Newton–Okounkov polytopes of symplectic flag varieties

Valentina Kiritchenko*

*Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics and Kharkevich Insitute for Information Transmission Problems RAS

Conference *Geometry, Topology and Integrability*, Skoltech, October 21, 2014

ション ふゆ アメリア メリア しょうくの

ション ふゆ く 山 マ チャット しょうくしゃ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and *string polytopes* (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

ション ふゆ く 山 マ チャット しょうくしゃ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

ション ふゆ く 山 マ チャット しょうくしゃ

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

ション ふゆ く 山 マ ふ し マ うくの

0. Toric geometry Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

Toric varieties

Theory of Newton polytopes

To every smooth projective toric variety X^n there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^n$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$

Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_F in X.

Intersection theory

$$\mathcal{O}_F \cdot \mathcal{O}_E = \mathcal{O}_{F \cap E}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

if *F* and *E* are transverse.

Toric varieties

Theory of Newton polytopes

To every smooth projective toric variety X^n there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^n$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$

Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_F in X.

Intersection theory

$$\mathcal{O}_F \cdot \mathcal{O}_E = \mathcal{O}_{F \cap E}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

if *F* and *E* are transverse.

Toric varieties

Theory of Newton polytopes

To every smooth projective toric variety X^n there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^n$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$

Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_F in X.

Intersection theory

$$\mathcal{O}_F \cdot \mathcal{O}_E = \mathcal{O}_{F \cap E}$$

ション ふゆ く 山 マ チャット しょうくしゃ

if F and E are transverse.

Non-toric varieties

Theory of Newton-Okounkov convex bodies

To every projective variety X^n there corresponds a convex body $\Delta_v(X) \subset \mathbb{R}^n$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.

Main property of $\Delta_v(X)$

 $\deg X = n! \text{volume}(\Delta_v(X))$

Question

Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{\nu}(X)$ (when $\Delta_{\nu}(X)$ is a polytope)?

Non-toric varieties

Theory of Newton-Okounkov convex bodies

To every projective variety X^n there corresponds a convex body $\Delta_v(X) \subset \mathbb{R}^n$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.

Main property of $\Delta_{v}(X)$

$$\deg X = n! \text{volume}(\Delta_v(X))$$

ション ふゆ く 山 マ チャット しょうくしゃ

Question

Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{\nu}(X)$ (when $\Delta_{\nu}(X)$ is a polytope)?

Non-toric varieties

Theory of Newton-Okounkov convex bodies

To every projective variety X^n there corresponds a convex body $\Delta_v(X) \subset \mathbb{R}^n$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.

Main property of $\Delta_{v}(X)$

 $\deg X = n! \text{volume}(\Delta_{\nu}(X))$

Question

Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{\nu}(X)$ (when $\Delta_{\nu}(X)$ is a polytope)?

Motivating example: flag varieties

Definition

The *flag variety* X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$X_w = \overline{BwB/B}, \ w \in S_n$$

ション ふゆ く 山 マ チャット しょうくしゃ

give basis in $H^*(X,\mathbb{Z})$.

Motivating example: flag varieties

Definition

The *flag variety* X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$X_w = \overline{BwB/B}, \ w \in S_n$$

ション ふゆ アメリア メリア しょうくの

give basis in $H^*(X,\mathbb{Z})$.

Motivating example: flag varieties

Definition

The *flag variety* X is the variety of complete flags in \mathbb{C}^n :

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

Remark

Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (*Borel subgroup*). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$X_w = \overline{BwB/B}, w \in S_n$$

ション ふゆ アメリア メリア しょうくの

give basis in $H^*(X,\mathbb{Z})$.

Schubert varieties for GL_3/B .

Gelfand–Zetlin polytopes

The Gelfand–Zetlin polytope Δ_{λ} is defined by inequalities:

where $(x_1^1, \ldots, x_{n-1}^1; \ldots; x_1^{n-1})$ are coordinates in \mathbb{R}^d , and the notation

a b c

means a < c < b.

