x_1^{n-1})$  are coordinates in  $\mathbb{R}^d$ , and the notation

a b c

means a < c < b.

## Gelfand-Zetlin polytopes



A Gelfand–Zetlin polytope for *GL*<sub>3</sub>:

$$\begin{array}{cccc}
-1 & 0 & 1 \\
 & x & y \\
 & z
\end{array}$$

◆□▶◆□▶◆豆▶◆豆▶ 豆 のへで



◆□▶◆□▶◆□▶◆□▶ □ のへで



◆□▶◆□▶◆□▶◆□▶ □ のへで



▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで



$$= [X_{s_1}] + [X_{s_2}]$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@





▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで



◆□▶◆□▶◆□▶◆□▶ □ のへで

## Results

- Relation between Schubert varieties and preimages of rc-faces of  $P_{\lambda}$  under the Guillemin–Sternberg moment map  $X \rightarrow P_{\lambda}$  (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of  $P_{\lambda}$  (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H<sup>\*</sup>(X, Z) using volume polynomial of P<sub>λ</sub> (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in  $H^*(X,\mathbb{Z})$  = intersection of faces in  $P_{\lambda}$  (K.-Smirnov-Timorin, 2012)

### Results

- Relation between Schubert varieties and preimages of rc-faces of  $P_{\lambda}$  under the Guillemin–Sternberg moment map  $X \rightarrow P_{\lambda}$  (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of  $P_{\lambda}$  (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H<sup>\*</sup>(X, Z) using volume polynomial of P<sub>λ</sub> (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in *H*<sup>\*</sup>(*X*,ℤ) = intersection of faces in *P*<sub>λ</sub> (K.–Smirnov–Timorin, 2012)

### Results

- Relation between Schubert varieties and preimages of rc-faces of  $P_{\lambda}$  under the Guillemin–Sternberg moment map  $X \to P_{\lambda}$  (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of  $P_{\lambda}$  (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H<sup>\*</sup>(X, Z) using volume polynomial of P<sub>λ</sub> (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in  $H^*(X,\mathbb{Z})$  = intersection of faces in  $P_{\lambda}$  (K.-Smirnov-Timorin, 2012)

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

### Results

- Relation between Schubert varieties and preimages of rc-faces of  $P_{\lambda}$  under the Guillemin–Sternberg moment map  $X \to P_{\lambda}$  (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of  $P_{\lambda}$  (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H<sup>\*</sup>(X, ℤ) using volume polynomial of P<sub>λ</sub> (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in *H*<sup>\*</sup>(*X*,ℤ) = intersection of faces in *P*<sub>λ</sub> (K.–Smirnov–Timorin, 2012)

### Results

- Relation between Schubert varieties and preimages of rc-faces of  $P_{\lambda}$  under the Guillemin–Sternberg moment map  $X \rightarrow P_{\lambda}$  (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of  $P_{\lambda}$  (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H<sup>\*</sup>(X, ℤ) using volume polynomial of P<sub>λ</sub> (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in  $H^*(X, \mathbb{Z})$  = intersection of faces in  $P_{\lambda}$  (K.-Smirnov-Timorin, 2012)

\*ロ \* \* ◎ \* \* ■ \* \* ■ \* \* ● \* \* ●

# String polytopes

## (J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

### Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of  $GL_n$ ,  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  (K.–Smirnov–Timorin, 2012) and  $Sp_4$ ,  $\overline{w_0} = s_1s_2s_1s_2$  (Ilyukhina, 2012).

## Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

# String polytopes

## (J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

### Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of  $GL_n$ ,  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  (K.-Smirnov-Timorin, 2012) and  $Sp_4$ ,  $\overline{w_0} = s_1s_2s_1s_2$  (Ilyukhina, 2012).

## Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

# String polytopes

## (J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

### Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of  $GL_n$ ,  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  (K.-Smirnov-Timorin, 2012) and  $Sp_4$ ,  $\overline{w_0} = s_1s_2s_1s_2$  (Ilyukhina, 2012).

## Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

# Geometric mitosis



# Coordinate parallelepipeds Let $\Pi := \Pi(\mu, \nu) \subset \mathbb{R}^n$ be given by inequalities $\mu_i \leq x_i \leq \nu_i$ for i = 1, ..., n.

