Newton-Okounkov polytopes of symplectic flag varieties

Valentina Kiritchenko*
*Faculty of Mathematics and Laboratory of Algebraic Geometry,
National Research University Higher School of Economics and
Kharkevich Insitute for Information Transmission Problems RAS
Conference Geometry, Topology and Integrability, Skoltech, October 21, 2014

Convex polytopes in algebraic geometry and in representation theory

0 . Toric geometry
Newton (or moment) polytopes

1. Representation theory

Gelfand-Zetlin polytopes and string polytopes
(Berenstein-Zelevinsky, Littelmann, 1998)
2. Algebraic geometry

Newton-Okounkov convex bodies
(Kaveh-Khovanskii, Lazarsfeld-Mustata, 2009)
1 \& 2. Toric geometry on non-toric varieties

Convex polytopes in algebraic geometry and in representation theory

0 . Toric geometry
Newton (or moment) polytopes

1. Representation theory

Gelfand-Zetlin polytopes and string polytopes
(Berenstein-Zelevinsky, Littelmann, 1998)
2. Algebraic geometry

Newton-Okounkov convex bodies
(Kaveh-Khovanskii, Lazarsfeld-Mustata, 2009)
1 \& 2. Toric geometry on non-toric varieties

Convex polytopes in algebraic geometry and in representation theory

0 . Toric geometry
Newton (or moment) polytopes

1. Representation theory

Gelfand-Zetlin polytopes and string polytopes
(Berenstein-Zelevinsky, Littelmann, 1998)
2. Algebraic geometry

Newton-Okounkov convex bodies
(Kaveh-Khovanskii, Lazarsfeld-Mustata, 2009)
$1 \& 2$. Toric geometry on non-toric varieties

Convex polytopes in algebraic geometry and in

 representation theory0 . Toric geometry
Newton (or moment) polytopes

1. Representation theory

Gelfand-Zetlin polytopes and string polytopes
(Berenstein-Zelevinsky, Littelmann, 1998)
2. Algebraic geometry

Newton-Okounkov convex bodies
(Kaveh-Khovanskii, Lazarsfeld-Mustata, 2009)
$1 \& 2$. Toric geometry on non-toric varieties

Toric varieties

Theory of Newton polytopes
To every smooth projective toric variety X^{n} there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^{n}$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$
 Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_{F} in

Intersection theory

$$
\mathcal{O}_{F} \cdot \mathcal{O}_{E}=\mathcal{O}_{F \cap E}
$$

if F and E are transverse.

Toric varieties

Theory of Newton polytopes
To every smooth projective toric variety X^{n} there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^{n}$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$
Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_{F} in X.

Intersection theory

$$
\mathcal{O}_{F} \cdot \mathcal{O}_{E}=\mathcal{O}_{F \cap E}
$$

if F and E are transverse.

Toric varieties

Theory of Newton polytopes
To every smooth projective toric variety X^{n} there corresponds a simple convex lattice polytope $\Delta(X) \subset \mathbb{R}^{n}$.

Geometry of $X \leftrightarrow$ combinatorics of $\Delta(X)$
Faces F of $\Delta(X)$ are in bijection with closures of torus orbits \mathcal{O}_{F} in X.

Intersection theory

$$
\mathcal{O}_{F} \cdot \mathcal{O}_{E}=\mathcal{O}_{F \cap E}
$$

if F and E are transverse.

Non-toric varieties

Theory of Newton-Okounkov convex bodies
To every projective variety X^{n} there corresponds a convex body $\Delta_{v}(X) \subset \mathbb{R}^{n}$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.
$\operatorname{deg} X=n!\operatorname{volume}\left(\Delta_{v}(X)\right)$

Question
Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{v}(X)$ (when $\Delta_{v}(X)$ is a polytope)?

Non-toric varieties

Theory of Newton-Okounkov convex bodies
To every projective variety X^{n} there corresponds a convex body
$\Delta_{v}(X) \subset \mathbb{R}^{n}$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.

Main property of $\Delta_{v}(X)$

$$
\operatorname{deg} X=n!\operatorname{volume}\left(\Delta_{v}(X)\right)
$$

Question
Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{v}(X)$ (when $\Delta_{v}(X)$ is a polytope)?

Non-toric varieties

Theory of Newton-Okounkov convex bodies
To every projective variety X^{n} there corresponds a convex body
$\Delta_{v}(X) \subset \mathbb{R}^{n}$ (it depends not only on X but also on a valuation v on $\mathbb{C}(X)$). In many cases of interest (e.g. for spherical varieties) it is a convex lattice polytope.