Gelfand-Zetlin polytopes

A Gelfand–Zetlin polytope for *GL*₃:

$$\begin{array}{cccc}
-1 & 0 & 1 \\
 & x & y \\
 & z
\end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Schubert calculus and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \to \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of Δ_λ (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

ション ふゆ く 山 マ チャット しょうくしゃ

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \to \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of $H^*(X,\mathbb{Z})$ using volume polynomial of Δ_λ (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

ション ふゆ アメリア メリア しょうくの

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin–Sternberg moment map $X \to \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of Δ_λ (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

ション ふゆ アメリア メリア しょうくの

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin–Sternberg moment map $X \to \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of $H^*(X,\mathbb{Z})$ using volume polynomial of Δ_λ (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin–Sternberg moment map $X \to \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan–E.Miller, Knutson–E.Miller, 2003)
- Description of H^{*}(X, Z) using volume polynomial of Δ_λ (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z})$ = intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Generalized flag varieties

Let G be an arbitrary connected reductive group, and X = G/B the complete flag variety.

Question

Which polytopes are best suited for Schubert calculus on G/B?

Polytopes

Generalizatons of Gelfand–Zetlin polytopes from *GL_n* to *G* include *string polytopes*, Newton–Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2013).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalized flag varieties

Let G be an arbitrary connected reductive group, and X = G/B the complete flag variety.

Question

Which polytopes are best suited for Schubert calculus on G/B?

Polytopes

Generalizatons of Gelfand–Zetlin polytopes from GL_n to G include *string polytopes*, Newton–Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2013).

ション ふゆ アメリア メリア しょうくしゃ

Valuation

Let $X^n \subset \mathbb{P}^N$ be a projective subvariety with coordinates (x_1, \ldots, x_n) in a neighborhood of a smooth point $p \in X$. Define the valuation $v : \mathbb{C}(X) \to \mathbb{Z}^n$ by sending every polynomial $f(x_1, \ldots, x_n)$ to (k_1, \ldots, k_n) where $x_1^{k_1} \cdots x_n^{k_n}$ is the lowest degree term in f (assuming that $x_1 \succ x_2 \succ \ldots \succ x_n$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^N$ of linear functions on

Example

If $X = \nu_N(\mathbb{P}^1) = \{(y_0^N : y_1y_0^{N-1} : \ldots : y_1^N)\} \subset \mathbb{P}^N$ and $x_1 = \frac{y_1}{y_0}$, then v(f) = the order of zero (or pole) of f at p and $V = \langle 1, x_1, \ldots, x_1^N \rangle$.

Valuation

Let $X^n \subset \mathbb{P}^N$ be a projective subvariety with coordinates (x_1, \ldots, x_n) in a neighborhood of a smooth point $p \in X$. Define the valuation $v : \mathbb{C}(X) \to \mathbb{Z}^n$ by sending every polynomial $f(x_1, \ldots, x_n)$ to (k_1, \ldots, k_n) where $x_1^{k_1} \cdots x_n^{k_n}$ is the lowest degree term in f (assuming that $x_1 \succ x_2 \succ \ldots \succ x_n$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^N$ of linear functions on

Example

If $X = \nu_N(\mathbb{P}^1) = \{(y_0^N : y_1y_0^{N-1} : \ldots : y_1^N)\} \subset \mathbb{P}^N$ and $x_1 = \frac{y_1}{y_0}$, then v(f) = the order of zero (or pole) of f at p and $V = \langle 1, x_1, \ldots, x_1^N \rangle$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○へ⊙

Valuation

Let $X^n \subset \mathbb{P}^N$ be a projective subvariety with coordinates (x_1, \ldots, x_n) in a neighborhood of a smooth point $p \in X$. Define the valuation $v : \mathbb{C}(X) \to \mathbb{Z}^n$ by sending every polynomial $f(x_1, \ldots, x_n)$ to (k_1, \ldots, k_n) where $x_1^{k_1} \cdots x_n^{k_n}$ is the lowest degree term in f (assuming that $x_1 \succ x_2 \succ \ldots \succ x_n$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^N$ of linear functions on

Example

If
$$X = \nu_N(\mathbb{P}^1) = \{(y_0^N : y_1y_0^{N-1} : \ldots : y_1^N)\} \subset \mathbb{P}^N$$
 and $x_1 = \frac{y_1}{y_0}$,
then $\nu(f)$ = the order of zero (or pole) of f at p and
 $V = \langle 1, x_1, \ldots, x_1^N \rangle$.