## **Essential edges**

An edge of  $\Pi$  is *essential* if it is given by equations

$$x_1 = \mu_1, \dots, x_{i-1} = \mu_{i-1}; \quad x_{i+1} = \nu_{i+1}, \dots, x_n = \nu_n$$



A coordinate parallelepiped in R<sup>3</sup> and its essential edges.

・ロト・四ト・ヨト・ヨト 一日

for some  $i = 1, \ldots, n$ .

### Coordinate parallelepipeds

Let  $\Pi := \Pi(\mu, \nu) \subset \mathbb{R}^n$  be given by inequalities  $\mu_i \leq x_i \leq \nu_i$  for i = 1, ..., n.

## Essential edges

An edge of  $\Pi$  is *essential* if it is given by equations

$$x_1 = \mu_1, \dots, x_{i-1} = \mu_{i-1}; \quad x_{i+1} = \nu_{i+1}, \dots, x_n = \nu_n$$



for some  $i = 1, \ldots, n$ .

A coordinate parallelepiped in ℝ<sup>3</sup> and its essential edges.

## Coordinate parallelepipeds

Let  $\Pi := \Pi(\mu, \nu) \subset \mathbb{R}^n$  be given by inequalities  $\mu_i \leq x_i \leq \nu_i$  for i = 1, ..., n.

## Essential edges

An edge of  $\Pi$  is *essential* if it is given by equations

$$x_1 = \mu_1, \ldots, x_{i-1} = \mu_{i-1}; \quad x_{i+1} = \nu_{i+1}, \ldots, x_n = \nu_n$$



A coordinate parallelepiped in  $\mathbb{R}^3$  and its essential edges.

## Coordinate parallelepipeds

Let  $\Pi := \Pi(\mu, \nu) \subset \mathbb{R}^n$  be given by inequalities  $\mu_i \leq x_i \leq \nu_i$  for i = 1, ..., n.

## Essential edges

An edge of  $\Pi$  is *essential* if it is given by equations

$$x_1 = \mu_1, \ldots, x_{i-1} = \mu_{i-1}; \quad x_{i+1} = \nu_{i+1}, \ldots, x_n = \nu_n$$



A coordinate parallelepiped in  $\mathbb{R}^3$  and its essential edges.

## Coordinate parallelepipeds

Let  $\Pi := \Pi(\mu, \nu) \subset \mathbb{R}^n$  be given by inequalities  $\mu_i \leq x_i \leq \nu_i$  for i = 1, ..., n.

## Essential edges

An edge of  $\Pi$  is *essential* if it is given by equations

$$x_1 = \mu_1, \dots, x_{i-1} = \mu_{i-1}; \quad x_{i+1} = \nu_{i+1}, \dots, x_n = \nu_n$$



A coordinate parallelepiped in 
$$\mathbb{R}^3$$
 and its essential edges.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

For every face  $\Gamma \subset \Pi$ , we now define a collection of faces  $M(\Gamma)$ 

- 1. Let k be the minimal number such that  $\Gamma \subseteq \{x_i = \mu_i\}$  for all i > k (in particular,  $\Gamma \nsubseteq \{x_k = \mu_k\}$ ) and  $\nu_i \neq \mu_i$  for at least one i > k. If no such k exists then  $M(\Gamma) = \emptyset$ .
- 2. Under the isomorphism  $\mathbb{R}^n \simeq \mathbb{R}^k \times \mathbb{R}^{n-k}$ ;  $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) \times (x_{k+1}, \ldots, x_n)$  we have

 $\Pi \simeq \Pi' \times \Pi''; \quad \Gamma \simeq \Gamma' \times v$ 

where  $v = (\mu_{k+1}, \dots, \mu_n) \in \Pi''$  and  $\Gamma' \subset \Pi'$ .