Main property of $\Delta_{v}(X)$

$$
\operatorname{deg} X=n!\operatorname{volume}\left(\Delta_{v}(X)\right)
$$

Question

Is there a useful relation between intersection theory on X and intersection of faces of $\Delta_{v}(X)$ (when $\Delta_{v}(X)$ is a polytope)?

Motivating example: flag varieties

Definition
The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of
upper-triangular matrices (Borel subgroup). In this form, the
definition can be extended to arbitrary connected reductive groups.
Schubert varieties

$$
X_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Motivating example: flag varieties

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$
X_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Motivating example: flag varieties

Definition

The flag variety X is the variety of complete flags in \mathbb{C}^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=\mathbb{C}^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Remark
Alternatively, $X=G L_{n}(\mathbb{C}) / B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Schubert varieties

$$
x_{w}=\overline{B w B / B}, w \in S_{n}
$$

give basis in $H^{*}(X, \mathbb{Z})$.

Schubert varieties for $G L_{3} / B$.

Gelfand-Zetlin polytopes

The Gelfand-Zetlin polytope Δ_{λ} is defined by inequalities:

$$
\begin{array}{lllllllll}
\lambda_{1} & & \lambda_{2} & & \lambda_{3} & & \cdots & & \lambda_{n} \\
& x_{1}^{1} & & x_{2}^{1} & & \cdots & & x_{n-1}^{1} & \\
& & x_{1}^{2} & & \cdots & & x_{n-2}^{2} & \\
& & & \ddots & \cdots & & & \\
& & & x_{1}^{n-2} & \cdots & x_{2}^{n-2} & & \\
& & & & x_{1}^{n-1} & & &
\end{array}
$$

where $\left(x_{1}^{1}, \ldots, x_{n-1}^{1} ; \ldots ; x_{1}^{n-1}\right)$ are coordinates in \mathbb{R}^{d}, and the notation

$$
{ }_{c} \quad \begin{aligned}
& b \\
& c_{c}
\end{aligned}
$$

means $a \leq c \leq b$.

Gelfand-Zetlin polytopes

A Gelfand-Zetlin polytope for $G L_{3}$:

$\begin{array}{lllll}-1 & & 0 & & 1 \\ & x & & y & \end{array}$
z

Schubert calculus and Gelfand-Zetlin polytopes

$$
\left[X_{s_{1}}\right]=\mid \quad\left[X_{s_{2}}\right] \quad=
$$

$$
\left[X_{S_{1} s_{2}}\right] \cdot\left[X_{s_{2} s_{1}}\right]=
$$

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \rightarrow \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan-E. Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of Δ_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \rightarrow \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan-E. Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of Δ_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \rightarrow \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of Δ_{λ} (Kaveh, 2011)
- Schubert calculus intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \rightarrow \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of Δ_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Flag varieties and Gelfand-Zetlin polytopes

Results

- Relation between Schubert varieties and preimages of rc-faces of Δ_{λ} under the Guillemin-Sternberg moment map $X \rightarrow \Delta_{\lambda}$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of Δ_{λ} (Kogan-E.Miller, Knutson-E.Miller, 2003)
- Description of $H^{*}(X, \mathbb{Z})$ using volume polynomial of Δ_{λ} (Kaveh, 2011)
- Schubert calculus: intersection product of Schubert cycles in $H^{*}(X, \mathbb{Z})=$ intersection of faces in Δ_{λ} (K.-Smirnov-Timorin, 2012)

Generalized flag varieties

Let G be an arbitrary connected reductive group, and $X=G / B$ the complete flag variety.

Question
Which polytopes are best suited for Schubert calculus on G / B ?
Polytopes
Generalizatons of Gelfand-Zetlin polytopes from $G L_{n}$ to G include string polytopes, Newton-Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2013).

Generalized flag varieties

Let G be an arbitrary connected reductive group, and $X=G / B$ the complete flag variety.

Question

Which polytopes are best suited for Schubert calculus on G/B?

Polytopes

Generalizatons of Gelfand-Zetlin polytopes from $G L_{n}$ to G include string polytopes, Newton-Okounkov polytopes of flag varieties, and polytopes constructed via convex-geometric divided difference operators (K., 2013).

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Vector space
Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^{N}$ of linear functions on

Example

then $v(f)=$ the order of zero (or pole) of f at p and

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^{N}$ of linear functions on

Example

then $v(f)=$ the order of zero (or pole) of f at p and

Newton-Okounkov polytopes

Valuation

Let $X^{n} \subset \mathbb{P}^{N}$ be a projective subvariety with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of a smooth point $p \in X$. Define the valuation $v: \mathbb{C}(X) \rightarrow \mathbb{Z}^{n}$ by sending every polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ to $\left(k_{1}, \ldots, k_{n}\right)$ where $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ is the lowest degree term in f (assuming that $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$).