Naive definition

The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of v(f) for all $f \in V$.

Example $\Delta_{\nu}(\nu_{\mathcal{N}}(\mathbb{P}^{1})) = [0, \mathcal{N}] \subset \mathbb{R}^{1}$

Example

A toric variety X^n has a natural system of coordinates (x_1, \ldots, x_n) coming from $(\mathbb{C}^*)^n \subset X^n$. For a projective embedding $X^n \subset \mathbb{P}^N$, the space V is spanned by monomials in x_1, \ldots, x_n . Hence, the valuation v does not matter, and $\Delta_v(X^n)$ is always the Newton polytope of X.

Observation

If n!volume $(\Delta_v(X)) = \deg(X)$, then the naive definition coincides with the correct definition.

Naive definition

The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of v(f) for all $f \in V$.

$\begin{array}{l} \mathsf{Example} \\ \Delta_{\nu}(\nu_{\textit{N}}(\mathbb{P}^{1})) = [0,\textit{N}] \subset \mathbb{R}^{1} \end{array}$

Example

A toric variety X^n has a natural system of coordinates (x_1, \ldots, x_n) coming from $(\mathbb{C}^*)^n \subset X^n$. For a projective embedding $X^n \subset \mathbb{P}^N$, the space V is spanned by monomials in x_1, \ldots, x_n . Hence, the valuation v does not matter, and $\Delta_v(X^n)$ is always the Newton polytope of X.

Observation

If n!volume $(\Delta_v(X)) = \deg(X)$, then the naive definition coincides with the correct definition.

Naive definition

The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of v(f) for all $f \in V$.

Example

$$\Delta_{v}(\nu_{N}(\mathbb{P}^{1})) = [0, N] \subset \mathbb{R}^{1}$$

Example

A toric variety X^n has a natural system of coordinates (x_1, \ldots, x_n) coming from $(\mathbb{C}^*)^n \subset X^n$. For a projective embedding $X^n \subset \mathbb{P}^N$, the space V is spanned by monomials in x_1, \ldots, x_n . Hence, the valuation v does not matter, and $\Delta_v(X^n)$ is always the Newton polytope of X.

Observation

If n!volume $(\Delta_v(X)) = \deg(X)$, then the naive definition coincides with the correct definition.

Naive definition

The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of v(f) for all $f \in V$.

Example

$$\Delta_{v}(\nu_{N}(\mathbb{P}^{1})) = [0, N] \subset \mathbb{R}^{1}$$

Example

A toric variety X^n has a natural system of coordinates (x_1, \ldots, x_n) coming from $(\mathbb{C}^*)^n \subset X^n$. For a projective embedding $X^n \subset \mathbb{P}^N$, the space V is spanned by monomials in x_1, \ldots, x_n . Hence, the valuation v does not matter, and $\Delta_v(X^n)$ is always the Newton polytope of X.

Observation

If n!volume $(\Delta_{\nu}(X)) = \deg(X)$, then the naive definition coincides with the correct definition.