3. The set  $M(\Gamma)$  consists of all faces  $\Gamma' \times E$  such that E is an essential edge of  $\Pi''$ .

### Example

For every face  $\Gamma \subset \Pi$ , we now define a collection of faces  $M(\Gamma)$ 

- 1. Let k be the minimal number such that  $\Gamma \subseteq \{x_i = \mu_i\}$  for all i > k (in particular,  $\Gamma \nsubseteq \{x_k = \mu_k\}$ ) and  $\nu_i \neq \mu_i$  for at least one i > k. If no such k exists then  $M(\Gamma) = \emptyset$ .
- 2. Under the isomorphism  $\mathbb{R}^n \simeq \mathbb{R}^k \times \mathbb{R}^{n-k}$ ;  $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) \times (x_{k+1}, \ldots, x_n)$  we have

 $\Pi \simeq \Pi' \times \Pi''; \quad \Gamma \simeq \Gamma' \times v$ 

where  $\nu = (\mu_{k+1}, \dots, \mu_n) \in \Pi''$  and  $\Gamma' \subset \Pi'$ .

3. The set  $M(\Gamma)$  consists of all faces  $\Gamma' \times E$  such that E is an essential edge of  $\Pi''$ .

### Example

For every face  $\Gamma \subset \Pi$ , we now define a collection of faces  $M(\Gamma)$ 

- 1. Let k be the minimal number such that  $\Gamma \subseteq \{x_i = \mu_i\}$  for all i > k (in particular,  $\Gamma \nsubseteq \{x_k = \mu_k\}$ ) and  $\nu_i \neq \mu_i$  for at least one i > k. If no such k exists then  $M(\Gamma) = \emptyset$ .
- 2. Under the isomorphism  $\mathbb{R}^n \simeq \mathbb{R}^k \times \mathbb{R}^{n-k}$ ;  $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) \times (x_{k+1}, \ldots, x_n)$  we have

$$\Pi \simeq \Pi' \times \Pi''; \quad \Gamma \simeq \Gamma' \times v$$

where  $v = (\mu_{k+1}, \dots, \mu_n) \in \Pi''$  and  $\Gamma' \subset \Pi'$ .

3. The set  $M(\Gamma)$  consists of all faces  $\Gamma' \times E$  such that E is an essential edge of  $\Pi''$ .

### Example

For every face  $\Gamma \subset \Pi$ , we now define a collection of faces  $M(\Gamma)$ 

- 1. Let k be the minimal number such that  $\Gamma \subseteq \{x_i = \mu_i\}$  for all i > k (in particular,  $\Gamma \nsubseteq \{x_k = \mu_k\}$ ) and  $\nu_i \neq \mu_i$  for at least one i > k. If no such k exists then  $M(\Gamma) = \emptyset$ .
- 2. Under the isomorphism  $\mathbb{R}^n \simeq \mathbb{R}^k \times \mathbb{R}^{n-k}$ ;  $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) \times (x_{k+1}, \ldots, x_n)$  we have

$$\Pi \simeq \Pi' \times \Pi''; \quad \Gamma \simeq \Gamma' \times v$$

where  $v = (\mu_{k+1}, \dots, \mu_n) \in \Pi''$  and  $\Gamma' \subset \Pi'$ .

3. The set  $M(\Gamma)$  consists of all faces  $\Gamma' \times E$  such that E is an essential edge of  $\Pi''$ .

### Example

For every face  $\Gamma \subset \Pi$ , we now define a collection of faces  $M(\Gamma)$ 

- 1. Let k be the minimal number such that  $\Gamma \subseteq \{x_i = \mu_i\}$  for all i > k (in particular,  $\Gamma \nsubseteq \{x_k = \mu_k\}$ ) and  $\nu_i \neq \mu_i$  for at least one i > k. If no such k exists then  $M(\Gamma) = \emptyset$ .
- 2. Under the isomorphism  $\mathbb{R}^n \simeq \mathbb{R}^k \times \mathbb{R}^{n-k}$ ;  $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k) \times (x_{k+1}, \ldots, x_n)$  we have

$$\Pi \simeq \Pi' \times \Pi''; \quad \Gamma \simeq \Gamma' \times v$$

where  $v = (\mu_{k+1}, \dots, \mu_n) \in \Pi''$  and  $\Gamma' \subset \Pi'$ .

3. The set  $M(\Gamma)$  consists of all faces  $\Gamma' \times E$  such that E is an essential edge of  $\Pi''$ .

### Example



The subdivision of a tetrahedron by two extra edges yields a combinatorial cube. Essential edges of the cube form a single edge of the tetrahedron.