Vector space

Let $V \subset \mathbb{C}(X)$ be the vector space spanned by restrictions to $X \subset \mathbb{P}^{N}$ of linear functions on

Example
If $X=\nu_{N}\left(\mathbb{P}^{1}\right)=\left\{\left(y_{0}^{N}: y_{1} y_{0}^{N-1}: \ldots: y_{1}^{N}\right)\right\} \subset \mathbb{P}^{N}$ and $x_{1}=\frac{y_{1}}{y_{0}}$,
then $v(f)=$ the order of zero (or pole) of f at p and $V=\left\langle 1, x_{1}, \ldots, x_{1}^{N}\right\rangle$.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$
coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$,
the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\triangle_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$
coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$,
the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\triangle_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$
Example
A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$ coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$, the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\Delta_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If $n!$ volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

Newton-Okounkov polytopes

Naive definition
The Newton-Okounkov polytope $\Delta_{v}(X) \subset \mathbb{R}^{n}$ of X^{n} is the convex hull of $v(f)$ for all $f \in V$.

Example
$\Delta_{v}\left(\nu_{N}\left(\mathbb{P}^{1}\right)\right)=[0, N] \subset \mathbb{R}^{1}$

Example

A toric variety X^{n} has a natural system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$ coming from $\left(\mathbb{C}^{*}\right)^{n} \subset X^{n}$. For a projective embedding $X^{n} \subset \mathbb{P}^{N}$, the space V is spanned by monomials in x_{1}, \ldots, x_{n}. Hence, the valuation v does not matter, and $\Delta_{v}\left(X^{n}\right)$ is always the Newton polytope of X.

Observation
If n !volume $\left(\Delta_{v}(X)\right)=\operatorname{deg}(X)$, then the naive definition coincides with the correct definition.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

Coordinates on the open Schubert cell
If the flag $\left(a \in I \subset \mathbb{P}^{2}\right)$ is in general position with a fixed flag $\left(a_{0} \in I_{0} \subset \mathbb{P}^{2}\right)$, then $I \cap I_{0}=a^{\prime} \neq a_{0}$ and $a \notin I_{0}$. Hence,

$$
a^{\prime}=(x: 1: 0) ; \quad I=\left\langle a^{\prime},(y: 0: 1)\right\rangle ; \quad a=(x z+y: z: 1)
$$

are coordinates (assuming that $\left.a_{0}=(1: 0: 0), I_{0}=\{(\star: \star: 0)\}\right)$.

A Newton-Okounkov polytope of $G L_{3} / B$

(Anderson, 2011)
Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

A Newton-Okounkov polytope of $G L_{3} / B$

(Anderson, 2011)
Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

A Newton-Okounkov polytope of $G L_{3} / B$

(Anderson, 2011)
Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

$\Delta_{v}\left(p\left(G L_{3} / B\right)\right)=$

A Newton-Okounkov polytope of $G L_{3} / B$

(Anderson, 2011)
Consider the embedding $p: G L_{3} / B \hookrightarrow \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*} \hookrightarrow \mathbb{P}^{8}$; $p:(a, I) \mapsto a \times I$. Then p takes the flag with coordinates (x, y, z) to

$$
\left(\begin{array}{lll}
x z+y & z & 1
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-x \\
-y
\end{array}\right)=\left(\begin{array}{ccc}
x z+y & -x^{2} z-x y & -x y z-y^{2} \\
z & -x z & -y z \\
1 & -x & -y
\end{array}\right)
$$

$\Delta_{v}\left(p\left(G L_{3} / B\right)\right)=$

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}
Fix a reduced decomposition $\overline{W_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag
$X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset X_{s_{i_{2}} \ldots s_{i_{d}}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
(coordinates at the open Schubert cell).

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}
Fix a reduced decomposition $\overline{w_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag $X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset X_{s_{i_{2}} \cdots s_{i_{d}}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
(coordinates at the open Schubert cell).

Valuations on $\mathbb{C}(G / B)$

Decomposition of w_{0}
Fix a reduced decomposition $\overline{W_{0}}=s_{i_{1}} \ldots s_{i_{d}}$ of the longest element w_{0} in the Weyl group of G.