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$\mathsf{a}'=(x:1:0); \quad \mathsf{I}=\langle \mathsf{a}',(y:0:1)
angle; \quad \mathsf{a}=(xz+y:z:1)$$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

(日) (周) (王) (王)

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$\mathsf{a}'=(x:1:0); \quad \mathsf{I}=\langle \mathsf{a}',(y:0:1)
angle; \quad \mathsf{a}=(xz+y:z:1)$$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

イロト イボト イヨト イヨト

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

イロト イボト イヨト イヨト

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

Coordinates on the open Schubert cell

If the flag $(a \in I \subset \mathbb{P}^2)$ is in general position with a fixed flag $(a_0 \in I_0 \subset \mathbb{P}^2)$, then $I \cap I_0 = a' \neq a_0$ and $a \notin I_0$. Hence,

$$a'=(x:1:0);$$
 $l=\langle a',(y:0:1)
angle;$ $a=(xz+y:z:1)$

are coordinates (assuming that $a_0 = (1:0:0)$, $l_0 = \{(\star:\star:0)\}$).

Consider the embedding $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$; $p: (a, l) \mapsto a \times l$. Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$

 $\Delta_v(p(GL_3/B)) =$

Consider the embedding $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$; $p: (a, l) \mapsto a \times l$. Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$

z y y

Consider the embedding $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$; $p: (a, l) \mapsto a \times l$. Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$

 $\Delta_v(p(GL_3/B)) =$

Consider the embedding $p: GL_3/B \hookrightarrow \mathbb{P}^2 \times (\mathbb{P}^2)^* \hookrightarrow \mathbb{P}^8$; $p: (a, l) \mapsto a \times l$. Then p takes the flag with coordinates (x, y, z) to

$$\begin{pmatrix} xz+y & z & 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} xz+y & -x^2z - xy & -xyz - y^2 \\ z & -xz & -yz \\ 1 & -x & -y \end{pmatrix}$$

 $\Delta_v(p(GL_3/B)) =$

Valuations on $\mathbb{C}(G/B)$

Decomposition of w₀

Fix a reduced decomposition $\overline{w_0} = s_{i_1} \dots s_{i_d}$ of the longest element w_0 in the Weyl group of G.

Flag of Schubert varieties

Choose coordinates compatible with the flag $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties

Choose coordinates compatible with the flag $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$ (coordinates at the open Schubert cell).

うして ふゆう ふほう ふほう うらう

Valuations on $\mathbb{C}(G/B)$

Decomposition of w₀

Fix a reduced decomposition $\overline{w_0} = s_{i_1} \dots s_{i_d}$ of the longest element w_0 in the Weyl group of G.

Flag of Schubert varieties

Choose coordinates compatible with the flag $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties

Choose coordinates compatible with the flag $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$ (coordinates at the open Schubert cell).

ション ふゆ く 山 マ チャット しょうくしゃ

Valuations on $\mathbb{C}(G/B)$

Decomposition of w_0

Fix a reduced decomposition $\overline{w_0} = s_{i_1} \dots s_{i_d}$ of the longest element w_0 in the Weyl group of G.

Flag of Schubert varieties

Choose coordinates compatible with the flag $X_{id} \subset X_{s_{i_d}} \subset X_{s_{i_d-1}s_{i_d}} \subset \ldots \subset X_{s_{i_2}\cdots s_{i_d}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties

Choose coordinates compatible with the flag $w_0 X_{id} \subset s_{i_1} \dots s_{i_{d-1}} X_{s_{i_d}} \subset s_{i_1} \dots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_d}} \subset \dots \subset s_{i_1} X_{s_{i_2} \dots s_{i_d}} \subset X$ (coordinates at the open Schubert cell).

ション ふゆ く 山 マ チャット しょうくしゃ

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)

The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of Sp_{2n}/B for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n).$

(Kaveh, 2013)

The string polytopes associated with $\overline{w_0}$ coincide with the Newton–Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0}$.

Example

If $G = GL_n$ and $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)

The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of Sp_{2n}/B for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n).$

(Kaveh, 2013)

The string polytopes associated with $\overline{w_0}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0}$.

Example

If $G = GL_n$ and $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

(日) (伊) (日) (日) (日) (0) (0)

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)

The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of Sp_{2n}/B for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0} = (s_1)(s_2s_1s_2)\dots(s_ns_{n-1}\dots s_2s_1s_2\dots s_{n-1}s_n).$

(Kaveh, 2013)

The string polytopes associated with $\overline{w_0}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_0}$.