Mitosis on parallelepipeds and pipe-dreams Faces can be encoded by  $2 \times n$  tables

$$\begin{array}{c|c} + \Leftrightarrow x_1 = \mu_1 & \dots & + \Leftrightarrow x_n = \mu_n \\ + \Leftrightarrow x_1 = \nu_1 & \dots & + \Leftrightarrow x_n = \nu_n \end{array}$$

#### Example

If  $\Pi(\mu, \nu) \subset \mathbb{R}^4$ , where  $\mu = (1, 1, 1, 1)$  and  $\nu = (2, 2, 1, 2)$  (that is,  $\mu_3 = \nu_3$ ), then the vertex  $\Gamma = \{x_1 = \nu_1, x_2 = \mu_2, x_4 = \mu_4\}$  is



The set  $M(\Gamma)$  consists of two edges represented by the tables



・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

э

Mitosis on parallelepipeds and pipe-dreams Faces can be encoded by  $2 \times n$  tables

$$\begin{array}{c|c} + \Leftrightarrow x_1 = \mu_1 & \dots & + \Leftrightarrow x_n = \mu_n \\ + \Leftrightarrow x_1 = \nu_1 & \dots & + \Leftrightarrow x_n = \nu_n \end{array}$$

### Example

If  $\Pi(\mu, \nu) \subset \mathbb{R}^4$ , where  $\mu = (1, 1, 1, 1)$  and  $\nu = (2, 2, 1, 2)$  (that is,  $\mu_3 = \nu_3$ ), then the vertex  $\Gamma = \{x_1 = \nu_1, x_2 = \mu_2, x_4 = \mu_4\}$  is



The set  $M(\Gamma)$  consists of two edges represented by the tables



(日)

### Gelfand-Zetlin polytope



has (n-1) different fibrations by coordinate parallelepipeds. Hence, there are (n-1) different mitosis operations on its faces.

Example GL<sub>3</sub>





Example GL<sub>3</sub>





Example GL<sub>3</sub>
















Example GL<sub>3</sub>





< ロト < 回 ト < 三 ト < 三 ト</p>

э

Example GL<sub>3</sub>





< ロト < 回 ト < 三 ト < 三 ト</p>

э









#### Example Sp<sub>4</sub>

Take  $\overline{w_0} = s_2 s_1 s_2 s_1$ . The corresponding DDO polytope  $Q_\lambda$  is given by inequalities

$$\begin{split} 0 &\leq x \leq \lambda_1, \quad z \leq x + \lambda_2, \quad y \leq 2z, \\ y &\leq z + \lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq \frac{y}{2}. \end{split}$$

#### Remark

The polytopes  $Q_{\lambda}$  coincide with the Newton–Okounkov polytopes of  $Sp_4/B$  for the lowest order term valuation v associated with the flag of subvarieties  $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$ .

#### Remark

The polytopes  $Q_{\lambda}$  have 11 vertices so they are not combinatorially equivalent to string polytopes associated with  $s_2s_1s_2s_1$  or  $s_1s_2s_1s_2$ .

## Example Sp<sub>4</sub>

Take  $\overline{w_0} = s_2 s_1 s_2 s_1$ . The corresponding DDO polytope  $Q_\lambda$  is given by inequalities

$$egin{aligned} 0 &\leq x \leq \lambda_1, \quad z \leq x+\lambda_2, \quad y \leq 2z, \ y &\leq z+\lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq rac{y}{2}. \end{aligned}$$

#### Remark

The polytopes  $Q_{\lambda}$  coincide with the Newton-Okounkov polytopes of  $Sp_4/B$  for the lowest order term valuation v associated with the flag of subvarieties  $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$ .

#### Remark

The polytopes  $Q_{\lambda}$  have 11 vertices so they are not combinatorially equivalent to string polytopes associated with  $s_2s_1s_2s_1$  or  $s_1s_2s_1s_2$ .

Example Sp<sub>4</sub>

Take  $\overline{w_0} = s_2 s_1 s_2 s_1$ . The corresponding DDO polytope  $Q_\lambda$  is given by inequalities

$$egin{aligned} 0 &\leq x \leq \lambda_1, \quad z \leq x+\lambda_2, \quad y \leq 2z, \ y &\leq z+\lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq rac{y}{2}. \end{aligned}$$

#### Remark

The polytopes  $Q_{\lambda}$  coincide with the Newton-Okounkov polytopes of  $Sp_4/B$  for the lowest order term valuation v associated with the flag of subvarieties  $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$ .