Flag of Schubert varieties
Choose coordinates compatible with the flag $X_{i d} \subset X_{s_{i_{d}}} \subset X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset X_{s_{i_{2}} \cdots s_{i_{d}}} \subset X$ (coordinates "at infinity").

Flag of translated Schubert varieties
Choose coordinates compatible with the flag $w_{0} X_{i d} \subset$
$s_{i_{1}} \ldots s_{i_{d-1}} X_{s_{i_{d}}} \subset s_{i_{1}} \ldots s_{i_{d-2}} X_{s_{i_{d-1}} s_{i_{d}}} \subset \ldots \subset s_{i_{1}} X_{s_{i_{2}} \cdots s_{i_{d}}} \subset X$
(coordinates at the open Schubert cell).

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)
The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.

> The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}$.

Example
If $G=G L_{n}$ and $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the
corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)
The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.
(Kaveh, 2013)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}$.

Example
If $G=G L_{n}$ and $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the
corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

Generalized Gelfand-Zetlin polytopes

(Okounkov, 1998)

The symplectic Gelfand-Zetlin polytope coincides with the Newton-Okounkov polytopes of $S p_{2 n} / B$ for the lowest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}=\left(s_{1}\right)\left(s_{2} s_{1} s_{2}\right) \ldots\left(s_{n} s_{n-1} \ldots s_{2} s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$.
(Kaveh, 2013)
The string polytopes associated with $\overline{w_{0}}$ coincide with the Newton-Okounkov polytopes of X for the highest order term valuation v associated with the flag of Schubert varieties for $\overline{w_{0}}$.

Example
If $G=G L_{n}$ and $\overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ then the corresponding string polytopes are exactly Gelfand-Zetlin polytopes.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

```
Remark
This is an existence result. Explicit descriptions of such faces are so
far known in the case of GL_ , \overline{w}}=\mp@subsup{s}{1}{}(\mp@subsup{s}{2}{}\mp@subsup{s}{1}{})\cdots(\mp@subsup{s}{n-1}{}\cdots\mp@subsup{s}{1}{}
(K.-Smirnov-Timorin, 2012) and Sp4, \overline{w}}=\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mathrm{ (Ilyukhina,
2012)
Problem
Find an efficient algorithm for representing Schubert cycles
explicitly by unions of faces.
```


String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of $G L_{n}, \overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ (K.-Smirnov-Timorin, 2012) and $S p_{4}, \overline{w_{0}}=s_{1} s_{2} s_{1} s_{2}$ (Ilyukhina, 2012).

Problem
Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

String polytopes

(J.Miller, 2014)

Newton-Okounkov polytopes of Schubert varieties can be represented by unions of faces of a given string polytope.

Remark

This is an existence result. Explicit descriptions of such faces are so far known in the case of $G L_{n}, \overline{w_{0}}=s_{1}\left(s_{2} s_{1}\right) \cdots\left(s_{n-1} \cdots s_{1}\right)$ (K.-Smirnov-Timorin, 2012) and $S p_{4}, \overline{w_{0}}=s_{1} s_{2} s_{1} s_{2}$ (Ilyukhina, 2012).

Problem

Find an efficient algorithm for representing Schubert cycles explicitly by unions of faces.

Mitosis

Combinatorial mitosis on pipe-dreams for $G L_{n}$
Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_{i} w$ (if $I\left(s_{i} w\right)<I(w)$) by an explicit combinatorial algorithm (Knutson-E.Miller, 2003).

Mitosis

Combinatorial mitosis on pipe-dreams for $G L_{n}$
Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_{i} w$ (if $I\left(s_{i} w\right)<I(w)$) by an explicit combinatorial algorithm (Knutson-E.Miller, 2003).

Mitosis on parallelepipeds
Basic steps of mitosis on pipe-dreams admit a geometric realization (mitosis on parallelepipeds) compatible with the action of Demazure operators (K.-Smirnov-Timorin, 2012).

> Geometric mitosis
If Gelfand-Zetlin polytope is replaced by a DDO polytope for
> another reductive group (e.g. for $S p(2 n)$) then mitosis on parallelepipeds still works and produces a new combinatorial algorithm (K., 2014)

Mitosis

Combinatorial mitosis on pipe-dreams for $G L_{n}$

Pipe-dreams corresponding to permutation w can be obtained from pipe-dreams corresponding to permutation $s_{i} w$ (if $I\left(s_{i} w\right)<I(w)$) by an explicit combinatorial algorithm (Knutson-E.Miller, 2003).

Mitosis on parallelepipeds

Basic steps of mitosis on pipe-dreams admit a geometric realization (mitosis on parallelepipeds) compatible with the action of Demazure operators (K.-Smirnov-Timorin, 2012).