Example

If $G = GL_n$ and $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ then the corresponding string polytopes are exactly Gelfand–Zetlin polytopes.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of GL_n , $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ (K.–Smirnov–Timorin, 2012) and Sp_4 , $\overline{w_0} = s_1s_2s_1s_2$ (Ilyukhina, 2012).

ション ふゆ く 山 マ チャット しょうくしゃ

Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of GL_n , $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ (K.-Smirnov-Timorin, 2012) and Sp_4 , $\overline{w_0} = s_1s_2s_1s_2$ (Ilyukhina, 2012).

ション ふゆ く 山 マ チャット しょうくしゃ

Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of GL_n , $\overline{w_0} = s_1(s_2s_1)\cdots(s_{n-1}\cdots s_1)$ (K.-Smirnov-Timorin, 2012) and Sp_4 , $\overline{w_0} = s_1s_2s_1s_2$ (Ilyukhina, 2012).

ション ふゆ く 山 マ チャット しょうくしゃ

Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

Mitosis

Combinatorial mitosis on pipe-dreams for GL_n

Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_i w$ (if $I(s_i w) < I(w)$) by an explicit combinatorial algorithm (Knutson–E.Miller, 2003).

Mitosis on parallelepipeds

Basic steps of mitosis on pipe-dreams admit a geometric realization (mitosis on parallelepipeds) compatible with the action of Demazure operators (K.-Smirnov-Timorin, 2012).

Geometric mitosis

If Gelfand–Zetlin polytope is replaced by a DDO polytope for another reductive group (e.g. for Sp(2n)) then mitosis on parallelepipeds still works and produces a new combinatorial algorithm (K., 2014).

Mitosis

Combinatorial mitosis on pipe-dreams for GL_n

Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_i w$ (if $I(s_i w) < I(w)$) by an explicit combinatorial algorithm (Knutson–E.Miller, 2003).

Mitosis on parallelepipeds

Basic steps of mitosis on pipe-dreams admit a geometric realization (mitosis on parallelepipeds) compatible with the action of Demazure operators (K.-Smirnov-Timorin, 2012).

Geometric mitosis

If Gelfand–Zetlin polytope is replaced by a DDO polytope for another reductive group (e.g. for Sp(2n)) then mitosis on parallelepipeds still works and produces a new combinatorial algorithm (K., 2014).

Mitosis

Combinatorial mitosis on pipe-dreams for GL_n

Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_i w$ (if $I(s_i w) < I(w)$) by an explicit combinatorial algorithm (Knutson–E.Miller, 2003).

Mitosis on parallelepipeds

Basic steps of mitosis on pipe-dreams admit a geometric realization (mitosis on parallelepipeds) compatible with the action of Demazure operators (K.-Smirnov-Timorin, 2012).

Geometric mitosis

If Gelfand–Zetlin polytope is replaced by a DDO polytope for another reductive group (e.g. for Sp(2n)) then mitosis on parallelepipeds still works and produces a new combinatorial algorithm (K., 2014).

Gelfand-Zetlin polytope

has (n-1) different fibrations by coordinate parallelepipeds. Hence, there are (n-1) different mitosis operations on its faces.

ション ふゆ く 山 マ チャット しょうくしゃ

(K., 2013)

Take $\overline{w_0} = s_2 s_1 s_2 s_1$. The corresponding DDO polytope Q_λ is given by inequalities

$$\begin{split} 0 &\leq x \leq \lambda_1, \quad z \leq x + \lambda_2, \quad y \leq 2z, \\ y &\leq z + \lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq \frac{y}{2}. \end{split}$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton–Okounkov polytopes of Sp_4/B for the lowest order term valuation v associated with the flag of subvarieties $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$.