#### Remark

The polytopes  $Q_{\lambda}$  have 11 vertices so they are not combinatorially equivalent to string polytopes associated with  $s_2s_1s_2s_1$  or  $s_1s_2s_1s_2$ .

#### Skew pipe-dreams

Faces that contain the lowest vertex  $a_{\lambda} = (0, 0, 0, 0)$  can be encoded by the diagrams:

$$+ \iff 0 = t$$
$$+ \iff 0 = x + \iff t = \frac{y}{2}$$
$$+ \iff y = 2z$$

#### Parallelepipeds

The polytope  $Q_{\lambda}$  admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations  $M_1$  and  $M_2$  on faces of  $Q_{\lambda}$ .

#### lsotropic flags

 $Sp_4/B = \{ (V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3\perp} \} = \\ = \{ (a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line } \}$ 

#### Skew pipe-dreams

Faces that contain the lowest vertex  $a_{\lambda} = (0, 0, 0, 0)$  can be encoded by the diagrams:

$$+ \iff 0 = t$$
$$+ \iff 0 = x + \iff t = \frac{y}{2}$$
$$+ \iff y = 2z$$

#### Parallelepipeds

The polytope  $Q_{\lambda}$  admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations  $M_1$  and  $M_2$  on faces of  $Q_{\lambda}$ .

## Isotropic flags $Sp_4/B = \{(V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3\perp}\} = \{(a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line }\}$

#### Skew pipe-dreams

Faces that contain the lowest vertex  $a_{\lambda} = (0, 0, 0, 0)$  can be encoded by the diagrams:

$$\begin{array}{c} + \Longleftrightarrow 0 = t \\ + \Longleftrightarrow 0 = x & + \Longleftrightarrow t = \frac{y}{2} \\ + \Longleftrightarrow y = 2z \end{array}$$

#### Parallelepipeds

The polytope  $Q_{\lambda}$  admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations  $M_1$  and  $M_2$  on faces of  $Q_{\lambda}$ .

#### lsotropic flags

$$\begin{aligned} Sp_4/B &= \{ (V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3\perp} \} = \\ &= \{ (a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line } \} \end{aligned}$$

## Schubert cycles for Sp<sub>4</sub>



□ ▶ < 🗗 ▶

id



・ロト・四ト・ヨト・ヨー シック

#### Valuation

Let  $X^n \subset \mathbb{P}^N$  be a projective subvariety with coordinates  $(x_1, \ldots, x_n)$  in a neighborhood of a smooth point  $p \in X$ . Define the valuation  $v : \mathbb{C}(X) \to \mathbb{Z}^n$  by sending every polynomial  $f(x_1, \ldots, x_n)$  to  $(k_1, \ldots, k_n)$  where  $x_1^{k_1} \cdots x_n^{k_n}$  is the lowest degree term in f (assuming that  $x_1 \succ x_2 \succ \ldots \succ x_n$ ).

#### Vector space

Let  $V \subset \mathbb{C}(X)$  be the vector space spanned by  $1, \frac{y_1}{y_0}, \ldots, \frac{y_N}{y_0}$ , where  $(y_0, y_1, \ldots, y_N)$  are homogeneous coordinates on  $\mathbb{P}^N$ .

#### Example

If  $X = \nu_N(\mathbb{P}^1) = \{(u_0^N : u_1 u_0^{N-1} : \ldots : u_1^N)\} \subset \mathbb{P}^N$  and  $x_1 = \frac{u_1}{u_0}$ , then v(f) = the order of zero (or pole) of f at p = (1:0) and  $V = \langle 1, x_1, \ldots, x_1^N \rangle$ .