Geometric mitosis

If Gelfand-Zetlin polytope is replaced by a DDO polytope for another reductive group (e.g. for $S p(2 n)$) then mitosis on parallelepipeds still works and produces a new combinatorial algorithm (K., 2014).

Geometric mitosis: type A

Gelfand-Zetlin polytope

$$
\begin{array}{ccccccc}
\lambda_{1} & & \lambda_{2} & & \lambda_{3} & & \cdots \\
& x_{1}^{1} & & x_{2}^{1} & & \cdots & \\
& & x_{1}^{2} & & \ldots & & x_{n-2}^{2} \\
& & & \ddots & \ldots & & \\
& & & x_{n-1}^{1} & \\
& & & x_{1}^{n-2} & & x_{n}^{n-2} & \\
& & & & x_{1}^{n-1} & & \\
& & & &
\end{array}
$$

has $(n-1)$ different fibrations by coordinate parallelepipeds. Hence, there are $(n-1)$ different mitosis operations on its faces.

Geometric mitosis: type C

(K., 2013)

Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.

Remark
The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand-Zetlin polytopes) associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} s_{2} s_{1} s_{2}$,

Geometric mitosis: type C

(K., 2013)

Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.

The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand-Zetlin polytopes) associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} s_{2} s_{1} s_{2}$

Geometric mitosis: type C

(K., 2013)

Take $\overline{w_{0}}=s_{2} s_{1} s_{2} s_{1}$. The corresponding DDO polytope Q_{λ} is given by inequalities

$$
\begin{aligned}
& 0 \leq x \leq \lambda_{1}, \quad z \leq x+\lambda_{2}, \quad y \leq 2 z \\
& y \leq z+\lambda_{2}, \quad 0 \leq t \leq \lambda_{2}, \quad t \leq \frac{y}{2}
\end{aligned}
$$

(K., 2014)

The polytopes Q_{λ} coincide with the Newton-Okounkov polytopes of $S p_{4} / B$ for the lowest order term valuation v associated with the flag of subvarieties $w_{0} X_{i d} \subset s_{1} s_{2} s_{1} X_{s_{2}} \subset s_{1} s_{2} X_{s_{1} s_{2}} \subset s_{1} X_{s_{2} s_{1} s_{2}} \subset X$.
Remark
The polytopes Q_{λ} have 11 vertices so they are not combinatorially equivalent to string polytopes (=symplectic Gelfand-Zetlin polytopes) associated with $s_{2} s_{1} s_{2} s_{1}$ or $s_{1} s_{2} s_{1} s_{2}$.

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

Parallelepipeds
The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Isotropic flags

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

	$+\Longleftrightarrow 0=t$
$+\Longleftrightarrow 0=x$	$+\Longleftrightarrow t=\frac{y}{2}$
	$+\Longleftrightarrow y=2 z$

Parallelepipeds
The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Geometric mitosis: type C

Skew pipe-dreams
Faces that contain the lowest vertex $a_{\lambda}=(0,0,0,0)$ can be encoded by the diagrams:

	$+\Longleftrightarrow 0=t$
$+\Longleftrightarrow 0=x$	$+\Longleftrightarrow t=\frac{y}{2}$
	$+\Longleftrightarrow y=2 z$

Parallelepipeds

The polytope Q_{λ} admits two different fibrations (by translates of $x y$ - and zt-planes), hence, there are two mitosis operations M_{1} and M_{2} on faces of Q_{λ}.

Isotropic flags
$S p_{4} / B=\left\{\left(V^{1} \subset V^{2} \subset V^{3} \subset \mathbb{C}^{4}\right)|\omega|_{V^{2}}=0, V^{1}=V^{3 \perp}\right\}=$ $=\left\{\left(a \in I \subset \mathbb{P}^{3}\right) \mid I-\right.$ isotropic line $\}$

Schubert cycles for $S p_{4}$

$S_{2} S_{1}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

$S_{2} S_{1}$

Schubert cycles for $S p_{4}$

$S_{2} S_{1}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

Schubert cycles for $S p_{4}$

$s_{1} s_{2}$

Schubert cycles for $S p_{4}$

$s_{1} s_{2}$

Geometric mitosis: type C

References

- Valentina Kiritchenko, Geometric mitosis, arXiv:1409.6097 [math.AG]
- Valentina Kiritchenko, Divided difference operators on polytopes, arXiv:1307.7234 [math.AG], to appear in Adv. Studies in Pure Math.