Remark

The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand–Zetlin polytopes) associated with $s_2s_1s_2s_1$ or $s_1s_2s_1s_2r_1 \cdot e_{r_1} \cdot e_{r_2} \cdot e$

(K., 2013)

Take $\overline{w_0} = s_2 s_1 s_2 s_1$. The corresponding DDO polytope Q_λ is given by inequalities

$$\begin{split} 0 &\leq x \leq \lambda_1, \quad z \leq x + \lambda_2, \quad y \leq 2z, \\ y &\leq z + \lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq \frac{y}{2}. \end{split}$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of Sp_4/B for the lowest order term valuation v associated with the flag of subvarieties $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$.

Remark

The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand–Zetlin polytopes) associated with $s_2s_1s_2s_1$ or $s_1s_2s_1s_2s_1 \circ e^{s_1} \cdot e^{s_1} \cdot e^{s_2} \cdot e^{s_2} \cdot e^{s_1} \cdot e^{s_1} \cdot e^{s_1} \cdot e^{s_2} \cdot e^{s_1} \cdot e$

(K., 2013)

Take $\overline{w_0} = s_2 s_1 s_2 s_1$. The corresponding DDO polytope Q_λ is given by inequalities

$$\begin{split} 0 &\leq x \leq \lambda_1, \quad z \leq x + \lambda_2, \quad y \leq 2z, \\ y &\leq z + \lambda_2, \quad 0 \leq t \leq \lambda_2, \quad t \leq \frac{y}{2}. \end{split}$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of Sp_4/B for the lowest order term valuation v associated with the flag of subvarieties $w_0X_{id} \subset s_1s_2s_1X_{s_2} \subset s_1s_2X_{s_1s_2} \subset s_1X_{s_2s_1s_2} \subset X$.

Remark

The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand-Zetlin polytopes) associated with $s_2s_1s_2s_1$ or $s_1s_2s_1s_2s_3 + c_2s_3 + c_3s_3 + c_3s_3$

Skew pipe-dreams

Faces that contain the lowest vertex $a_{\lambda} = (0, 0, 0, 0)$ can be encoded by the diagrams:

$$+ \iff 0 = t$$
$$+ \iff 0 = x + \iff t = \frac{y}{2}$$
$$+ \iff y = 2z$$

Parallelepipeds

The polytope Q_{λ} admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations M_1 and M_2 on faces of Q_{λ} .

Isotropic flags

 $Sp_4/B = \{ (V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3\perp} \} = \{ (a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line } \}$

Skew pipe-dreams

Faces that contain the lowest vertex $a_{\lambda} = (0, 0, 0, 0)$ can be encoded by the diagrams:

$$+ \iff 0 = t$$
$$+ \iff 0 = x + \iff t = \frac{y}{2}$$
$$+ \iff y = 2z$$

Parallelepipeds

The polytope Q_{λ} admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations M_1 and M_2 on faces of Q_{λ} .

Isotropic flags $Sp_4/B = \{(V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3^{\perp}}\} = \{(a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line }\}$

Skew pipe-dreams

Faces that contain the lowest vertex $a_{\lambda} = (0, 0, 0, 0)$ can be encoded by the diagrams:

$$\begin{array}{c} + \Longleftrightarrow 0 = t \\ + \Longleftrightarrow 0 = x & + \Leftrightarrow t = \frac{y}{2} \\ + \iff y = 2z \end{array}$$

Parallelepipeds

The polytope Q_{λ} admits two different fibrations (by translates of xy- and zt-planes), hence, there are two mitosis operations M_1 and M_2 on faces of Q_{λ} .

lsotropic flags

$$Sp_4/B = \{ (V^1 \subset V^2 \subset V^3 \subset \mathbb{C}^4) \mid \omega \mid_{V^2} = 0, V^1 = V^{3\perp} \} = \\ = \{ (a \in I \subset \mathbb{P}^3) \mid I - \text{ isotropic line } \}$$

< 何

< 何

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

References

- Valentina Kiritchenko, Geometric mitosis, arXiv:1409.6097 [math.AG]
- Valentina Kiritchenko, *Divided difference operators on polytopes*, arXiv:1307.7234 [math.AG], to appear in Adv. Studies in Pure Math.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()