・ロト・個ト・モト・モト ヨークへで

#### Valuation

Let  $X^n \subset \mathbb{P}^N$  be a projective subvariety with coordinates  $(x_1, \ldots, x_n)$  in a neighborhood of a smooth point  $p \in X$ . Define the valuation  $v : \mathbb{C}(X) \to \mathbb{Z}^n$  by sending every polynomial  $f(x_1, \ldots, x_n)$  to  $(k_1, \ldots, k_n)$  where  $x_1^{k_1} \cdots x_n^{k_n}$  is the lowest degree term in f (assuming that  $x_1 \succ x_2 \succ \ldots \succ x_n$ ).

#### Vector space

Let  $V \subset \mathbb{C}(X)$  be the vector space spanned by 1,  $\frac{y_1}{y_0}, \ldots, \frac{y_N}{y_0}$ , where  $(y_0, y_1, \ldots, y_N)$  are homogeneous coordinates on  $\mathbb{P}^N$ .

#### Example

If  $X = \nu_N(\mathbb{P}^1) = \{(u_0^N : u_1 u_0^{N-1} : \ldots : u_1^N)\} \subset \mathbb{P}^N$  and  $x_1 = \frac{u_1}{u_0}$ , then v(f) = the order of zero (or pole) of f at p = (1:0) and  $V = \langle 1, x_1, \ldots, x_1^N \rangle$ .

#### Valuation

Let  $X^n \subset \mathbb{P}^N$  be a projective subvariety with coordinates  $(x_1, \ldots, x_n)$  in a neighborhood of a smooth point  $p \in X$ . Define the valuation  $v : \mathbb{C}(X) \to \mathbb{Z}^n$  by sending every polynomial  $f(x_1, \ldots, x_n)$  to  $(k_1, \ldots, k_n)$  where  $x_1^{k_1} \cdots x_n^{k_n}$  is the lowest degree term in f (assuming that  $x_1 \succ x_2 \succ \ldots \succ x_n$ ).

#### Vector space

Let  $V \subset \mathbb{C}(X)$  be the vector space spanned by 1,  $\frac{y_1}{y_0}, \ldots, \frac{y_N}{y_0}$ , where  $(y_0, y_1, \ldots, y_N)$  are homogeneous coordinates on  $\mathbb{P}^N$ .

#### Example

If 
$$X = \nu_N(\mathbb{P}^1) = \{(u_0^N : u_1 u_0^{N-1} : \ldots : u_1^N)\} \subset \mathbb{P}^N$$
 and  $x_1 = \frac{u_1}{u_0}$ ,  
then  $v(f)$  = the order of zero (or pole) of  $f$  at  $p = (1:0)$  and  
 $V = \langle 1, x_1, \ldots, x_1^N \rangle$ .

### Naive definition

The Newton-Okounkov polytope  $\Delta_{v}(X) \subset \mathbb{R}^{n}$  of  $X^{n}$  is the convex hull of v(f) for all  $f \in V$ .

Example  $\Delta_{\nu}(\nu_{N}(\mathbb{P}^{1})) = [0, N] \subset \mathbb{R}^{1}$ 

#### Example

A toric variety  $X^n$  has a natural system of coordinates  $(x_1, \ldots, x_n)$ coming from  $(\mathbb{C}^*)^n \subset X^n$ . For a projective embedding  $X^n \subset \mathbb{P}^N$ , the space V is spanned by monomials in  $x_1, \ldots, x_n$ . Hence, the valuation v does not matter, and  $\Delta_v(X^n)$  is always the Newton polytope of X.

## Observation

If n!volume $(\Delta_v(X)) = \deg(X)$ , then the naive definition coincides with the correct definition.

## Naive definition

The Newton-Okounkov polytope  $\Delta_{v}(X) \subset \mathbb{R}^{n}$  of  $X^{n}$  is the convex hull of v(f) for all  $f \in V$ .

# $\begin{array}{l} \mathsf{Example} \\ \Delta_{\nu}(\nu_{\textit{N}}(\mathbb{P}^{1})) = [0,\textit{N}] \subset \mathbb{R}^{1} \end{array}$

#### Example

A toric variety  $X^n$  has a natural system of coordinates  $(x_1, \ldots, x_n)$ coming from  $(\mathbb{C}^*)^n \subset X^n$ . For a projective embedding  $X^n \subset \mathbb{P}^N$ , the space V is spanned by monomials in  $x_1, \ldots, x_n$ . Hence, the valuation v does not matter, and  $\Delta_v(X^n)$  is always the Newton polytope of X.

## Observation

If n!volume $(\Delta_v(X)) = \deg(X)$ , then the naive definition coincides with the correct definition.

### Naive definition

The Newton-Okounkov polytope  $\Delta_{v}(X) \subset \mathbb{R}^{n}$  of  $X^{n}$  is the convex hull of v(f) for all  $f \in V$ .

#### Example

$$\Delta_{v}(\nu_{N}(\mathbb{P}^{1})) = [0, N] \subset \mathbb{R}^{1}$$

#### Example

A toric variety  $X^n$  has a natural system of coordinates  $(x_1, \ldots, x_n)$ coming from  $(\mathbb{C}^*)^n \subset X^n$ . For a projective embedding  $X^n \subset \mathbb{P}^N$ , the space V is spanned by monomials in  $x_1, \ldots, x_n$ . Hence, the valuation v does not matter, and  $\Delta_v(X^n)$  is always the Newton polytope of X.

#### Observation

If n!volume $(\Delta_v(X)) = \deg(X)$ , then the naive definition coincides with the correct definition.

### Naive definition

The Newton-Okounkov polytope  $\Delta_{v}(X) \subset \mathbb{R}^{n}$  of  $X^{n}$  is the convex hull of v(f) for all  $f \in V$ .

#### Example

$$\Delta_{v}(
u_{\mathsf{N}}(\mathbb{P}^{1})) = [0, \mathsf{N}] \subset \mathbb{R}^{1}$$

#### Example

A toric variety  $X^n$  has a natural system of coordinates  $(x_1, \ldots, x_n)$ coming from  $(\mathbb{C}^*)^n \subset X^n$ . For a projective embedding  $X^n \subset \mathbb{P}^N$ , the space V is spanned by monomials in  $x_1, \ldots, x_n$ . Hence, the valuation v does not matter, and  $\Delta_v(X^n)$  is always the Newton polytope of X.

#### Observation

If n!volume $(\Delta_{\nu}(X)) = \deg(X)$ , then the naive definition coincides with the correct definition.

#### Coordinates on the open Schubert cell

If the flag  $(a \in I \subset \mathbb{P}^2)$  is in general position with a fixed flag  $(a_0 \in I_0 \subset \mathbb{P}^2)$ , then  $I \cap I_0 = a' \neq a_0$  and  $a \notin I_0$ . Hence,

$$a'=(x:1:0);$$
  $l=\langle a',(y:0:1)
angle;$   $a=(xz+y:z:1)$ 

are coordinates (assuming that  $a_0 = (1:0:0)$ ,  $l_0 = \{(\star:\star:0)\}$ ).



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## (D.Anderson, 2011)

Consider the embedding  $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$ ;  $p: (a, l) \mapsto a \times l$ . Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$



## (D.Anderson, 2011)

Consider the embedding  $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$ ;  $p: (a, l) \mapsto a \times l$ . Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$



## (D.Anderson, 2011)

Consider the embedding  $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$ ;  $p: (a, l) \mapsto a \times l$ . Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$



## (D.Anderson, 2011)

Consider the embedding  $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$ ;  $p: (a, l) \mapsto a \times l$ . Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$



#### High school geometry problem

How many flags in  $\mathbb{P}^2$  are not in general position with respect to three given flags?





(日)

#### High school geometry problem

How many flags in  $\mathbb{P}^2$  are not in general position with respect to three given flags?





・ロト・四ト・ヨト・ヨト・日・

### High school geometry problem

How many flags in  $\mathbb{P}^2$  are not in general position with respect to three given flags?



Two flags in general position



(日)

### High school geometry problem

How many flags in  $\mathbb{P}^2$  are not in general position with respect to three given flags?



Two flags in general position



Two flags NOT in general position

(日)

Three flags in the plane



A flag not in general position with respect to three given flags: variant  $\boldsymbol{1}$ 



A flag not in general position with respect to three given flags: variant  $\mathbf{2}$ 

• □ > • 同 > • 回 > • 回 >



A flag not in general position with respect to three given flags. Answer: 6.

ヘロマ 全部 マイヨマイ

## Valuations on $\mathbb{C}(G/B)$

#### Decomposition of w<sub>0</sub>

Fix a reduced decomposition  $\overline{w_0} = s_{i_1} \dots s_{i_d}$  of the longest element  $w_0$  in the Weyl group of G.

## Flag of Schubert varieties

Choose coordinates compatible with the flag  $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$  (coordinates "at infinity").

## Flag of translated Schubert varieties

Choose coordinates compatible with the flag  $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$  (coordinates at the open Schubert cell).

(日)
# Valuations on $\mathbb{C}(G/B)$

#### Decomposition of w<sub>0</sub>

Fix a reduced decomposition  $\overline{w_0} = s_{i_1} \dots s_{i_d}$  of the longest element  $w_0$  in the Weyl group of G.

### Flag of Schubert varieties

Choose coordinates compatible with the flag  $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$  (coordinates "at infinity").

### Flag of translated Schubert varieties

Choose coordinates compatible with the flag  $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$  (coordinates at the open Schubert cell).

# Valuations on $\mathbb{C}(G/B)$

#### Decomposition of $w_0$

Fix a reduced decomposition  $\overline{w_0} = s_{i_1} \dots s_{i_d}$  of the longest element  $w_0$  in the Weyl group of G.

### Flag of Schubert varieties

Choose coordinates compatible with the flag  $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$  (coordinates "at infinity").

### Flag of translated Schubert varieties

Choose coordinates compatible with the flag  $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$  (coordinates at the open Schubert cell).

### (Okounkov, 1998)

The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of  $Sp_{2n}/B$  for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of  $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n)$ .

# (Kaveh, 2013)

The string polytopes associated with  $\overline{w_0}$  coincide with the Newton–Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for  $\overline{w_0}$ .

#### Example

If  $G = GL_n$  and  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

## (Okounkov, 1998)

The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of  $Sp_{2n}/B$  for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of  $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n)$ .

## (Kaveh, 2013)

The string polytopes associated with  $\overline{w_0}$  coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for  $\overline{w_0}$ .

#### Example

If  $G = GL_n$  and  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

# (Okounkov, 1998)

The symplectic Gelfand-Zetlin polytopes coincide with the Newton-Okounkov polytopes of  $Sp_{2n}/B$  for the lowest order term valuation v associated with the flag of Schubert varieties for initial subwords of  $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n)$ .

# (Kaveh, 2013)

The string polytopes associated with  $\overline{w_0}$  coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for  $\overline{w_0}$ .

#### Example

If  $G = GL_n$  and  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

#### (Fujita–Naito, Fujita–Oya 2017)

The string polytopes associated with  $\overline{w_0}$  coincide with the Newton-Okounkov polytopes of X for the lowest order term-initial subwords valuation  $v_{in}$  and for the highest order term-terminal subwords valuation  $v^{term}$  associated with the flag of Schubert varieties  $\overline{w_0}$ . The Nakashima-Zelevinsky polyhedral realizations associated with  $\overline{w_0}$  coincide with the Newton-Okounkov polytopes of X for the lowest order term-terminal subwords valuation  $v_{term}$ and for the highest order term-initial subwords valuation  $v_{term}$ the flag of Schubert varieties  $\overline{w_0}$ .

#### (E.Feigin–Fourier–Littelmann 2017)

The Feigin–Fourier–Littelmann–Vinberg polytopes coincide with the Newton–Okounkov polytopes of X for a valuation not coming from any longest word decomposition  $\overline{w_0}$ 

# (K. 2017)

The Feigin–Fourier–Littelmann–Vinberg polytopes in type A coincide with the Newton–Okounkov polytopes of X for the longest word decomposition  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  and the lowest order term valuation associated with the flag of translated Schubert subvarieties:

$$w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$$

#### ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

#### (E.Feigin-Fourier-Littelmann 2017)

The Feigin–Fourier–Littelmann–Vinberg polytopes coincide with the Newton–Okounkov polytopes of X for a valuation not coming from any longest word decomposition  $\overline{w_0}$ 

# (K. 2017)

The Feigin–Fourier–Littelmann–Vinberg polytopes in type A coincide with the Newton–Okounkov polytopes of X for the longest word decomposition  $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$  and the lowest order term valuation associated with the flag of translated Schubert subvarieties:

$$w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$$

# Thank you!

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへぐ